二元函数极限证明

时间:2021-10-04 17:45:34 证明范文 我要投稿
  • 相关推荐

二元函数极限证明

二元函数极限证明

设P=f(x,y),P0=(a,b) ,当P→P0 时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。

二元函数极限证明

此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。

我们必须注意有以下几种情形: ’

(1)两个二次极限都不存在而二重极限仍有可能存在

(2)两个二次极限存在而不相等

(3)两个二次极限存在且相等,但二重极限仍可能不存在

2

函数f(x )当x →X0时极限存在,不妨设:limf(x)=a(x →X0)

根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε

而|x-x0|<δ即为x属于x0的某个邻域U(x0;δ)

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1

再取M=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域U(x0;δ)时,有|f(x)|

证毕

3首先,我的方法不正规, 其次,正确不正确有待考察。

1,y以 y=x^2-x 的路径趋于0 Limited sin (x+y)/x^2 =Limited sinx^2/x^2=1 而 y=x 的路径趋于0 结果是无穷大。

2,3 可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是P(x,y) 以任何方式趋向于该点。

4

f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)

显然有y->0,f->(x^2/|x|)*sin(1/x)存在

当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的 所以不存在

而当x->0,y->0时

由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)

而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2

所以|f|<=|x|+|y|

所以显然当x->0,y->0时,f的极限就为0

这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的

正无穷或负无穷或无穷,我想这个就可以了

就我这个我就线了好久了

5

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的`基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3註:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

【二元函数极限证明】相关文章:

函数极限的证明12-07

函数极限证明12-07

函数极限的性质证明12-07

二元函数极限计算方法研究07-16

常用函数极限的求法10-10

极限的证明12-07

数列极限的证明12-07

极限 定义证明03-10

重要极限的证明12-07