高中几何证明定理

时间:2021-10-04 17:50:19 证明范文 我要投稿
  • 相关推荐

高中几何证明定理

高中几何证明定理

一.直线与平面平行的(判定)

高中几何证明定理

1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.

2.应用:反证法(证明直线不平行于平面)

二.平面与平面平行的(判定)

1. 判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行

2.关键:判定两个平面是否有公共点

三.直线与平面平行的(性质)

1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行 2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线

四.平面与平面平行的(性质)

1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行

2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行

五:直线与平面垂直的(定理)

1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直

2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)

六.平面与平面的垂直(定理)

1.一个平面过另一个平面的垂线,则这两个平面垂直

(或者做二面角判定)

2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换

七.平面与平面垂直的(性质)

1.性质一:垂直于同一个平面的两条垂线平行

2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

3.性质三:如果两个平面互相垂直,那么经过第一个平面内的`一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)

以上,是立体几何的定理和性质整理.是一定要记住的基本!。

想要变-态的这里多的是- -

欧拉定理&欧拉线&欧拉公式(不一样)

九点圆定理

葛尔刚点

费马定理(费马点(也叫做费尔马点))

海伦-公式

共角比例定理

张角定理

帕斯卡定理

曼海姆定理

卡诺定理

芬斯勒-哈德维格不等式(几何的)

外森匹克不等式(同上)

琴生不等式(同上)

塞瓦定理

梅涅劳斯定理

斯坦纳定理

托勒密定理

分角线定理(与角分线定理不同)

斯特瓦尔特定理

切点弦定理

西姆松定理。

【高中几何证明定理】相关文章:

几何证明定理12-07

高中几何证明12-07

高中数学定理证明12-07

中考数学几何公式定理汇编01-16

初中几何证明12-07

正弦定理的证明12-07

正弦定理证明12-07

勾股定理证明12-07

定理与证明 习题04-24