《函数的应用》教案

时间:2023-02-26 14:05:55 教案 我要投稿

《函数的应用》教案

  作为一位无私奉献的人民教师,总归要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?下面是小编帮大家整理的《函数的应用》教案,仅供参考,希望能够帮助到大家。

《函数的应用》教案

《函数的应用》教案1

  一、教材分析:

  《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

  本节教学时间安排1课时

  二、教学目标:

  知识技能:

  1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

  2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

  3.能够利用二次函数的图象求一元二次方程的近似根。

  数学思考:

  1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

  2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的.体验.

  3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

  解决问题:

  1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

  2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

  情感态度:

  1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

  2.通过学生共同观察和讨论,培养大家的合作交流意识。

  三、教学重点、难点:

  教学重点:

  1.体会方程与函数之间的联系。

  2.能够利用二次函数的图象求一元二次方程的近似根。

  教学难点:

  1.探索方程与函数之间关系的过程。

  2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

  四、教学方法:启发引导 合作交流

  五:教具、学具:课件

  六、教学过程:

  [活动1] 检查预习 引出课题

  预习作业:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

  师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

  教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

  设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

  [活动2] 创设情境 探究新知

  问题

  1. 课本P94 问题.

  2. 结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?

  3. 结合预习题1,完成课本P94 观察中的题目。

  师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

  二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

  教师重点关注:

  1.学生能否把实际问题准确地转化为数学问题;

  2.学生在思考问题时能否注重数形结合思想的应用;

  3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

  设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

  [活动3] 例题学习 巩固提高

  问题

  例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

  师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

  教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

  设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

  [活动4] 练习反馈 巩固新知

《函数的应用》教案2

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标)

  2、函数零点的意义:方程f(x)=0 有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点

  3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程 f(x)=0 的根。

  4、函数零点的求法:求函数y=f(x)的零点:

  (1) (代数法)求方程f(x)=0 的实数根;

  (2) (几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.

  5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).

  1)△0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

  2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.

  二、二分法

  1、概念:对于在区间[a,b]上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的`区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

  2、用二分法求方程近似解的步骤:

  ⑴确定区间[a,b],验证f(a)f(b)0,给定精确度ε;

  ⑵求区间(a,b)的中点c;

  ⑶计算f(c),

  ①若f(c)=0,则c就是函数的零点;

  ②若f(a)f(c)0,则令b=c(此时零点x0∈(a,c))

  ③若f(c)f(b)0,则令a=c(此时零点x0∈(c,b))

  (4)判断是否达到精确度ε:即若|a-b|ε,则得到零点近似值为a(或b);否则重复⑵~⑷

  三、函数的应用:

  (1)评价模型: 给定模型利用学过的知识解模型验证是否符合实际情况。

  (2)几个增长函数模型:一次函数:y=ax+b(a0)

  指数函数:y=ax(a1) 指数型函数: y=kax(k1)

  幂函数: y=xn( nN*) 对数函数:y=logax(a1)

  二次函数:y=ax2+bx+c(a0)

  增长快慢:V(ax)V(xn)V(logax)

  解不等式 (1) log2x x2 (2) log2x 2x

  (3)分段函数的应用:注意端点不能重复取,求函数值先判断自变量所在的区间。

  (4)二次函数模型: y=ax2+bx+c(a≠0) 先求函数的定义域,在求函数的对称轴,看它在不在定义域内,在的话代进求出最值,不在的话,将定义域内离对称轴最近的点代进求最值。

  (5)数学建模:

《函数的应用》教案3

  课题:指数函数与对数函数的性质及其应用

  课型:综合课

  教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

  重点:指数函数与对数函数的特性。

  难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

  教学方法:多媒体授课。

  学法指导:借助列表与图像法。

  教具:多媒体教学设备。

  教学过程

  一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

  二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

  指数函数与对数函数关系一览表

  函数

  性质

  指数函数

  y=ax (a>0且a≠1)

  对数函数

  y=logax(a>0且a≠1)

  定义域

  实数集R

  正实数集(0,﹢∞)

  值域

  正实数集(0,﹢∞)

  实数集R

  共同的点

  (0,1)

  (1,0)

