《认识长方体》教案
作为一名教职工,常常要写一份优秀的教案,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?下面是小编帮大家整理的《认识长方体》教案,仅供参考,欢迎大家阅读。
《认识长方体》教案1
教学目标
1.初步建立“立体图形”的概念.
2.基本掌握长方体的特征.
3.认识长方体的长、宽、高.
教学重点
掌握长方体的特征,认识长方体的长、宽、高.
教学难点
初步建立“立体图形”的概念,形成表象.
教学步骤
一、铺垫孕伏.
导入:讲新课之前,我们先回忆一下,以前学过哪些几何图形?
(长方形、正方形、三角形、梯形、平行四边形)
这些都是什么图形?(板书:平面图形)
教师:平面图形我们已经认识了,今天我们来学习一下立体图形.
二、探究新知.
(一)初步建立“立体图形”的概念.
1.出示墨水盒、粉笔盒等实物.
教师提问:谁说说这些物体与平面图形比较有什么不同?(占有一定的空间)
2.教师明确:这些物体都占有一定的空间,我们把它们的形状叫做立体图形.
(板书“立体图形”)
3.在生活中你还见到哪些立体图形?
4.引出课题:这节课,我们先来认识一下立体图形中的长方体.
(板书课题:长方体的认识)
(二)认识长方体的特征,教学例1.
1.面
①长方体有几个面? 长方体有6个面
②每个面是什么形状? 每个面都是长方形(也可能有两面相对的面是正方形)
③哪些面是完全相同的? 相对的面的形状大小完全相同
2.棱
学生实际操作:
①动手摸一摸长方体的每两个面相交的地方
(教师明确:在长方体上两个面相交的边叫做长方体的棱)
②数一数,长方体有几条棱?(12条棱)
③量一量每条棱的长度,你发现了什么?(相对的棱的长度是相等的)
3.顶点
教师:请同学们拿起长方体的盒子或实物,用手摸一模三条棱相交的地方.
教师明确:3条棱相交的点叫做长方体的顶点.
提问:一个长方体一共有多少个顶点?(8个)
4.特征
长方体是由6个长方形围成的立体图形,也可能其中有两个相对的面是正方形.它有12条棱,8个顶点.在一个长方体中,相对的面完全相同,相对的棱长度相等.
5.画法
把一个长方体放在桌面上观察一下,最多能看到它的几个面?(三个面)
那么怎样把长方体画在纸上或黑板上呢?(看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形)
(三)认识长方体的长、宽、高,教学例2.
1.出示长方体框架,提问:
长方体的12条棱可以怎样分组?(按照相对的棱进行分组)
分成几组?(3组)
相交于同一顶点的三条棱长度相等吗?(不等)
2.教师小结:在一个长方体中,有3组棱,每组棱互相平行,并且长度相等.我们把相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.
3.实际测量:分不同角度测量自己手中的长方体的长、宽、高的长度
(测量数据应该不同)
教师强调:长方体的'长、宽、高的位置不是固定不变的.一般情况下把底面中较长的一条棱叫做长,较短的一条棱叫做宽,垂直于底面的棱叫做高.
三、全课小结.
今天这节课我们学习了哪些知识?长方体有什么特征?什么叫做长方体的长、宽、高?还有什么问题吗?
四、随堂练习.
1.说说日常生活中哪些物体的形状是长方体的.
2.填表.
面
棱
顶点
长方体
有( )个面
都是( )形
相对的面( )
有( )条棱
相对的棱长度( )
有( )个
顶点
3.判断对错,并说明为什么.
(1)有6个面、12条棱、8个顶点的物体形状都是长方体.………( )
(2)在长方体中,不是相对的棱长度都不相等.……………………( )
(3)长方体有6个面,12条棱和8个顶点.…………………………( )
(4)长方体相对面的大小、形状都相等.……………………………( )
五、布置作业.
1.看图说出下面每个长方体的长、宽、高各是多少?
2.说出下图表示的物体是什么形状,并且说明:
(1)它的上面是什么形,长和宽各是多少?
(2)它的右侧面是什么形,长和宽各是多少?
(3)它的前面是什么形,长和宽各是多少?
(4)它的下面和后面是什么形,长和宽各是多少?
六、板书设计
长方体的认识
平面图形
长方形
正方形
三角形
平行四边形
梯形
立体图形
长方体
6个面,每个面是长方形,相对的面完全相同
12条棱,相对的棱长度相等
8个顶点,相交于一个顶点的三条棱分别叫做长方体的长、宽、高
《认识长方体》教案2
【教材分析】
苏教版课程标准教材编写的《长方体和正方体的认识》以学生已有的观察物体的丰富经验为基础,先明确长方体有几个面,从不同的角度观察一个长方体最多能同时看到几个面等知识,自然地由实物图抽象出直观图。在介绍棱和顶点的概念后,引导研究有几条棱、几个顶点,接着研究面和棱的特征。教材力图沟通棱、顶点和面之间的联系,引导学生用看一看、量一量、比一比的方法,在合作交流中探究长方体的特征。
在以往的教学中,我们大多注重用“直观实证”的方式研究长方体的特征,而对面、棱、顶点之间关系的认识更多停留在定义所描述的层次。这也就限制了这一内容对发展学生空间观念的作用。事实上,学生在以往的学习和日常生活的经验中,已经积累了关于长方体和正方体的一些认识。如何在此基础上,系统地、深层次构建对长方体特征的认识是值得研究的问题。学生学习“体”的困难往往在于缺少从面到体过渡的桥梁,从点、线、面到体的认识发展需要充分地在“体”上寻找点、线、面之间的联系,实现认知结构的顺应,这是空间观念建立的关键。
【教学片段】
师:刚才,同学们动脑筋有条理地数出了长方体有──
生(齐):6个面,12条棱,8个顶点。
师:我们的研究不能满足于“是什么”,还要探究“为什么”。
(学生疑惑地用眼神告诉我:这有什么“为什么”?事实就是这样嘛!)
师:没问题?我先来说一个,长方体有6个面,每个面都是(长方形),长方形有4条边,这些边就是长方体的(棱)。那长方体就应该有6×4=24条棱,可为什么只有12条棱呢?
(学生仔细打量眼前的长方体模型,积极探索着答案。)
生:(跑到黑板前指着直观图)就拿这条棱来说,它既是上面的一条边,又是前面的一条边。所以,在计算时,同一条棱算了两次。其他的棱也是这样。
师:那应该怎样算呢?
生(齐):6×4÷2=12条棱。
师:你现在也能提一些“为什么”的问题吗?
生1:长方体的6个面,每个面上有4个顶点,能算出24个顶点,为什么只有8个顶点?
师:问得好!你有答案吗?
生1:我有答案,但想让其他同学回答。
生2:(指着直观图上的一个顶点)这个顶点既是上面的一个顶点,又是前面的一个顶点,还是右面的一个顶点。也就是说这个顶点计算时被算了3次。其他顶点也一样。所以应该用6×4÷3=8个顶点。
师:真是太好了!刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?
生1:能不能由棱的条数推算出顶点的个数、面的个数?
生2:由顶点的个数是不是也能推算出面的个数和棱的条数?
