七年级数学下册教案

时间:2023-03-19 16:30:07 数学教案 我要投稿

七年级数学下册教案汇编15篇

  作为一位优秀的人民教师,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那要怎么写好教案呢?下面是小编帮大家整理的七年级数学下册教案,仅供参考,大家一起来看看吧。

七年级数学下册教案汇编15篇

七年级数学下册教案1

  认识三角形教学目标:

  1.知识与技能

  结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.

  2.过程与方法

  通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.

  3.情感、态度与价值观

  联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.

  教学重点难点:

  1.重点

  让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.

  2.难点

  探究三角形的三边关系应用三边关系解决生活中的实际问题.

  教学设计:

  本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.

  第一环节 回顾与思考

  1、如何表示线段、射线和直线?

  2、如何表示一个角?

  第二环节 情境引入

  活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.

  活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣

  第三环节 三角形概念的讲解

  (1)你能从中找出四个不同的三角形吗?

  (2)与你的同伴交流各自找到的三角形.

  (3)这些三角形有什么共同的特点?

  通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.

  第四环节 探索三角形三边关系第一部分 探索三角形的任意两边之和大于第三边

  活动内容:在四根长度分别是8cm、10cm、15cm、20cm的`小木棒中选三根木棒摆三角形.学生统计能否摆成三角形的情况.

  第二部分 探索三角形的任意两边之差小于第三边

  活动内容:通过让学生测量任意三角形三边长度来比较两边之差与第三边的关系,教师通过几何画板验证,从而得出结论.

  第五环节 练习提高

  活动内容:

  1.有两根长度分别为5厘米和8厘米的木棒,用长度为2厘米的木棒与它们能摆成三角形吗?为什么?长度为13厘米的木棒呢?

  2.如果三角形的两边长分别是2和4,且第三边是奇数,那么第三边长为 .若第三边为偶数,那么三角形的周长 .

  3.有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能摆成三角形吗?为什么?长度为13cm的木棒呢?动手摆一摆.学生回答完上面问题后想一想能取一根木棒与原来的两根木棒摆成三角形吗?

  第六环节 课堂小结

  活动内容:学生自我谈收获体会,说说学完本节课的困惑.教师做最终总结并指出注意事项.

  学生对本节内容归纳为以下两点:

  1.了解了三角形的概念及表示方法;

  2.三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.

  注意事项为:判断a,b,c三条线段能否组成一个三角形,应注意:a+b>c,a+c>b,b+c>a三个条件缺一不可.当a是a,b,c三条线段中最长的一条时,只要b+c>a就是任意两条线段的和大于第三边.

  第七环节 探究拓展思考

  1.若三角形的周长为17,且三边长都有是整数,那么满足条件的三角形有多少个?你可以先固定一边的长,用列表法探求.

  2.在例1中,你能取一根木棒,与原来的两根木棒摆成三角形吗?

  3.以三根长度相同的火柴为边,可以组成一个三角形,现在给你六根火柴,如果以每根火柴为边来组成三角形,最多可组成多少个三角形?试试看.

  第八环节 作业布置

七年级数学下册教案2

  教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的`意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  三、应用提高

  活动内容:1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  四、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?.(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  五、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  六、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

  1.2幂的乘方与积的乘方(一)

七年级数学下册教案3

  教学目标

  1.会用加减法解一般地二元一次方程组。

  2.进一步理解解方程组的消元思想,渗透转化思想。

  3.增强克服困难的勇力,提高学习兴趣。

  教学重点

  把方程组变形后用加减法消元。

  教学难点

  根据方程组特点对方程组变形。

  教学过程

  一、复习引入

  用加减消元法解方程组。

  二、新课。

  1.思考如何解方程组(用加减法)。

  先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

  能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

  学生解方程组。

  2.例1.解方程组

  思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

  学生讨论,小组合作解方程组。

  提问:用加减消元法解方程组有哪些基本步骤?

  三、练习。

  1.P40练习题(3)、(5)、(6)。

  2.分别用加减法,代入法解方程组。

  四、小结。

  解二元一次方程组的.加减法,代入法有何异同?