  单调性

  a>1 增函数

  a>1 增函数

  0<a<1 减函数

  0<a<1 减函数

  函数特性

  a>1

  当x>0,y>1

  当x>1,y>0

  当x<0,0<y<1

  当0<x<1, y<0

  0<a<1

  当x>0, 0<y<1

  当x>1, y<0

  当x<0,y>1

  当0<x<1, y>0

  反函数

  y=logax(a>0且a≠1)

  y=ax (a>0且a≠1)

  图像

  Y

  y=(1/2)x y=2x

  (0,1)

  X

  Y

  y=log2x

  (1,0)

  X

  y=log1/2x

  三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

  Y

  y=(1/2)x y=2x y=x

  (0,1) y=log2x

  (1,0) X

  y=log1/2x

  注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

  四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

  五、 例题

  例⒈比较(Л)(-0.1)与(Л)(-0.5)的.大小。

  解:∵ y=ax中, a=Л>1

  ∴ 此函数为增函数

  又∵ ﹣0.1>﹣0.5

  ∴ (Л)(-0.1)>(Л)(-0.5)

  例⒉比较log67与log76的大小。

  解: ∵ log67>log66=1

  log76<log77=1

  ∴ log67>log76

  注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

  例⒊ 求y=3√4-x2的定义域和值域。

  解:∵√4-x2 有意义,须使4-x2≥0

  即x2≤4, |x|≤2

  ∴-2≤x≤2,即定义域为[-2,2]

  又∵0≤x2≤4, ∴0≤4-x2≤4

  ∴0≤√4-x2 ≤2,且y=3x是增函数

  ∴30≤y≤32,即值域为[1,9]

  例⒋ 求函数y=√log0.25(log0.25x)的定义域。

  解:要函数有意义,须使log0.25(log0.25x)≥0

  又∵ 0<0.25<1,∴y=log0.25x是减函数

  ∴ 0<log0.25x≤1

  ∴ log0.251<log0.25x≤log0.250.25

  ∴ 0.25≤x<1,即定义域为[0.25,1)

  六、 课堂练习

  求下列函数的定义域

  1. y=8[1/(2x-1)]

  2. y=loga(1-x)2 (a>0,且a≠1)

  七、 评讲练习

  八、 布置作业

  第113页,第10、11题。并预习指数函数与对数函数

  在物理、社会科学中的实际应用。

《函数的应用》教案4

  一、内容与解析

  (一)内容:对数函数的性质

  (二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。

  二、目标及解析

  (一)教学目标:

  1.掌握对数函数的性质并能简单应用

  (二)解析:

  (1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。

  三、问题诊断分析

  在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.

  四、教学支持条件分析

  在本节课()的教学中,准备使用(),因为使用(),有利于().

  五、教学过程

  问题1.先画出下列函数的简图,再根据图象归纳总结对数函数 的相关性质。

  设计意图:

  师生活动(小问题):

  1.这些对数函数的解析式有什么共同特征?

  2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。

  3.通过这些函数图象请从函数值的分布角度总结相关性质

  4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?

  问题2.先画出下列函数的简图,根据图象归纳总结对数函数 的相关性质。

  问题3.根据问题1、2填写下表

  图象特征函数性质

  a>10<a<1a>10<a<1

  向y轴正负方向无限延伸函数的值域为R+

  图象关于原点和y轴不对称非奇非偶函数

  函数图象都在y轴右侧函数的定义域为R

  函数图象都过定点(1,0)

  自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数

  在第一象限内的图象纵坐标都大于0,横坐标大于1在第一象限内的图象纵坐标都大于0,横标大于0小于1

  在第四象限内的图象纵坐标都小于0,横标大于0小于1在第四象限内的图象纵坐标都小于0,横标大于1

  [设计意图]发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成

  例1.比较下列各组数中两个值的大小:

  (1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7

  (3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )

  变式训练:1. 比较下列各题中两个值的大小:

  ⑴ log106 log108 ⑵ log0.56 log0.54

  ⑶ log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4

  2.已知下列不等式,比较正数m,n 的大小:

  (1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n

  (3) log a m < loga n (0 log a n (a>1)

  例2.(1)若 且 ,求 的取值范围

  (2)已知 ,求 的取值范围;

  六、目标检测

  1.比较 , , 的大小:

  2.求下列各式中的x的值

  (1)

  演绎推理导学案

  2.1.2 演绎推理

  学习目标

  1.结合已学过的数学实例和生活中的实例,体会演绎推理的重要性;

  2.掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.