师:真会提问题!同学们有兴趣研究吗?
(学生兴致勃勃地研究并汇报了两个问题。)
师:观察一下这6道算式,在利用面、棱、顶点之间关系推算时,有什么规律?
生1:都先算出了24。这是为什么?
(学生陷入了沉思,不一会儿,陆续举起手。)
生2:这儿的24表示的是24条边(棱)或者24个顶点。因为长方体是由6个长方形围成的立体图形。这6个长方形一共有24条边、24个顶点。
生3:推算时,就要先算出24条边或24个顶点,再看看与要求的面、棱、顶点之间的数量关系,计算出最后的结果。
师:老师也没想到,同学们通过自己的积极思考,弄清楚了这么多“为什么”。
……
师:同学们通过看一看、量一量、比一比等多种方法发现了长方体面和棱的特征。除此之外,有没有其他方法研究面和棱的特征?
生:通过重叠比较,我们发现长方体相对的面完全相同。两个长方形完全一样,也就是它们的长和宽分别相等。所以,长方体相对的棱长度相等。
师:反过来呢?
生:通过测量,我们发现相对的棱长度相等。而相对面的长和宽分别是两组相对的棱,长和宽分别相等的长方形完全相同。
师:真厉害!看来,研究长方体的特征不仅可以通过操作来发现,更可以运用所学的知识思考来发现。
【教学反思】
一、数学学习是经验的,也是推理的
新课程注重向学生提供充分的从事数学活动的.机会,使学生获得广泛的数学活动经验,这符合学生的认知规律和心理特征。但如今的课堂上不乏学生的观察、操作、猜测、验证等活动,但很少运用数学知识进行简单的推理。有人说,推理是中学的事。其实不然,推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。如果忽视学生推理能力的培养,会在很大程度上阻碍数学思维的发展。所以,重视学生在具体、丰富的活动中经历数学知识的形成过程,获得体验的同时,更要注重学生从已有的数学事实出发,展开合情推理和演绎推理。小学几何常被称为“经验几何”,这并不意味着几何教学无须承担发展推理能力的重任。对于六年级学生来说,已经积累了相当丰富的研究平面图形的知识经验,已经初步认识了立体图形,并且积累了丰富的观察物体的经验,这些知识经验基础使学生探索长方体的特征没有任何障碍。因此,从已有的知识经验出发,更好地发展学生的空间观念理应成为教学的诉求。实践表明:从学生熟悉的面(长方形)的数量和特征出发,联系面围成体的活动经验,对棱的条数、顶点的个数及棱的特征展开验证性推理是非常有价值的。这其中有凭借经验和直觉,通过归纳和类比进行的推测,也有依据已有的某个事实,按照逻辑和运算进行的推理。形式化结果的解释也蕴含着丰富的推理,由面到棱和由棱到面的特征推断让我们看到了证明的雏形。这些都促进了学生数学思维的发展。
二、空间观念是具象的,也是关系的
一般认为,小学阶段几何图形教学承载的空间观念目标主要是能进行实物和图形间转换。这种空间观念是相对“具象的”。实践表明:要实现实物与图形间的转换,学生的认知结构中必须建立准确的模型。这就要求,对图形的认识不能停留于直观建构,而要适度抽象为头脑中的模型,这种模型的稳固形成依赖于对图形基本元素关系的理性思辨。否则,学生头脑中的模型依然是模糊的,不能随时顺利提取和准确利用。引导六年级的学生有意识地思考长方体的基本元素——面、棱、顶点之间关系,不仅必要而且可行。这种关系的找寻以棱和顶点的概念为出发点,以各自数量之间的关系、面和棱的特征联系为主要研究对象。教师引导学生以长方体的模型和直观图为依托,首先考量面的个数与棱的条数之间的关系,深化了对“两个面相交的线叫做棱”这一概念的认识;接着由面的个数到顶点的个数的推算则从面的角度揭示了顶点的形成;后来又逆向地从棱到顶点、棱到面、顶点到棱、顶点到面等角度全方位、深刻揭示了各元素之间的内在联系:三条棱相交的点叫做顶点,四条棱围成了一个面,一条棱的两个端点就是两个顶点,一个长方形四个角的顶点就长方体的顶点等。教者还引导学生从面的特征推理出棱的特征、从棱的特征推理出面的特征,这也深刻揭示着面和棱之间的密切联系,沟通了面与体的内在联系。这些元素关系的建立极大地明晰了学生认知结构中的长方体模型,为后面学习长(正)方体展开图、长方体的表面积等知识提供了坚实的观念基础。
三、课堂思考是个体的,也是群体的
学生独立思考的能力是在教师的引导和与同伴的思维碰撞中逐渐形成和发展的。课堂中学生要进行独立思考,但个体思维的成果也需要与同伴的交流和碰撞。这其中,教师是促进个体思维深入、群体思维共享的组织者和引导者。当个体思维依靠自身的力量不能打开或难以实现转换时,教师的示范和引导便成为重要的源头。正如学生面对由对面、棱、顶点的“是多少”向“为什么”的思考跃进时,教师示范提出了“为什么”的问题,将思维聚焦于利用关系推算数量,从而搭建起一个对原有信息整理分类、分析关系的思维桥梁。这也激活了学生自主提问和思考的方向,学生的思维随着有价值的问题的提出不断展开,个体思维的丰富成果不断被演化和推广。在由此及彼的类比处,教师适时的点拨:“刚才我们是由面的个数,根据面与棱、顶点之间的关系推算出棱的条数、顶点的个数。你还想研究什么问题?”再次打开学生的思路,促进自主提问和思考的深入。在研究似乎可以告一段落时,教师画龙点睛式的追问“有什么规律”,再次引发群体思维的风暴。而后,学生群体水到渠成地“证明”棱的特征、面的特征,更展现出思维的无限潜力。这么丰富的思辨成果只有在教师的引导和点拨下通过群体的思维才能不断地展现。
《认识长方体》教案3
教材分析
“长方体和正方体的认识”这部分内容是在学生过去初步认识长方体和正方体的基础上,进一步教学的。这是学生比较深入地研究立体几何图形的开始。由研究平面图形扩展到研究立体图形,是学生发展空间观念的一次飞跃。长方体和正方体是最基本的立体几何图形。通过学习长方体和正方体,可以使学生对自己周围的空间和空间中的物体形成初步的空间观念,是进一步学习其他立体几何图形的基础。
为了使学生较好地掌握长方体和正方体的特征,逐步形成空间观念,教材强调要学生自己多动手。除了让学生通过看一看,摸一摸,数一数,量一量,来认识长方体和正方体的特征以外,还要求学生动手用硬纸板做一长方体和正方体,这样既巩固了所学的知识,也为后面学习长方体和正方体的表面积和体积做了准备。
学情分析
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的`立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
教学目标
情感、态度目标:
1.在合作中发现长方体的特征,使学生感受到学习的乐趣。
2.通过寻找生活中的长方体,使学生感受到数学来源于生活,并应用于生活中。
知识、技能目标:
1.使学生知道长方体的面、棱、顶点的含义。
2.通过观察、操作等活动掌握长方体、正方体的特征,知道它们之间的关系,认识长方体的长、宽、高(正方体的棱长)。
过程、方法目标:
1.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
2.渗透子集思想,并进行辩证唯物主义的启蒙教育。
教学重点和难点
探索、发现长、正方体的特征及长、正方体的关系,认识长方体的长、宽、高(正方体的棱长)。
教学过程
《认识长方体》教案4
活动目标:
1、通过整体观察和剖析,指导长方体的外形特征。
2、通过观察比较,能够发现长方体和正方体的相同点和不同点。
3、喜欢探索操作,发现生活中长方体的应用。
活动准备:
1、物质材料:正方体长方体教具,人手一个长方体纸盒,长方体剖面;
2、知识经验:认识正方体的经验。
活动过程:
一、 复习正方体的特征。
指导语:哪个小朋友能说一下正方体的特征?