  五、作业。

  P33.习题2.2A组第2题(3)~(6)。

  B组第1题。

  选作:阅读信息时代小窗口,高斯消去法。

  后记:

  2.3二元一次方程组的应用(1)

七年级数学下册教案4

  【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

  【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。

  【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

  【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

  【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。

  【教具准备】小黑板 科学计算器

  【教学过程】

  一、复习导入

  1、小刚家厨房的面积为10平方米的.正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)

  2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)

  3、0.36的平方根是( )

  4、(-5)2的算术平方根是( )

  二、练习内容

  (一)填空

  1、若=1.732,那么=( ) 2、(-)2=( )

  3、 =( ) 4、若x=6,则=( )

  5、若=0,则x=( ) 6、当x( )时,有意义。

  (二)选择

  1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )

  A.B.C.D.; 2、4x2-49=0; 3、(25/81)x2=1;

  4、求8+(-1/6)2的算术平方根;

  5、求b2-2b+1的算术平方根;(b<1)

  6、

  7、 ;(用四舍五入方法取到小数点后面第三位)

  8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。

  三、小结与巩固

七年级数学下册教案5

  教学目标

  在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

  在推导法则的过程中,培养观察、概括与抽象的能力。

  通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

  让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

  重点难点

  重点

  同底数幂相乘的法则的推理过程及运用

  难点

  同底数幂相乘的运算法则的推理过程

  教学过程

  一、温故知新

  1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的`结果)

  2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

  3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

  学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

  二、新课讲解

  探究新知

  你能计算出 吗?

  学生解答,教师板书

  那么 等于多少呢?更一般的, 等于多少呢?

  学生回答,教师板书

  你发现运算的方法了吗?

  师生共同概括归纳出同底数幂乘法的法则:

  同底数幂相乘,底数不变,指数相加。

  用公式表示是: (、n都是正整数)

  动脑筋

  当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

  学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

  三、典例剖析

  例1 计算:(1) ;(2)

  分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

  例2 计算:(1) ;(2)

  让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

  例3 计算:(1) ;(2)

  学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的数,提高学生的运算能力。

  四、课堂练习

  基础训练:

  1.计算:

  (1) ;(2) ;(3) ;(4)

  2.计算:

  (1) ;(2) ;(3) ;(4)

  (学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

  提高训练

  3. 计算 ;(2)

  4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

  (用以提升学生运算的灵活性,提高学习兴趣。)

  五、小结

  师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

  六、布置作业

  教材P40 第1题,P41 第12题

七年级数学下册教案6

  一、情景导入

  见书问题

  二、用坐标表示地理位置

  探究:

  我们知道,在平面内建立直角坐标系后,平面内的点都可以用坐标来表示,为此,要确定区域内一些地点的位置,就要建立直角坐标系.

  思考:

  以什么位置为原点?如何确定x轴、y轴?选取怎样的比例尺?

  小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.

  以正东方向为x轴,以正北方向为y轴建立直角坐标系.

  取比例尺1:10000(即图中1格相当于实际的100米).

  点(150,200)就是小刚家的位置.

  画出小强家、小敏家的.位置,并标明它们的坐标.

  归纳:

  注意:

  (1)通常选择比较有名的地点,或者较居中的位置为坐标原点;

  (2)坐标轴的方向通常以正北为纵轴的正方向,正东为横轴的正方向;

  (3)要标明比例尺或坐标轴上的单位长度.

  三、课堂练习

  下图是小红所在学校的平面示意图,请你指出学校各地点的位置.

  四、课堂小结

  怎样利用坐标表示地理位置

七年级数学下册教案7

  教学过程(师生活动):

  提出问题:

  某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?

  你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.

  探究新知:

  1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.

  2、例题.

  解下列不等式,并在数轴上表示解集:

  (1)x≤50(2)-4x3

  (3)7-3x≤10(4)2x-33x+1

  分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.

  3、教师提问:从以上的`求解过程中,你比较出它与解方程有什么异同?

  让学生展开充分讨论,体会不等式和方程的内在联系与不同之处.

  巩固新知:

  1、解下列不等式,并在数轴上表示解集:

  (1)(2)-8x10

  2、用不等式表示下列语句并写出解集:

  (1)x的3倍大于或等于1;

  (2)y的的差不大于-2.

  解决问题:

  测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?

  总结归纳:

  围绕以下几个问题:

  1、这节课的主要内容是什么?

  2、通过学习,我取得了哪些收获?

  3、还有哪些问题需要注意?

  让学生自己归纳,教师仅做必要的补充和点拨?

七年级数学下册教案8

  平方根教学设计

  一、情景引入(复习引入)

  1、求下列和数的算术平方根4、9、100、9/16、0.25

  2、如果一个数的平方等于9,这个数是多少?

  讨论:这样的数有两个,它们是3和-3.注意中括号的作用.

  又如:,则x等于多少呢?

  二、探索新知

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  求一个数的平方根的运算,叫做开平方.

  例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

  2、观察:课本P45的图6.1-2.

  图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.

  例4求下列各数的平方根。

  (1) 100 (2) (3) 0.25

  3、按照平方根的概念,请同学们思考并讨论下列问题:

  正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?

  一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.

  例5说出下列各式的意义,并求出它们的值。

  归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的.算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。

  4、堂上练习:课本P46小练习1、2、3

  三、归纳小结(学生归纳,老师点评)

  1、什么叫做一个数的平方根?