  学习过程

  一、前准备

  复习1:归纳推理是由 到 的推理.

  类比推理是由 到 的推理.

  复习2:合情推理的结论 .

  二、新导学

  ※ 学习探究

  探究任务一:演绎推理的概念

  问题:观察下列例子有什么特点?

  (1)所有的金属都能够导电,铜是金属,所以 ;

  (2)一切奇数都不能被2整除,20xx是奇数,所以 ;

  (3)三角函数都是周期函数, 是三角函数,所以 ;

  (4)两条直线平行,同旁内角互补.如果A与B是两条平行直线的同旁内角,那么 .

  新知:演绎推理是

  的推理.简言之,演绎推理是由 到 的推理.

  探究任务二:观察上述例子,它们都由几部分组成,各部分有什么特点?

  所有的金属都导电 铜是金属 铜能导电

  已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断

  大前提 小前提 结论

  新知:“三段论”是演绎推理的一般模式:

  大前提—— ;

  小前提—— ;

  结论—— .

  新知:用集合知识说明“三段论”:

  大前提:

  小前提:

  结 论:

  试试:请把探究任务一中的演绎推理(2)至(4)写成“三段论”的.形式.

  ※ 典型例题

  例1 命题:等腰三角形的两底角相等

  已知:

  求证:

  证明:

  把上面推理写成三段论形式:

  变式:已知空间四边形ABCD中,点E,F分别是AB,AD的中点, 求证:EF 平面BCD

  例2求证:当a>1时,有

  动手试试:1证明函数 的值恒为正数。

  2 下面的推理形式正确吗?推理的结论正确吗?为什么?

  所有边长相等的凸多边形是正多边形,(大前提)

  菱形是所有边长都相等的凸多边形, (小前提)

  菱形是正多边形. (结 论)

  小结:在演绎推理中,只要前提和推理形式是正确的,结论必定正确.

  三、总结提升

  ※ 学习小结

  1. 合情推理 ;结论不一定正确.

  2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.

  3应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.

  ※ 当堂检测(时量:5分钟 满分:10分)计分:

  1. 因为指数函数 是增函数, 是指数函数,则 是增函数.这个结论是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  2. 有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”

  结论显然是错误的,是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  3. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 平面 ,直线 平面 ,直线 ∥平面 ,则直线 ∥直线 ”的结论显然是错误的,这是因为

  A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误

  4.归纳推理是由 到 的推理;

  类比推理是由 到 的推理;

  演绎推理是由 到 的推理.

  后作业

  1. 运用完全归纳推理证明:函数 的值恒为正数。

  直观图

  总 课 题空间几何体总课时第4课时

  分 课 题直观图画法分课时第4课时

  目标掌握斜二侧画法的画图规则.会用斜二侧画法画出立体图形的直观图.

  重点难点用斜二侧画法画图.

   引入新课

  1.平行投影、中心投影、斜投影、正投影的有关概念.

  2.空间图形的直观图的画法——斜二侧画法:

  规则:(1)____________________________________________________________.

  (2)____________________________________________________________.

  (3)____________________________________________________________.

  (4)____________________________________________________________.

   例题剖析

  例1 画水平放置的正三角形的直观图.

  例2 画棱长为 的正方体的直观图.

   巩固练习

  1.在下列图形中,采用中心投影(透视)画法的是__________.

  2.用斜二测画法画出下列水平放置的图形的直观图.

  3.根据下面的三视图,画出相应的空间图形的直观图.

   课堂小结

  通过例题弄清空间图形的直观图的斜二侧画法方法及步骤.

《函数的应用》教案5

  教学目标:

  ①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复

  合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

  解题能力。

  教学重点与难点:对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的.大小

  例 1 比较下列各组数的大小。

  ⑴loga5。1 ,loga5。9 (a>0,a≠1)

  ⑵log0。50。6 ,logЛ0。5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5。1>loga5。9 ;当a>1时,函数y=logax单调递

  增,所以loga5。1

  板书:

  解:Ⅰ)当0

  ∵5。1<5。9 1="">loga5。9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5。1<5。9 ∴loga5。1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

  数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

  函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

  例 2 ⑴求函数y=的定义域。

  ⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3)