小结:正方体有6个一样大的面,12条一样长的棱,8个顶角。
二、 基本活动
(一)认识长方体,观察比较长方体与正方体的相同点。
指导语:今天我们学习一个新的形体,它的名字叫长方体。长方体和正方体有哪些相同的特征?
小结:都有6个面,12条棱,8个顶角。
(二)观察比较长方体和正方体的不同点。
指导语:长方体和正方体除了相同的地方,有哪些不同?
小结:正方体的每个面是同样大小的正方形,每条棱一样长。
长方体,相对应的两个面一样大,相对应的'棱一样长。
(三)幼儿操作,出示长方体包装盒,引导幼儿探索观察长方体的空间,知道长方体在生活中的应用。
指导语:请拿出自己的长方体包装盒,盒子打开后是什么样子的,可以做什么?
小结:长方体纸盒打开后,里面因为占用一定的空间,所以我们叫它体,可以用来盛东西。
三、 延伸活动
幼儿制作长方体,在制作中感受形体的特征。
指导语,老师给小朋友准备了长方体剖面图,请你制作一个长方体,并把长方体的对应面涂上相同的颜色或画上相同的图案。
《认识长方体》教案5
活动目标:
1、认识正方体与长方体,区别两者的不同。
2、培养幼儿观察比较和动手操作能力。
活动准备:
正方体、长方体的积木各若干、每人一张作业图、一张制作正方体的纸。
活动过程:
1、认识正方体与长方体:
(1)、观察:每人三块积木(一块正方体、两块不同的长方体),让幼儿进行观察,找出每块积木在形体上的特点。如:三块积木各有几面?教师在幼儿观察的基础上告诉幼儿:六面都是同样大小的正方体;长方体也有六个面,但不是每一面都是正方形,有的.六面都是长方形,有的四面是长方形,两面是正方形。取出两种不同的长方体让幼儿观察。
(2)、找找正方体与长方体。幼儿在桌上的一堆积木中,根据教师的指令,拿出正方体或长方体的积木。
幼儿运用积木建构简单物体。请幼儿数数自己用了几块正方体的积木,几块长方体的积木。
(3)、想一想。教室里、幼儿园里有那些东西像正方体,那些东西像长方体?
2、幼儿操作活动:
(1)、每人一张作业图。数数每一个图形是由几块积木组成的,并在旁边的圈中写上相应的数字。
(2)、每个幼儿用准备好的纸制作一个正方体。
3、教师点评幼儿操作结果,并对整个活动进行小结。儿童
《认识长方体》教案6
教学目标
通过观察实物和动手操作等教学活动,使学生掌握长方体的特征,形成长方体的概念,发展学生的空间观念。
教学重点、难点
重点:长方体的特征。
难点:
教具、学具准备
①教师准备:实物,铁丝制作的长方体框架、投影仪。②学生准备:收集一些长方体开头的小纸盒
教 学过程
备 注
一、 复习引入:
1、我们已经学过这些图形,你能说出它们的名称吗?
2、你能将这些学过的图形分类吗?(平面立体)
3、揭示课题:长方体也好、正方体也好都是立体图形,这节课我们继续研究“长方体的认识”
二、探索实践
1.让学生拿出准备好的一个长方体的纸盒来观察它们的特征。
(1)认识长方体的面。(让学生分组讨论)
①用手摸一摸它有几个面(注意培养学生有顺序地观察)
②每个面是什么形状?(注意出示也有两个相对的面是正方形)
③哪些面完全相等?(演示给学生看)
再根据学生的发言用投影归纳出:
长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)相对的面的形状、大小完全相同。
(2)认识长方体的棱。
让学生用手摸一摸长方体每两个面相交的地方(有意引导学生有顺序地摸)。这些地方我们给它起个什么名字呢?(学生按自己的想法来做,最后统一为“棱”)
再让学生分小组去数和量:
①数:长方体有多少条棱?(要说出数的方法)
②量:动手量一量每条棱的长度,看哪些棱的长度相等?(有什么规律?)
根据学生的发言归纳出:(投影显示)
长方体有12条棱,相对的4条棱的长度相等。
(3)认识长方体的顶点。
让学生拿一个长方体纸盒,用手摸长方体每三条棱相交的地方,并提问:
教学过程
备 注
①你们知道它叫什么吗?(顶点)
②长方体有几个顶点?(8个)
(4)拿一个长方体放在讲台上让学生观察。
最多能看到几个面?(3个面)
讲:所以我们通常把长方体画成这样。
(5)用填空的形式小结长方体的特征。(投影显示)
长方体是由个长方形(特殊情况有两个相对的面是形)围成的图形。在一个长方体中,相对的两个面,相对的棱的长度。
2、教学长方体的长、宽、高。
让学生分组讨论如下的两个问题:
(1)它的12条棱可以分成几组?怎样分?
(2)相交于同一个顶点的三条棱长度相等吗?
找几名代表将测量结果告诉大家。
想一想:
(1)你知道相交于一个顶点的三条棱的长度分别叫做长方体的什么吗?(长、宽、高)
(2)长方体的长、宽、高的长短与这个长方体有没有关系?(投影显示出几个长、宽、高不同的`长方体)
结论:长方体的大小和形状是由它的长、宽、高决定的。
三、课堂实践
1.量一量教科书的长、宽、高。
2.练习的第2题。
3.练习的第3题。
五、课堂小结
由学生小结今天学习的内容。
口诀:
长方体立体形,8顶6面十二棱;
棱分长、宽、高,每组四条要记好;
6个面对着放,对应面都一样。
六、课外延伸
在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。
课后反思:在课堂教学过程中,让学生动手去,摸、碰,说长方体、正方体各个部分特征,学生是学习的主体,他们总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独到的见解,这样不仅使学生的好方法、好思路得以推广,而且对他们也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可拓宽教师的教学思路。很遗憾这个环节处理的不是很好。
《认识长方体》教案7
一、操作引疑:
师:土豆块是不是长方体?同学们,你们已预习过课本,现在把你们手中的土豆块切成一个长方体。想一想:①切一刀,摸一摸,有什么感觉?
生1:平的,叫做“面”。
师:②再切一刀呢?
生2:两个面相交的边,叫做“棱”。
师:③再切一刀呢?