  2、正数、0、负数的平方根有什么规律?

  3、怎样求出一个数的平方根?数a的平方怎样表示?

  四、布置作业

  P47-48习题6、1第3、4题。

  五、板书设计:

  6.1平方根

  1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

  2、a的平方根记为:

  3、平方根的性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

  《平方根》同步练习题

  1已知第一个正方形纸盒的棱长是6厘米,第二个正方形纸盒的体积比第一个正方形纸盒的体积大127立方厘米,试求第二个正方形纸盒的棱长.

  《6.1平方根》课时练习含答案

  1.下面说法正确的是( )

  A.4是2的平方根

  B.2是4的算术平方根

  C.0的算术平方根不存在

  D.-1的平方的算术平方根是-1

  答案:B

  知识点:平方根;算术平方根

  解析:

  解答:A、4不是2的平方根,故本选项错误;

  B、2是4的算术平方根,故本选项正确;

  C、0的算术平方根是0,故本选项错误;

  D、-1的平方为1,1的算术平方根为1,故本选项错误.

  故选B.

  分析:根据一个数的平方根等于这个数(正和负)开平方的值,算术平方根为正的这个数的开平方的值,由此判断各选项可得出答案.

七年级数学下册教案9

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的'位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

七年级数学下册教案10

  1.2二元一次方程组的解法

  1.2.1代入消元法

  教学目标

  1.了解解方程组的基本思想是消元。

  2.了解代入法是消元的一种方法。

  3.会用代入法解二元一次方程组。

  4.培养思维的灵活性,增强学好数学的.信心。

  教学重点

  用代入法解二元一次方程组消元过程。

  教学难点

  灵活消元使计算简便。

  教学过程

  一、引入本课。

  接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?

  二、探究。

  比较此列二元一次方程组和一元一次方程,找出它们之间的联系。

  xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,

  可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?

  15xy9例1:解方程组 2y3x1

  讨论:怎样消去一个未知数?

  解出本题并检验。

  12x3y0例2:解方程组 25x7y1

  讨论:与例1比较本题中是否有与y3x1类似的方程?

  怎样解本题?

  学生完成解题过程。

  草稿纸上检验所得结果。

  简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)

  三、练习

  P27.练习题。

  四、小结

  本节课你有什么收获?

  五、作业

  习题2.2A组第1题。

  后记

七年级数学下册教案11

  教学目标

  1.经历从性质公理推出性质的过程;

  2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.

  对话探索设计

  〖探索1反过来也成立吗

  过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.

  现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?

  结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.

  〖探索2

  上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?

  〖探索3

  (1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);

  (2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.

  结论:两条平行线被第三条直线所截,同位角相等.

  与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.

  〖探索4

  如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:

  两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.

  现在我们来试一试:如何根据性质1说出性质2成立的.道理.

  如图,

  ∵a∥b(已知),

  ∴∠1=∠3(____________________).

  又∠3=________(对顶角相等),

  ∴∠1=∠2(___________).

  以上过程说明了:由性质1可以得出性质2.

  〖探索5

  我们学过判定两直线平行的第三种方法:

  两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)

  把这条定理反过来,可以简单说成_____________________.

  猜一猜:把这条定理反过来以后,还成立吗?

  〖练习

  P22练习

  说一说:求这三个角的度数分别根据平行线的哪一条性质?

  〖作业

  P25.1、2、3

  〖补充作业

  如图:直线a、b被直线c所截,

  (1)若a∥b,可以得到∠1=∠2.根据什么?

  (2)若∠1=∠2,可以得到a∥b.根据什么?

  (注意:(1)、(2)的根据一样吗?)

七年级数学下册教案12

  学习目标

  1. 理解有序数对的应用意义,了解平面上确定点的常用方法

  2. 培养用数学的意识,激发学习兴趣.

  学习重点: 理解有序数对的意义和作用

  学习难点: 用有序数对表示点的位置

  学习过程

  一.问题导入

  1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯.

  2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。

  3.某人买了一张8排6号的电影票,很快找到了自己的'座位。

  分析以上情景,他们分别利用那些数据找到位置的。

  你能举出生活中利用数据表示位置的例子吗?

  二.概念确定

  有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)

  利用有序数对,可以很准确地表示出一个位置。

  1.在教室里,根据座位图,确定数学课代表的位置

  2.教材40页练习

  三.方法归类

  常见的确定平面上的点位置常用的方法

  (1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

  (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

  1.A点为原点(0,0),则B点记为(3,1)

  2.以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

  例2是某次海战中敌我双方舰艇对峙,对我方舰艇来说:

  (1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

  (2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

  (3)要确定每艘敌舰的位置,各需要几个数据?