  师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

  使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

  被开方式大于或等于零;若函数中有对数的形式,则真数大于

  零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

  它们共同作用的结果。)

  生:分母2x-1≠0且偶次根式的被开方式log0。8x-1≥0,且真数x>0。

  板书:

  解:∵ 2x-1≠0 x≠0。5

  log0。8x-1≥0 , x≤0。8

  x>0 x>0

  ∴x(0,0。5)∪(0。5,0。8〕

  师:接下来我们一起来解这个不等式。

  分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

  再根据对数函数的单调性求解。

  师:请你写一下这道题的解题过程。

  生:<板书>

  解: x2+2x-3>0 x<-3 x="">1

  (3x+3)>0 , x>-1

  x2+2x-3<(3x+3) -2

  不等式的解为:1

  ⒊小结

  这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

  ⒋作业

  ⑴解不等式

  ①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

  ⑵已知函数y=loga(x2-2x),(a>0,a≠1)

  ①求它的单调区间;②当0

  ⑶已知函数y=loga (a>0, b>0, 且 a≠1)

  ①求它的定义域;②讨论它的奇偶性;

  ③讨论它的单调性。

  ⑷已知函数y=loga(ax-1) (a>0,a≠1),

  ①求它的定义域;

  ②当x为何值时,函数值大于1;

  ③讨论它的单调性。

《函数的应用》教案6

  教学目标:

  ①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

  教学重点与难点:

  对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的大小

  例 1 比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logл0.5 ,lnл

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的`解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

  增,所以loga5.1

  板书:

  解:ⅰ)当0

  ∵5.1<5.9 loga5.1="">loga5.9

  ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,

  log0.50.6<1,所以logл0.5< log0.50.6< lnл。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

  数 的单调性比大小,②借用“中间量”间接比大小,③利用对数

  函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

  例 2 ⑴求函数y=的定义域。

  ⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

  师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

  使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

  被开方式大于或等于零;若函数中有对数的形式,则真数大于

  零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

  它们共同作用的结果。)

  生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

  板书:

  解:∵ 2x-1≠0 x≠0.5

  log0.8x-1≥0 , x≤0.8

  x>0 x>0

  ∴x(0,0.5)∪(0.5,0.8〕

  师:接下来我们一起来解这个不等式。

  分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

  再根据对数函数的单调性求解。

  师:请你写一下这道题的解题过程。

  生:<板书>

  解: x2+2x-3>0 x<-3 x="">1

  (3x+3)>0 , x>-1

  x2+2x-3<(3x+3) -2

  不等式的解为:1

  例 3 求下列函数的值域和单调区间。

  ⑴y=log0.5(x- x2)

  ⑵y=loga(x2+2x-3)(a>0,a≠1)

  师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

  下面请同学们来解⑴。

  生:此函数可看作是由y= log0.5u, u= x- x2复合而成。

《函数的应用》教案7

  一、内容与解析

  (一)内容:函数单调性的应用

  (二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子 。学生已经掌握了函数单调性的`定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。

  二、教学目标及解析

  (一)教学目标:

  掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。

  (二)解析:

  会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。

  三、问题诊断分析

  在本节课的教学中,学生可能遇到的问题是如何才能准确确定 的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。

  四、教学支持条件分析

  在本节课()的教学中,准备使用(),因为使用(),有利于()。

《函数的应用》教案8

  教学目标:

  1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。

  2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻

  画现实世界中数量关系的一种数学模型。

  教学重点运用反比例函数解决实际问题

  教学难点运用反比例函数解决实际问题

  教学过程:

  一、情景创设

  引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的.函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?

  反比例函数在生活、生产实际中也有着广泛的应用。

  例如:在矩形中S一定,a和b之间的关系?你能举例吗?

  二、例题精析

  例1、见课本73页

  例2、见课本74页

  例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?