生3:出现三个面,三条棱,三条棱相交的点,叫做“顶点”。
师:再把土豆切成一个长方体,比一比谁切得最像。
二、研究长方体究竟有什么特征:
学习小组合作研究:
出示的研究题1-----3题,并把研究的数据填入表格中。
研究题1:
长方体和正方体的面、棱、顶点各有多少?每个面分别是什么形状?
集体交流:
师:你是怎样数“面”、“棱”的?哪种数法比较好?
生:
面:前后、左右、上下(2+2+2或2×3)
棱:有三组不同方向“棱”(4+4+4或4×3)
师:观察本组同学的长方体土豆块,每个面都是长方形,有特殊情况吗?
生:我们小组土豆块,有两个相对面是正方形。
最后教师总结,并引导学生体验有序思考的优点。
研究题2:
你觉得长方体的棱和面还有什么特征?用尺子量一量,看看自己的想法是否正确,并填入表格中。
学生动手操作,小组讨论交流,共同探究。
师:请每个小组把研究结果汇报,或有什么问题要质疑?
生1:我们小组发现相对的两个面形状一样,面积相等。
生2:请问你们小组是怎样知道?
生3:我们小组是动手量相邻两条边知道的。
生4:我们小组是动手算出它的面积知道的。
生5:我们小组是动手剪开比一比知道的。
师:每个小组都能想出好办法,如果老师想做这个(实物演示)长方体框架共需要多少长的铁丝?大家有什么方法来解决吗?
生6:只要量出一个顶点引出三条不同的方向棱的长度。再乘以4,就得铁丝长。
生7:量出红颜色棱的长度,再乘以4;接着量蓝颜色的棱长,再乘以4;最后量黄颜色的棱长,再乘以4;把三次积加起来就是铁丝长。
研究题3:
正方体有什么特征?为什么说正方体是特殊长方体?把数据填入表格中。
师:长方体和正方体有什么相同点和不同点?
生1:我们小组研究认为正方体和长方体的面、棱和顶点的数目是一样。
生2:我们小组研究发现正方体每条棱长都相等这点与长方体不同。
生3:我们小组归纳出:把正方体说成是长、宽、高都相等的长方体,所以它是一种特殊长方体。
三、实践应用:
1、请同学们用橡皮泥和小棒制作一个长方体(或正方体)框架。老师为大家准备了不同长度的小棒(出示数据),请小组成员先交流,商量需要哪种长度的小棒,各多少根?再派成员上来领取。
小组同学动手操作,并展示、交流。
师:同学们的“作品”真漂亮!老师想请教一下,你们小组刚才用了几根小棒?使用小棒拼成框架什么特别的要求?另外用橡皮泥捏了几个点呢?
2、你们能像教师这样,给长方体框架穿上“衣服”吗(出示一个用纸做面,包好了的长方体)想想看,应用剪刀剪出怎样的纸片?再比较它们每个面的异同。
小组同学操作、汇报、交流。
[评析]
通过这节课的教学活动给我的启发和反思是:
1、让学生主动参与,亲身实践,合作探究,实现学习方式变革。
充分利用学生已有的生活经验,从观察实物------土豆,来丰富表象,再让学生动手操作------切成长方体,来提高感性认识,最后通过交流、反思等活动中逐步让学生体会数学知识的产生形成和发展过程,学生在观察中理解,在操作中感知,不仅拓宽了思路,获取了新知识,而且沟通了知识的.内涵,领悟了学习方法,转变学习方式,激活学习热情,达到全员主动参与“学数学”目的,培养了学生的学习能力。
2、让学生经历“学数学”过程,要发挥好教师的“主导”作用。
本案例教学中,教师始终把学生置于主体地位,积极引导学生通过看、摸、想、议、切、说等学习过程,让学生亲身经历数学知识的“再发现”、“再创造”过程,调动学生的学习主动性和积极性,在学知识过程中既发展了空间观念,又培养了能力;既培养独立思考能力,又培养了合作交流的能力,让学生感受到成功的喜悦。教师起着组织者、指导者、帮助者和促进者的作用。
3、让学生经历“学数学”的过程,其核心问题是“学会思考”
让学生学会数学地思考,是数学课程的重要目标之一,而积极有效的思考依赖于合适的、富有挑战性的问题。依据知识自身的重点和学生已有的知识经验,改呈现知识为呈现问题,能吸引学生充分参与数学学习过程,自觉调动已有的知识经验和心智技能,从而促使数学学习活动有效地展开并不断深入。
苏霍姆林斯基说过,在人的内心深处都有一种根深蒂固的需要这就是希望自己是一个发现者、研究者、探索者,在儿童精神世界中,这种需要特别强烈。因此,数学教学要努力创建有利于学生主动探索的数学教学环境,关注学生的自主探索和合作学习,使学生在获取作为一个现代公民所必需的数学知识和技能的同时。在情感、态度和价值等方面得到充分发展,立生积极的情感体验,进而创造性地解决问题
用《数学课程标准》来教学,必须让孩子们体会到数学的价值,学会运用数学的思维方式去观察、分析现实社会,解决日常生活中的问题,形成勇于探索、勇于创新的精神。总之,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。真正体现新的课程理念,让学生“学数学”是一个生动活泼的、主动的富有个性的过程。
《认识长方体》教案8
教学目标
(一)了解并掌握体积单位间的进率。
(二)理解并掌握体积高级单位与低级单位间的化和聚。
(三)培养学生认真审题的习惯,使学生在解决实际问题时,能准确地运用单位间的化聚法进行计算。
教学重点和难点
(一)体积单位进率和单位之间的互化。
(二)复名数和单名数之间的转化。
教学用具
投影片,电脑动画软件(或活动投影片)。
教学过程设计
(一)复习准备
教师:常用的长度单位有哪些?相邻的两个单元之间的进率是多少?
学生口答后老师板书:长度单位
1米=10分米
1分米=10厘米
厘米
教师:常用的面积单位有哪些?相邻的两个单位间的进率是多少?
学生口答后教师板书:面积单位
1米2=100分米2
1分米2=100厘米2
厘米2
口答填空,并说明算法和算理:
4米=( )分米=( )厘米。(算法:进率×高级单位的数。)
500厘米=( )分米=( )=米。(算法:低级单位的数÷进率。)
教师:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今天我们学习常用的体积单位间的进率和单位之间的转化。板书课题:体积单位间的进率。
(二)学习新课
1.认识体积单位间的进率。
(1)出示电脑动画图(或抽拉投影片)。
出示棱长1分米的正方体,提问:体积是多少?(1分米3。)
给一条棱涂色,提问:棱长多少厘米?(10厘米。)
1厘米3为单位,一个一个涂,涂满一排,提问:体积是多少?一排一排涂,涂满十排(一层),提问:体积是多少?一层一层涂,涂满十层(即全部涂上)。提问:体积是多少?
(10×10×10=1000(厘米3)。)
教师:由此可知1分米3等于多少厘米3?学生口答后老师板书:
1分米3=1000厘米3
教师:如果把刚才的图理解为棱长1米,即体积为1米3,它的体积是多少分米3?