  [巩固练习]

  1.是某城市市区的一部分,对市政府来说:

  北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

  结合实际问题归纳方法

  学生尝试描述位置

  2. 马所处的位置为(2,3).

  (1) 你能表示出象的位置吗?

  (2) 写出马的下一步可以到达的位置。

  [小结]

  1. 为什么要用有序数对表示点的位置,没有顺序可以吗?

  2. 几种常用的表示点位置的方法.

  [作业]

  必做题:教科书44页:1题

七年级数学下册教案13

  知识与技能:

  掌握本章基本概念与运算,能用本章知识解决实际问题。

  过程与方法:

  通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。

  情感态度:

  领悟分类讨论思想,学会类比学习的方法。

  教学重点:

  本章知识梳理及掌握基本知识点。

  教学难点:

  应用本章知识解决实际与综合问题。

  一、知识框图,整体把握

  教学说明:

  1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。

  2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。

  二、释疑解惑,加深理解

  1、利用平方根的概念解题

  在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的'非负性:被开方数为非负数,算术平方根也为非负数。

  例1已知某数的平方根是a+3及2a—12,求这个数。

  分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0

  解得a=3

  ∴a+3=6,2a—12=—6

  ∴这个数是36

  教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的一个特例。

  2、比较实数的大小

  除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。

七年级数学下册教案14

  教学目标:

  1.借助自己熟悉的事物,感受较小数;

  2.通过分析、交流、合作,加深对较小数的认知,发展数感;

  3.能用科学技术法表示绝对值较小的数.

  重点、难点:

  对较小数字的信息作合理的解释和推断,感受较小数,发展数感,用科学记数法表示绝对值较小的数.

  教学过程:

  一、复习提问

  1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。

  2.什么叫科学记数法?把下列各数用科学记数法来表示:

  (1)2500000(2)753000(3)205000000

  二、创设问题情境引入:

  出示“议一议”前三幅图(让学生阅读,思考)

  教师提出问题:一百万分之一有多少呢?提示本节内容,导入课题“认识百万分之一”.

  三、通过师生共同参与教学活动,加深对绝对值较小数的认知.

  1.出示投影:“议一议”

  珠穆朗玛峰是世界第一高峰,它的海拔高度约为8844米;

  (1)让学生计算珠穆朗玛峰高度的千分之一是多少?相当于几层楼的'高度?

  (2)让学生计算珠穆朗玛峰高度的百万分之一是多少?并直观地描述这个长度.

  2.出示投影:“议一议”

  (1)让学生计算出天安门面积的百分之一的面积,并用语言描述.

  (2)让学生计算出天安门面积的万分之一及百万分之一的面积,并用语言描述.

  教师综述:

  在日常生活中除了会接触到较大的数,同时也会接触到较小的数;通过刚才大家的计算,交流体会,感受到一个物体的高度或面积的百万分之一的大小,使大家认识了百万分之一.

七年级数学下册教案15

  在本次活动中,教师应重点关注:

  (1)学生从简单的具体实物抽象出相交线、平行线的能力.

  (2)学生认识到相交线、平行线在日常生活中有着广泛的应用.

  (3)学生学习数学的兴趣.

  教师出示剪刀图片,提出问题.

  学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.

  教师提出问题.

  学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.

  在本次活动中,教师应关注:

  (1)学生画出两条相交线的几何图形,用语言准确描述.

  (2)学生能否从角的'位置关系上对角进行分类.

  (3)学生是否能够正确区分邻补角、对顶角.

  (4)学生参与数学学习活动的主动性,敢于发表个人观点.

  《相交线与平行线》单元测试题

  25.如图,直线EF∥GH,点B、A分别在直线EF、GH上,连接AB,在AB左侧作三角形ABC,其中∠ACB=90°,且∠DAB=∠BAC,直线BD平分∠FBC交直线GH于D

  (1)若点C恰在EF上,如图1,则∠DBA=_________

  (2)将A点向左移动,其它条件不变,如图2,则(1)中的结论还成立吗?若成立,证明你的结论;若不成立,说明你的理由

  (3)若将题目条件“∠ACB=90°”,改为:“∠ACB=120°”,其它条件不变,那么∠DBA=_________(直接写出结果,不必证明)

  《第五章相交线与平行线》单元测试题

  一、选择题(每题3分,共30分)

  1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()

  A.50°B.60°C.140°D.160°

【七年级数学下册教案】相关文章:

七年级数学下册教案10-13

七年级数学下册教案【推荐】03-19

七年级数学下册教案【荐】03-19

【精】七年级数学下册教案03-19

七年级数学下册优秀教案02-15

七年级下册数学教学教案09-29

人教版七年级数学下册教案01-30

七年级下册数学教案07-21

「初一教案」七年级数学下册教案12-17

七年级数学下册教案15篇01-09