  四、课堂练习课本P74练习1、2题

  五、课堂小结反比例函数的应用

  六、课堂作业课本P75习题9.3第1、2题

  七、教学反思

  更多初二数学教案,请点击

《函数的应用》教案9

  教学目标:

  利用数形结合的数学思想分析问题解决问题。

  利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

  在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

  教学重点和难点:

  运用数形结合的思想方法进行解二次函数,这是重点也是难点。

  教学过程:

  (一)引入:

  分组复习旧知。

  探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

  可引导学生从几个方面进行讨论:

  (1)如何画图

  (2)顶点、图象与坐标轴的交点

  (3)所形成的三角形以及四边形的面积

  (4)对称轴

  从上面的问题导入今天的课题二次函数中的图象与性质。

  (二)新授:

  1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

  再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

  再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

  2、让同学讨论:从已知条件如何求二次函数的解析式。

  例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

  (三)提高练习

  根据我们学校人人皆知的船模特色项目设计了这样一个情境:

  让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

  让学生在练习中体会二次函数的图象与性质在解题中的作用。

  (四)让学生讨论小结(略)

  (五)作业布置

  1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

  (1)求二次函数的解析式;

  (2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的`面积。

  2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

  3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

  (1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

  (2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

《函数的应用》教案10

  一、教学目标:

  1.掌握用待定系数法求三角函数解析式的方法;

  2.培养学生用已有的知识解决实际问题的能力;

  3.能用计算机处理有关的近似计算问题.

  二、重点难点:

  重点是待定系数法求三角函数解析式;

  难点是选择合理数学模型解决实际问题.

  三、教学过程:

  【创设情境】

  三角函数能够模拟许多周期现象,因此在解决实际问题中有着广泛的应用.

  【自主学习探索研究】

  1.学生自学完成P42例1

  点O为做简谐运动的物体的平衡位置,取向右的方向为物体位移的正方向,若已知振幅为3cm,周期为3s,且物体向右运动到距平衡位置最远处时开始计时.

  (1)求物体对平衡位置的位移x(cm)和时间t(s)之间的'函数关系;

  (2)求该物体在t=5s时的位置.

  (教师进行适当的评析.并回答下列问题:据物理常识,应选择怎样的函数式模拟物体的运动;怎样求和初相位θ;第二问中的“t=5s时的位置”与函数式有何关系?)

  2.讲解p43例2(题目加已改变)

  2.讲析P44例3

  海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常的情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮是返回海洋.下面给出了某港口在某季节每天几个时刻的水深.

  (1)选用一个三角函数来近似描述这个港口的水深与时间的函数关系,并给出在整点时的近似数值.

  (2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?

  (3)若船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?

  问题:

  (1)选择怎样的数学模型反映该实际问题?

  (2)图表中的最大值与三角函数的哪个量有关?

  (3)函数的周期为多少?

  (4)“吃水深度”对应函数中的哪个字母?

  3.学生完成课本P45的练习1,3并评析.

  【提炼总结】

  从以上问题可以发现三角函数知识在解决实际问题中有着十分广泛的应用,而待定系数法是三角函数中确定函数解析式最重要的方法.三角函数知识作为数学工具之一,在以后的学习中将经常有所涉及.学数学是为了用数学,通过学习我们逐步提高自己分析问题解决问题的能力.

  四、布置作业:

  P46习题1.3第14、15题

《函数的应用》教案11

  教学目标:

  1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  2、能根据实际问题中的条件确定反比例函数的解析式。

  3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

  教学重点、难点:

  重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  难点:根据实际问题中的条件确定反比例函数的解析式

  教学过程:

  一、情景创设:

  为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:

  (1)药物燃烧时,y关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

  (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

  (3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能有效杀灭空气中的'病菌,那么此次消毒是否有效?为什么?

  二、新授:

  例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

  (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

  (2)录入文字的速度v(字/min)与完成录入的时间t(min)有怎样的函数关系?

  (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

  例2某自来水公司计划新建一个容积为 的长方形蓄水池。

  (1)蓄水池的底部S 与其深度 有怎样的函数关系?

  (2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

  (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

  三、课堂练习

  1、一定质量的氧气,它的密度 (kg/m3)是它的体积V( m3) 的反比例函数, 当V=10m3时,=1.43kg/m3. (1)求与V的函数关系式;(2)求当V=2m3时求氧气的密度.

  2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.

  (1)求y与x之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)(用电量)]

  3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=y.求y与x之间的函数关系式及自变量x的取值范围.

  四、小结

  五、作业

  30.31、2、3

《函数的应用》教案12

  教学目标

  1、能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

  (1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

  (2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

  (3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.