再请学生看一遍电脑动画图后,学生口答老师板书:1米3=1000分米3。
教师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。)
(2)教师:(指黑板板书)这些是常用的长度单位,面积单位和体积单位及进率,比较它们有什么不同处?(名称、进率两方面。)
2.体积单位的互化。
(1)教师:在日常生活、工作和学习中,经常需要把体积单位进行转化,现在来学习这个问题。
出示例3:(投影) 3.8米3, 0.54米3各是多少分米3?
把问题改写成如下形式:(板书)
8米3=( )分米3
0.54米3=( )分米3
教师:看一看问题是从高级单位向低级单位转换,还是低级单位向高级单位转换?如何计算?并说出这样计算的`理由。
学生边讨论边试算。然后归纳,老师板书:
因为1米3=1000分米3,8米3有8个1000分米3,列式:1000×8=8000,填8000。
(第2题同上理)1000×0.54=540,填 540。
(2)出示例4:(投影片) 3 400厘米3, 96厘米3各是多少分米3?
改写成算式:3400厘米3=( )分米3
96厘米3=( )分米3
教师:审题时首先要注意什么?试说出这两道小题的解答过程和算理。
学生试算,讨论后,归纳并板书:
因为1000分米3为 1米3,3400分米3中包含有多少个1000分米3,就有几个米3,列式:3 400÷1000=3.4,填 3.4。
(第2题同上理) 96÷1000=0.096填 0.096。
教师:请对比例3,例4,说一说这两道题有什么不同?
学生讨论后归纳,老师再小结并板书:
(例3下面)高级单位→低级单位,用进率×高级单位的数。
(例4下面)低级单位→高级单位,用低级单位的数÷进率。
教师:想一想,体积单位间的转化与我们学过的长度单位,面积单位的转化有什么相同处与不同处?(换算的方法相同,但进率不同。)
(3)*试解下面几题:
①2米380分米3=( )米3;
教师根据学生讨论情况可作提示:哪部分需要转化?没转化的部分如何办?学生口答后
再板书:2+80÷1000=2+0.08=2.08,填2.08。
②5.34分米3=( )分米3( )厘米3;
教师:哪部分可以直接填?哪部分需要转化?(板书)1000×0.34=340,填5和340。
③3.09米3=( )米3( )分米3。
请学生直接说出列式和结果。
老师:从上面三道题的解答中,你们有什么体会?(复名数与单名数的互化,除了要注意是由高级单位向低级单位转化还是低级单位向高级单位转化外,还要注意审清题中哪一部分需要转化。)
书面练习:(请4位同学写投影片,集体订正)课本P38做一做和补充题。
出示例5:(投影) 一块长方体钢板长2.2米、宽1.5米、厚0.01米。它的体积是多少分米3?
请同学们自己解答。老师巡视中可抽选一名先算出立方米,再化为立方分米,和一名直接算出立方分米的同学去板书。集体订正时由同学自己确定哪种算法较好。
(三)巩固反馈
口答填空,说出计算过程。(投影片)
0.5米3=500厘米3( ) 2.6分米3=2米3 60厘米3( )
(四)课堂总结
1.体积单位的进率。
2.体积单位的转化方法。在学生总结基础上,将例3,例4后归纳的方法汇集成一个,并板书出来:
板书设计
《认识长方体》教案9
教学目标
(一)掌握长方体和正方体的特征,认识它们之间的关系。
(二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
(三)渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)长方体和正方体的特征。
(二)立体图形的识图。
教具准备
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;电脑动画软件。
学具:长方体和正方体纸盒。
教学过程设计
(一)复习准备
请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;然后老师说明这些图形都在一个平面上,叫做平面图形。
教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。请学生先观察,再请两三位来摸一摸,然后问:这些物体的各部分都在一个面上吗?学生:它们的各部分不在一个面上。
教师:我们看到的这些物体,它们的各部分不在一个面上,它们的形状都是立体图形。
教师:这些物体在原来的位置不动,我们还能在它们所占的位置上放别的物体吗?(请一位同学演示。)
学生:不能。
教师:可见立体图形都占有一定的空间。
教师请学生从教具中挑出长方体后,说明本节课要进一步认识长方体有什么特征,并板书课题:长方体的认识(留出写“正方体”的空)。
(二)学习新课
1.长方体的特征。
(1)请同学取出自己准备的长方体。
教师:请用手摸一摸长方体是由什么围成的`?
学生:面。(教师板书:面)
教师:请用手摸一摸两个面相交处有什么?
学生:有一条边。
教师:这条边称为棱。(板书:棱)
教师:请摸一摸三条棱相交处有什么?
学生:尖。
教师:相交的这点称为顶。(板书:顶。)
(2)教师:请同学们用自己的长方体,参考讨论提纲来研究长方体的特征。
投影片出示讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?校的位置、长短有什么关系?
③长方体有多少个顶?
学生讨论并归纳后,教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶:8个。
请学生观看动画图(用电脑软件或实物展示)
出示有一组对面是正方形的长方体,展示同上,要表示有四个面相等;
第三步:出示8个顶点。
教师:请完整地说一说长方体的特征?(先请同桌两人互相说,然后请一两位同学拿着学具给全班同学说。)
(3)老师:长方体是立体图形,画在纸上如何与平面图形区别呢?
教师:(拿一个长方体正对学生)请观察,你能看到几个面?哪几个面?
请几位观察角度不同的同学回答。
教师:看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。(介绍的同时用动画图像展示。)
教师:出示长方体框架请观察,再出示框架的投影图。(如图)请指出框架上的12条棱分几组?并指出哪几条棱是一组的?
请指出相交于一个顶点的三条棱。
教师:请量一量自己的长方体上相交于一个顶点的三条棱,看一看长度是否相等?
教师:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
练习:请分别说出下面两个长方体的长、宽、高各是多少?第二个长方体与第一个长方体有什么区别?(投影片)
2.正方体特征。
(1)展示动画图像:(或抽拉投影图)
第一步:长方体中的长边缩短,使长、宽、高相等;
第二步:长方体中的短边伸长,使长、宽、高相等。
教师:看一看新得到的长方体与原来长方体比较有什么变化?
学生:长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体。
教师:请同学取出自己准备的正方体,(也叫立方体)观察,对照长方体的特征来研究正方体的特征。(把课题补充完整——加上“正方体”。)
学生讨论、归纳后,教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
请看动画图像。
(2)教师:请对比长方体和正方体的特征,说一说它们的相同点与不同点。
学生讨论后归纳:长方体和正方体在面、棱、顶点的数量上都相同;在面的形状、面积、棱的长度方面不相同。
教师:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
学生:正方体是特殊的长方体。
教师板书集合图:
(三)巩固反馈
1.量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2.根据图中数据口答填空。(投影片)
(1)长方体的长是( )厘米,宽( )厘米,高( )厘米。12条棱长的和是( )厘米。
(2)这幅图中的几何体是( )体,12条棱长的和是( )分米。
(3)如图一个长方体,它的长、宽、高分别是9厘米,3厘米和2.5厘米。它上面的面长是( )厘米,宽( )厘米,左边的面长( )厘米,宽( )厘米,相交于一个顶点的三条棱长和是( )厘米。
3.判断。正确的在括号里画√,错误的画×。(投影片)
(1)长方体的六个面一定是长方形; ( )
(2)正方体的六个面面积一定相等; ( )
(3)一个长方体(非正方体)最多有四个面面积相等; ( )
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。 ( )
(四)课堂总结及课后作业
1.说一说长方体和正方体的特征和它们之间的关系。如何看图纸上的立体图。
2.作业:教材P22练习五:1,2,3。
课堂教学设计说明
学生通过以前的学习,已经能识别长方体和正方体,本节课是在此基础上进一步认识它们的特征。立体图形的具体研究,学生是第一次,所以首先要让学生了解立体图形与平面图形的区别;然后再引导学生通过感受、观察、比较,认识到长方体和正方体的特征、以及它们二者的关系。平面图上的立体图形,学生接受比较困难,在教案设计中,安排实物观察、动画图像的生动演示,来加深学生对图上虚实线画法的理解,这样能更好地帮助学生初步形成立体图形的空间观念,提高学生看立体图的能力。
本节新课教学分为两大部分。
第一部分教学长方体的特征。共分三个层次进行:让学生通过感官了解长方体的面、棱和顶;利用教具学具和讨论提纲,帮助学生自己去认识并概括出长方体的特征;通过图像和练习,学生会看平面上的立体图,掌握长、宽、高。
第二部分教学正方体的特征。共分两个层次进行:利用长方体长、宽、高的变化来认识正方体的特征,会看立体图;对比长方体和正方体的相同点和不同点,认识它们之间的关系。
扳书设计
《认识长方体》教案10
一、设计理念
数学学习是师生之间、学生之间互动与共同发展的过程,所以有效的学习更应促进学生的发展。维果茨基认为:“只有当教学走在发展前面的时候,这才是好的教学”。他提出“最近发展区”的概念,其实质就是教学要把那些正在或将要成熟的能力推向前进。促进学生的发展,必须关注学生的发展的自主性、主动性,尊重学生发展的差异性,强调学生发展中的体验与交往过程。使他们成为发展与变化的主体,进而帮助他通过现实与寻求走向完人理想的道路。
《长方体和正方体的认识》一课的教学设计,主要从以下几方面体现了学生学习的“有效性”
1、积极了解儿童的现有经验
布鲁姆说过:对教学影响最大的是学生已有的知识。这已有的知识实际上就是儿童的经验。其中有相当一部分是儿童自己获取的,而且来自于课外,教师要很好的研究儿童的经验水平,根据儿童的已有经验设计教案,才能更好地推进教学进程。如“引入新课部分媒体出示可乐罐、礼品盒、魔方、牙膏壳等实物让学生判断这些物体的形状”;“说说生活中哪些物体是长方体(正方体)的?”这些问题的答案虽然王花八门,但是真实地反映了儿童在这方面的真实水平。
2、重视数学活动的建设和开展
活动是数学学习的重要特征。新课标十分重视数学活动的建设和开展,指出:“教师应向儿童提供充分的从事数学活动的机会,帮助他们在自主探索的合作交流的过程中揭示规律,建立概念,真正理解和掌握基本的数学知识与技能,数学思想和方法,获得广泛的数学活动经验。
(1)倡导“自主探究”式学习
“探究”是新课改的一个主题词,所课探究,是对问题做出猜想、假设、预测、收集数据、证明的过程。这是一个活动过程也是学生的思维过程,对儿童的发展来说是最重要的。这一点在本堂课中比较突出:我引导学生探究长方体的面、棱、顶点以及长、宽、高,探究正方体的特点以及长方体与正方体之间的关系等等,内容一步一步推进,使学生逐步掌握了探究这类问题的一些方法。
(2)倡导在“触摸”中学习数学
让学生多实践、多操作,在此基础上去感悟知识,主动获取知识。这是本堂课的一大特点。在教学中曾多次让学生运用数一数、看一看、量一量等方法发现长方体(正方体)面、棱、顶点以及长、宽、高等的特征。让学生在“触摸”中掌握知识,有助于激发学习兴趣,提高学习内驱力。
(3)倡导自主讨论、交流
学习数学的过程不只是计算的过程,还要能够在推理、思考的过程中学会交流,进行体验。在本堂课中,安排了多次小组交流活动,让学生及时反馈获得的数学信息,表述自己独到的发现。交流是信息共享的过程,也是尝试的过程,它超越了“掌握知识”而升华为“学会生存”。
3、让数学走进生活
“数学来源于生活,又应用于生活”,引导学生在日常生活中掌握数学,探索真实世界中的数学,这比单纯学习数学更能激发他们的好奇心和创造力。因此作为教师必须引导他们走向生活,勇于实践,培养他们“用数学”的意识和能力。
①本堂课所使用的教具大都来源于生活中的实物,从观察实物入手,慢慢得出长方体、正方体的特征。
②让学生带着所学的知识走向实践,学会用数学的观点来解释现实世界中的一些问题,如:“下面图形,能不能围成长方体或正方体?如不能,为什么?”
二、设计思路
长方体和正方体是最基本的立体图形,它是在学生直观认识长方形、正方形特征基础上展开教学的。为今后学习长方体、正方体的表面积作好铺垫。因此,认识长方体、正方体特征,理解它们内在规律及联(转自数学 吧 )系是非常重要的。本课多次让学生动手操作实践,让学生在看一看、量一量、摸一摸等实际操作中不断积累空间观念的。在认识长方体特征的基础上,利用学习迁移自主讨论正方体的特征,再比较长方体与正方体之间的异同。明确它们的内在联系,最后用学到的新知解决一些实际问题。教学程序图:
教师活动: 创设情境 协作指导 拓展延伸
学生活动: 操作感悟 自主探究 实践应用
三、教学设计
教 学 过 程 设 计 意 图
(一)操作感悟
1、出示实物:可乐罐、礼品盒、魔方、牙膏盒等,请学生选择喜欢的物体,说说是什么形状的?
2、揭题:长方体和正方体的认识 联系生活实际,支持学生根据自己的.“数学和生活经验”发现生活中的数学。同时强调了学生学习的自主性,选择喜欢的物体说说形状。
(二)自主探究
1、认识长方体特征
(1)初步感知不同形状的长方体实物,并动手摸一摸,认识长方体的面、顶点、棱。
(2)小组合作,运用数一数、看一看、量一量的方法再次观察实物。通过讨论、交流、概括特征。
(3)指导识图
认识不同方位,不同形状的长方体(包括有两个面是正方形的长方体)和学生一起探讨看不见的棱和面的表示方法,理解立体直观图的形状特点,完善对长方体的整体认识。
(4)认识长方体的长、宽、高,揭示它们的意义及其相对性。
教师向学生提供充分的从事数学活动的机会,通过动手操作实践,使他们在自主探索和合作交流的过程中揭示规律,建立概念。
教师作为活动的组织者和学生一起探究,逐步获得新知,学生在探索新知的同时,也逐步掌握了探索的方法。促进了学生观察力和空间想象力的发展。
运用多媒体教学,加强学生的直观感知,提高教学效率。
2、认识正方体的特征
小组合作探究正方体的特征,诱发比较、迁移类推。
3、认识长方体、正方体的关系
(1)多媒体动态演示,比较分析。揭示出长方体和正方体的内在联系,得出:正方体是特殊的长方体。
(2)说说生活中哪些物体是长方体、正方体的。 开放学习的方式,以学生的自主学习为中心,让学生通过自身的发展尝试总结,验证,实现知识的“再创造”。
比较是认识事物的主要方法之一,特别在几何体教学中,运用比较方法,加强形体间的联系和区别,提高识别能力。同时渗透事物普遍联系和发展变化的辩证唯物主义观。联系生活,体现数学来源于生活,又应用于生活的特点。
(三)实践应用
1、判断题
2、操作题
将8个大小完全相同的小正方体摆成形状不同的长方体,并分别指出长、宽、高。
3、拓展提高题
判断部分展开图形能否围成长方体或正方体,并说明理由。
侧重于知识点的落实,巩固新知。
加强动手操作实践,丰富学生感知,积累空间观念,形成能力。
积极引发学生的争论,辩明概念,建立初步的空间观念。
《认识长方体》教案11
教学目标
(一)理解长方体和正方体表面积的意义。
(二)理解并掌握长方体和正方体表面积的计算方法。
(三)培养和发展学生的空间观念。
教学重点和难点
(一)长方体、正方体表面积的意义和计算方法。
(二)确定长方体每一个面的长和宽。
教学用具
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
(二)学习新课
1.长方体和正方体表面积的意义。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
教师:(拿着长方体盒子)这个长方体的表面积能一眼全看到吗?想一想有什么办法能一眼全看到?