  2、通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

  3、通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

  教学建议

  教材分析

  (1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

  (2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

  教法建议

  (1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

  (2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

  (3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

  教学设计示例

  函数初步应用

  教学目标

  1、能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

  2、通过对实际问题的研究,培养学生分析问题,解决问题的能力

  3、通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

  教学重点,难点

  重点是应用问题的阅读分析和解决.

  难点是根据实际问题建立相应的数学模型

  教学方法

  师生互动式

  教学用具

  投影仪

  教学过程b

  一、提出问题

  数学来自生活,又应用于生活和生产实践.而实际问题中又蕴涵着丰富的数学知识,数学思想与方法.如刚刚学过的函数内容在实际生活中就有着广泛的应用.今天我们就一起来探讨几个应用问题.

  问题一:如图,△是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域.(板书)

  (作为应用问题由于学生是初次研究,所以可先选择以数学知识为背景的应用题,让学生研究)

  首先由学生自己阅读题目,教师可利用计算机让直线运动起来,观察三角形的变化,由学生提出研究方法.由学生说出由于图形的不同计算方法也不同,应分类讨论.分界点应在,再由另一个学生说出面积的计算方法.

  当时(采用直接计算的方法)

  当时(板书)

  (计算第二段时,可以再画一个相应的图形,如图)

  综上!

  此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为.(板书)

  问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

  下面我们一起看第二个问题

  问题二:某工厂制定了从1999年底开始到20xx年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生产总值相比,增长率为多少?(投影仪打出)

  首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年计划的总产值.

  设1999年总产值为,第一步让学生依次说出20xx年到20xx年的年总产值,它们分别为:

  20xx年20xx年

  20xx年20xx年

  20xx年20xx年(板书)

  第二步再让学生分别算出第一个三年总产值和第二个三年总产值

  =++

  =.

  =++

  =.(板书)

  第三步计算增长率.

  .(板书)

  计算后教师可以让学生总结一下关于增长率问题的研究应注意的问题.最后教师再指出关于增长率的问题经常构建的数学模型为,其中为基数,为增长率,为时间.所以经常会用到指数函数有关知识加以解决.

  总结后再提出最后一个问题

  问题三:一商场批发某种商品的.进价为每个80元,零售价为每个100元,为了促进销售,拟采用买一个这种商品赠送一个小礼品的办法,试验表明,礼品价格为1元时,销售量可增加10%,且在一定范围内礼品价格每增加1元销售量就可增加10%.设未赠送礼品时的销售量为件.

  (1)写出礼品价值为元时,所获利润(元)关于的函数关系式;

  (2)请你设计礼品价值,以使商场获得最大利润.(为节省时间,应用题都可以用投影仪打出)

  题目出来后要求学生认真读题,找出关键量.再引导学生找出与利润相关的量.包括销售量,每件的利润及礼品价值等.让学生思考后,列出销售量的式子.再找学生说出每件商品的利润的表达式,完成第一问的列式计算.

  解:.(板书)

  完成第一问后让学生观察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较陌生的,方法也是学生不熟悉的)所以学生遇到思维障碍,教师可适当提示,如可以先具体计算几个值看一看能否发现规律,若看不出规律,能否把具体计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题.最终将问题概括为两个不等式的求解即

  (2)若使利润最大应满足

  同时成立即解得

  当或时,有最大值.

  由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润.

  三.小结

  通过以上三个应用问题的研究,要学生了解解决应用问题的具体步骤及相应的注意事项.

  四.作业略

  五.板书设计

  2.9函数初步应用

  问题一:

  解:

  问题二

  分析

  问题三

  分析

  小结:

《函数的应用》教案13

  二次函数的应用

  教学设计思想:本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。

  教学目标:

  1.知识与技能

  会运用二次函数计其图像的知识解决现实生活中的实际问题。

  2.过程与方法

  通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。

  3.情感、态度与价值观

  通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。

  教学重点:解决与二次函数有关的实际应用题。

  教学难点:二次函数的应用。

  教学媒体:幻灯片,计算器。

  教学安排:3课时。

  教学方法:小组讨论,探究式。

  教学过程:

  第一课时:

  Ⅰ.情景导入:

  师:由二次函数的一般形式y= (a0),你会有什么联想?

  生:老师,我想到了一元二次方程的一般形式 (a0)。

  师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。

  现在大家来做下面这两道题:(幻灯片显示)

  1.解方程 。

  2.画出二次函数y= 的图像。

  教师找两个学生解答,作为板书。

  Ⅱ.新课讲授

  同学们思考下面的问题,可以共同讨论:

  1.二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?