学生讨论。(把六个面展开放在一个平面上。)
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)
教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
2.长方体表面积的计算方法。
(1)请同学拿着自己的长方体(用展开图折上)。教师:请量出它的长、宽和高,说一说哪些面大小相等?指出相邻的三个面各用哪两条棱作为长和宽?
学生四人一组边操作边讨论后归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;前后两个面大小相等,它是由长方体的`长和高作为长和宽的;左右两个面大小相等,它是由长方体的高和宽作为长和宽的。 教师:对长方体实物,我们已经会找它每个面对应的长和宽了,在平面图上会不会找呢?
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
(2)请同学们用新学的知识来解答下面的问题:例1(投影片)做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少厘米2硬纸板?
3.正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6
=9×6
=54(厘米2)
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本P26做一做。(请两位同学写投影片,其余同学做本上。)
用学生投影片集体订正。
(三)巩固反馈
课堂教学设计说明
本节新课教学分为三部分。
第一部分教学长、正方体表面积的意义。
第二部分教学长方体表面积的计算方法。
第三部分教学正方体表面积的计算方法。
板书设计
《认识长方体》教案12
活动目标:
1、认识长方体与正方体,能区分长方体与正方体。
2、感受行与体的不同,发展空间知觉。
3、培养动手动脑及合作的能力。
活动准备:
1、长方体纸盒若干个、画有花的长方形若干;2、正方体、长方体物品若干;3、幻灯片。
活动过程:
一、认识长方体1、观察桌面上的操作材料小朋友们,你们看看桌子上有什么呀?今天老师要请小朋友用这些东西来玩个"找朋友"的。
2、教师讲解操作要求这个纸盒老师给它们穿上了漂亮的衣服,等会儿请小朋友们先将纸盒的衣服"脱"下来,数一数它总共有几件衣服,再帮衣服找出和它自己同样大小的衣服做好朋友,然后请你把这对好朋友身上的花涂上相同的颜色,涂好后再将这些衣服穿回到纸盒的身上。
3、幼儿操作,教师指导。
4、分析幼儿操作结果(1)将每组幼儿的'长方体展示在上面,教师与幼儿一起来观察。
(2)刚才我们小朋友都将纸盒的衣服"脱"下来过了,你们说它有几件衣服呀?(6件)我们来看看到底是不是6件。教师逐一将衣服"脱"下展示在黑板上。那你们说这个纸盒有几个面啊?
(3)你们看看这6个面谁和谁是好朋友?也就是它俩的大小是一样的?(教师将6个面是一对的两两放在一起)(4)现在我将它们都穿回去,这个面在这里,这个面……(5)上下两个面是一样大的,左右两个是一样大的,前后两个是一样大的。
5、教师小结:像纸巾盒、牛奶盒这样的盒子,有6个面,每个面都是长方形,相对的两个面大小一样的形体我们叫长方体(出示字体:长方体)二、认识正方体1、(教师出示正方体)小朋友们,你们看这个是长方体吗?是的请举手。
2、那它倒底是不是呢?我们来看看,一起数数它有几个面?(6个),它每个面都是正方形,这6个正方形它们的大小都一样,像这样有6个面,每个面都是正方形,而且这6个正方形的大小都一样,这样的形体我们叫正方体(出示正方体字体),正方体也是长方体。
三、区分正方体和长方体1、小朋友们,刚才我们认识了长方体和正方体,老师在后面为小朋友们准备了很多的物体,请你到后面去挑选一个长方体或是正方体,看哪个小朋友能又快又好的挑来回到自己的座位上来。
2、提问个别小朋友他挑了什么,是什么体?
3、请幼儿将手中的长方体和正方体分别放入两筐子。
四、寻找生活中长方体和正方体1、在生活中你还见过哪些物体也是长方体或者是正方体?
2、观看放映幻灯片。
五、延伸活动(教师出示有两个面是正方形的长方体)老师这里还有一个长方体,这个长方体它这两个面是正方形,请小朋友回去后可以为它也去穿穿衣服,你也会发现一个秘密。
《认识长方体》教案13
教学目标:
1、结合具体的长方体和正方体的认识情景,经历探究长方体和正方体特点的过程,能够准确的掌握长方体和正方体的表面特点。
2、能够认识长方体和正方体,具有初步的立体空间想象能力。
3、使学生感受到长方体和正方体与生活的密切联系,培养学习数学的良好兴趣。
重点难点:
学生能够熟练的掌握长方体和正方体的表面特点。
教学方法:
师生共同归纳和推理
教学准备:
长方体模型、正方体模型
教学过程:
一、复习导入
教师出示教学板书,请学生观察下列长方体和正方体并回答有什么特点?
教师:提问学生长方体和正方体有什么特点?
学生寻找完毕,纷纷举手准备回答问题。
教师提问学生回答问题。(长方体有6个面、8个顶点、12条棱,对面面积相等;正方体有6个面、8个顶点、12条棱,6个面都相等和12条棱相等。)
二、课堂练习
学生做第1题,教师让学生选择一个长方体实物,可以集中测量数学课本的长、宽、高各是多少?
学生做第2题,让学生观察课本中的长方体的三条棱长,并填完表格。
学生做第3题,根据课本中的长方体的三条棱长和每组对面的形状,分辨出6个不同的面的.编号。可以让学生按照课本中6个面的长、宽来做成面积相等的纸片,然后组成一个长方体来进一步熟悉长方体的6个面的大小和相对的位置。
教师根据课本第4题中的长方体插图,让学生用所学的知识来解决制作一个这样的长方体至少需要多少厘米的木条。
三、课堂小结
同学们,这一节课你学到了哪些知识?(提问学生回答)
《认识长方体》教案14
学习目标:
1、进一步认识长方体和正方体,了解长方体和正方体各部分的名称
2、经历观察、分类操作和讨论等探索活动过程,发现长方体和正方体的特点,能运用长方体和正方体的特点解决一些简单的问题。
3、通过具体的操作活动,培养学生的探索意识和实践能力,发展空间观念。
学习重点:
熟练掌握长方体和正方体的特征
学习难点:
培养学生的探索意识,发展空间观念
教(学)具
长方体框架、长方体和正方体物体和模型、课件
教学过程:
一、扑克牌展示,导入新课:
师:(出示一张扑克牌)请问这是我们学过的什么图形?
生:长方形
师(出示一副扑克牌)同学们这是什么图形呢?
生:长方体(板书:长方体)
师:同学们!桌子上的磁带、包装盒,这里的磁带盒等(在讲台上出示),这些物体的形状都是长方体。这节课我们就一起来认识长方体。(补充板书:的认识)
师:(出示一些长方体形的、非长方体形的物体和模型)现在请两们同学来分一分,把是长方体形的物体放在左边,不是长方体形的物体放在右边,。
(学生上台分,)
师:他们分得对不对?等我们研究了长方体的物征后就知道了。
二、切果成形,观察讨论,探究特征
师:(取一个苹果)这里有一个苹果,把它切一刀,就切出一个平面,(摸,板书:面)再切一刀,(垂直于上切面)又是一个面,两个面相交的边(指示)叫作“棱”,(板书:棱)再切一刀,(垂直于棱切)现在有几个面?
生:三个。
师:有几条棱?
生:三条。
师:三条棱相交的点,叫作顶点。(板书:顶点)如果再相对着切三刀就得到一个长方体。(出示长方体模型)我们先来研究长方体的面的情况。请拿起你手中的长方体,摸一摸它的面,数一数,长方体有几个面?
生:(摸、数)长方体有六个面。
师:你是怎样数的?
生:我是这样数的——按上下、前后、左右的顺序数。
师:根据长方体的面的位置,分别把它们称作上下两个面、前后两个面、左右两个面。(指着)位置上相对着的叫作一组相对的面,长方体有几组相对的面?
生:三组。
师:这六个面都是什么形状?
生:都是长方形。
生:可能有两个相对的面是正方形。
师:你身边有这样的.长方体吗?
(生举起一个长方体)
师:对!也可能有两个相对的面是正方形。再看一看,长方体相对的面的面积怎样?
生:相等。
师:是不是相等呢?请看——(观看PPT模型演示)相等吗?
生:相等
师:现在来研究棱的情况,大家摸一摸长方体的棱,数一数,有几条?
生:(摸、数)长方体有12条棱。
师:(展示长方体框架)请看,这12条棱中,同一种颜色的四条棱是一组相对的棱。长方体有几组相对的棱?
生:三组。
师:看一看,相对的棱的长度怎样?
生:相等。
师:你是怎么知道的?
生:我用尺量的,发现它们一样长。
师:不用尺量,你能知道吗?
生:在同一个面上的两条相对的棱是一个长方形的一线对边,长方形对边相等。所以这两长棱的长度相等。
师:这一组四条相对的棱的长度相等,同样的道理,其它两组相对的棱的长度也分别——
生:相等。
师:再看顶点的情况,请指出长方的顶点给同桌看一看,数一数,长方体有几个顶点?
生:(指、数)长方体有8个顶点。
师:长方体的特征可以从面、棱、顶点这三个方面进行概括。谁能说说,长方体有怎样的特征?
(生根据板书内容叙述)
师:现在,不看黑板上的内容,拿起你手中的长方体,同桌的同学互相说一说长方体的特征,好吗?
生:好!
师:(指讲台上的模型)刚刚那位同学分的对吗?为什么?
学生小组讨论并交流。
三、演示投影,真切了解直观图
师:刚才我们认识了长方体的物体,书上画的、黑板上出现的是它的立体图形,怎么看长方体的立体图形呢?
(出示一个长方体)
有的同学可能要问了,长方体有六个面,每个面都是长方形,而这个图上只有三个面,并且有两个面是平行四边形,这是怎么一回事?
师:(将一个长方体模型放在讲台中央;把同学分成三部分,从不同的角度观察)能看到几个面?
生:我只看到了一个面。
生:我看到了两个面。
生:我看到了三个面。
师:还有三个面出于被遮住了我们看不见,在立体图上可用虚线画出被遮住的三条棱,形成这个立体图。(在原图上形成立体图)
四、变式呈现,辩证地理解长、宽、高
师:现在请思考,如果要知道长方体12条棱的长度,只要量哪几条棱就可以了?
生:(讨论后,指着相交于一点的三条棱)只要量这三条棱的长度就可以了。
师:像这样相交于一点顶点的三条棱的长度分别叫做长方体的长、宽、高。(在立体图上指示后,在相应的地方标上“长”、“宽”、“高”
一般来说,底面中较长的棱的长度称作长,较短的称作宽,垂直于底的棱的长度称作高。
请同学们四人小组合作相互说一说你们手中长方体的长、宽、高。
学生小组合作,汇报交流
五、循序渐进,巩固新知,发展能力
师:现在我们运用所学知识做几道习题。
六、课堂小结
通过本课的学习,我们已经对长方体有了一个基本的了解,知道了长方体的基本特征。在生活中,我们经常见到长方体,注意留心生活,我们就会学到很多的数学知识。
《认识长方体》教案15
一、活动目标:
1、认识正方体与长方体,区别两者的不同。
2、能熟练地运算7以内的加减法。训练思维的灵活性和敏捷性。
二、活动准备:
7以内加减式题若干、正方体、长方体的积木各若干、每人一张作业图、一张制作正方体的纸。
三、活动过程:
1、出示7以内的加、减法式题,集体、分组、个别的进行运算练习。
2、认识正方体与长方体:
(1)、观察:每人三块积木(一块正方体、两块不同的长方体),让幼儿进行观察,找出每块积木在形体上的特点。如:三块积木各有几面?教师在幼儿观察的基础上告诉幼儿:六面都是同样大小的正方体;长方体也有六个面,但不是每一面都是正方形,有的六面都是长方形,有的四面是长方形,两面是正方形。取出两种不同的长方体让幼儿观察。
(2)、找找正方体与长方体。幼儿在桌上的一堆积木中,根据教师的指令,拿出正方体或长方体的积木。
幼儿运用积木建构简单物体。请幼儿数数自己用了几块正方体的'积木,几块长方体的积木。
(3)、想一想。教室里、幼儿园里有那些东西像正方体,那些东西像长方体?
3、幼儿操作活动:
(1)、每人一张作业图。数数每一个图形是由几块积木组成的,并在旁边的圈中写上相应的数字。
(2)、每个幼儿用准备好的纸制作一个正方体。
4、教师点评幼儿操作结果,并对整个活动进行小结。
【《认识长方体》教案】相关文章:
长方体的认识的教案03-06
《长方体的认识》教案02-16
《长方体的认识》教案设计11-15
《长方体的认识》教案15篇03-02
长方体的认识09-29
《长方体的认识》教案 赵桂芳12-16
《长方体的认识》教案 潘春香12-16
数学教案-长方体的认识(一)09-29
长方体的认识(一)09-29