  2.如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?

  生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。

  生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。

  师:说的很好;

  教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。

  师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。

  [学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。

  问题:已知二次函数y= 。

  (1)观察这个函数的图像(图34-9),一元二次方程 =0的.两个根分别在哪两个整数之间?

  (2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?

  x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

  y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1

  ②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?

  x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70

  y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190

  (3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。

  (4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。

  第一问很简单,可以请一名同学来回答这个问题。

  生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。

  师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。

  教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?

  生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。

  类似的,我们得出方程精确到百分位的正根是0.62。

  对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。

  最后师生共同利用求根公式,验证求出的近似解。

  教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。

  Ⅲ.练习

  已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。

  板书设计:

  二次函数的应用(1)

  一、导入 总结:

  二、新课讲授 三、练习

  第二课时:

  师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?

  生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。

  师:好,看这样一个问题你能否解决:

  活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。

  回答下面的问题:

  1.设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。

  2.设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。

  3.你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?

  4.你能画出这个函数的图像,并借助图像说出y的最大值吗?

  学生思考,并小组讨论。

  解:已知周长为40m,一边长为xm,看图知,另一边长为 m。

  由面积公式得 y= (x )

  化简得 y=

  代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。

  画函数图像:

  通过图像,我们知道y的最大值为5。

  师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?

  生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。

  师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。

  总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:

  (1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。

  (2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。

  师:现在利用我们前面所学的知识,解决实际问题。

  活动2:如图34-11,已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,

  (1)AC=______;

  (2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=_____.

  (3)总面积S有最大值还是最小值?这个最大值或最小值是多少?

  (4)总面积S取最大值或最小值时,点C在AB的什么位置?

  教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。

  解答过程(板书)

  解:(1)当BC=x时,AC=2-x(02)。

  (2)S△CDE= ,S△BFG= ,

  因此,S= + =2 -4x+4=2 +2,

  画出函数S= +2(02)的图像,如图34-4-3。

  (3)由图像可知:当x=1时, ;当x=0或x=2时, 。

  (4)当x=1时,C点恰好在AB的中点上。

  当x=0时,C点恰好在B处。

  当x=2时,C点恰好在A处。

  [教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。

  练习:

  如图,正方形ABCD的边长为4,P是边BC上一点,QPAP,并且交DC与点Q。

  (1)Rt△ABP与Rt△PCQ相似吗?为什么?

  (2)当点P在什么位置时,Rt△ADQ的面积最小?最小面积是多少?

  小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。

  板书设计:

  二次函数的应用(2)

  活动1: 总结方法:

  活动2: 练习:

  小结:

  第三课时:

  我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。

  师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。

  (幻灯片显示交通事故、紧急刹车)

  师:你知道两辆车在行驶时为什么要保持一定的距离吗?

  学生思考,讨论。

  师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。

  请看下面一个道路交通事故案例:

  甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离S甲(m)与车速x(km/h)之间的关系为S甲=0.1x+0.01x2,乙车的刹车距离S乙(m)与车速x(km/h)之间的关系为S乙= 。

  教师提问:1.你知道甲车刹车前的行驶速度吗?甲车是否违章超速?

  2.你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?

  学生思考!教师引导。

  对于二次函数S甲=0.1x+0.01x2:

  (1)当S甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。

  (2)当S甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?

  (3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?

  生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。

  生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。

  同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=M。就可利用一元二次方程 =M,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。

  下面看下面的这道例题:

  当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:

  v/(km/h) 40 60 80 100 120

  s/m 2 4.2 7.2 11 15.6

  (1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。

  (2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:

  (3)求当s=9m时的车速v。

  学生思考,亲自动手,提高学生自主学习的能力。

  教师提问,学生回答正确答案,教师再进行讲解。

  课上练习:

  某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。

  (1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。

  (2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?

  (3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?

  课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。

  板书设计:

  二次函数的应用(3)

  一、案例 二、例题

  分析: 练习:

  总结:

  数学网

《函数的应用》教案14

  一、教学目标:

  了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.

  二、教学重点:

  利用导数判断一个函数在其定义区间内的单调性.

  教学难点:判断复合函数的.单调区间及应用;利用导数的符号判断函数的单调性.

  三、教学过程

  (一)复习引入

  1.增函数、减函数的定义

  一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.

  2.函数的单调性

  如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.

  在单调区间上增函数的图象是上升的,减函数的图象是下降的.

  例1讨论函数y=x2-4x+3的单调性.

  解:取x1<x2,x1、x2∈R,取值

  f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3)作差

  =(x1-x2)(x1+x2-4)变形

  当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2),定号

  ∴y=f(x)在(-∞, 2)单调递减.判断

  当2<x1<x2时,x1+x2-4>0,f(x1)<f(x2),

  ∴y=f(x)在(2,+∞)单调递增.综上所述y=f(x)在(-∞, 2)单调递减,y=f(x)在(2,+∞)单调递增。

  能否利用导数的符号来判断函数单调性?

《函数的应用》教案15

  从容说课

  我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了

  用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想

  此外,解决实际问题时.还要引导学生体会知识之间的联系以及知识的综合运用

  教学目标

  (一)教学知识点

  1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程

  2.体会数学与现实生活的紧密联系,增强应用意识.提高运用代数方法解决问题的能力

  (二)能力训练要求

  通过对反比例函数的应用,培养学生解决问题的能力

  (三)情感与价值观要求

  经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题.发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用

  教学重点

  用反比例函数的知识解决实际问题

  教学难点

  如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题

  教学方法

  教师引导学生探索法

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

  [生]是为了应用

  [师]很好;学习的目的是为了用学到的知识解决实际问题.究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学

  Ⅱ. 新课讲解

  某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么

  (1)用含S的'代数式表示p,p是S的反比例函数吗?为什么?

  (2)当木板画积为 0.2 m2时.压强是多少?

  (3)如果要求压强不超过6000 Pa,木板面积至少要多大?

  (4)在直角坐标系中,作出相应的函数图象

  (5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流

  [师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题

  请大家互相交流后回答

  [生](1)由p=得p=

  p是S的反比例函数,因为给定一个S的值.对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数

  (2)当S= 0.2 m2时, p==3000(Pa)

  当木板面积为 0.2m2时,压强是3000Pa.

  (3)当p=6000 Pa时,

  S==0.1(m2)

  如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2

  (4)图象如下:

  (5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围

  [师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?

  [生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在

  [师]很好,那么在(1)中是不是应该有条件限制呢?

  [生]是,应为p= (S>0).

  做一做

  1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;

  (1)蓄电池的电压是多少?你能写出这一函数的表达式吗?

  (2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?

  [师]从图形上来看,I和R之间可能是反比例函数关系.电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值.

  [生]解:(1)由题意设函数表达式为I=

  ∵A(9,4)在图象上,

  ∴U=IR=36

  ∴表达式为I=

  蓄电池的电压是36伏

  (2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6

  电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内

  2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)

  (1)分别写出这两个函数的表达式:

  (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流

  [师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的

  坐标即求y=k1x与y=的交点

  [生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上

  ∴k1=2,2=

  ∴k1=2,k2=6

  ∴表达式分别为y=2x,y=

  ∴x2=3

  ∴x=±

  当x= ?时,y= ?2

  ∴B(?,?2)

  Ⅲ.课堂练习

  1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空

  (1)蓄水池的容积是多少?

  (2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?

  (3)写出t与Q之间的关系式;

  (4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?

  (5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?

  解:(1)8×6=48(m3)

  所以蓄水池的容积是 48 m3

  (2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少.

  (3)t与Q之间的关系式为t=

  (4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)

  (5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空.

  Ⅳ、课时小结

  节课我们学习了反比例函数的应用.具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题.

  Ⅴ课后作业

  习题5.4.

  板书设计

  § 5.3反比例函数的应用

  一、1.例题讲解

  2.做一做

  二、课堂练习

  三、课时小节

  四、课后作业(习题5.4)

【《函数的应用》教案】相关文章:

数学教案-对数函数的应用 教案09-29

函数应用数学教案设计10-10

数学教案-指数函数与对数函数的性质及其应用09-29

《二次函数》应用教案设计02-02

反比例函数的应用教案设计10-10

初二数学:函数应用教案设计参考10-10

高考中函数最值的应用12-10

函数教案12-16

对数函数的应用 教案 - 初中数学第一册教案09-29