七年级数学下册教案

时间:2023-02-15 13:06:50 教案 我要投稿

七年级数学下册教案(汇编15篇)

  作为一名无私奉献的老师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!下面是小编精心整理的七年级数学下册教案,希望对大家有所帮助。

七年级数学下册教案(汇编15篇)

七年级数学下册教案1

  教学目标

  1.探索并了解三角形的外角的性质。

  2.利用平行线性质来证明三角形外角的性质。

  3.利用三角形内角和以及外角性质进行有关计算。

  4、通过观察、实验、探索等数学生活,体验数学的美。

  教学重点:掌握三角形外角的三个性质

  教学难点:利用平行线证明三角形外角性质

  学情分析

  通过前面几节课的学习,学生已经掌握了三角形的基本概念,知道三角形的内角和为180°,三角形的外角与其相邻的内角是互补关系。这就为本节课的学习奠定了基础。本节课应注重渗透数学说理过程,从简单的问题中逐步培养学生运用几何语言的能力。

  教学准备

  多媒体、课件、三角板。并让学生课前准备好三角形纸片

  教学过程

  复习提问

  1.什么叫三角形的外角?三角形外角和它相邻内角之间有什么关系?

  2.三角形内角和等于多少度?

  (由学生回答上述问题)

  设计意图:

  回顾上节课学习内容,为本节课的`学习做好铺垫。

  讲授新课

  1.学一学:

  自学课本47页长方形框上面的内容。然后回答下列问题:

  (1)找出△ABC(如图)的外角,以及与这个外角相邻的内角、不相邻的内角。(2)外角与其相邻的内角之间的关系呢?

  (3)外角与其不相邻的内角又会有什么关系

  呢?这将是我们这节课要探索的主要内容。

  设计意图:以学生自学的形式,来掌握与本节课相关的几个基本概念,并通过问题(3)进行设疑,引出这节课的重点内容。

七年级数学下册教案2

  教学过程

  一、目标展示

  二、情景导入。

  装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

  要解决这个问题,就要弄清楚平行的判定。

  三、直线平行的条件

  以前我们学过用直尺和三角尺画平行线,如图(课本P13图5、2—5)在三角板移动的过程中,什么没有变?

  三角板经过点P的边与靠在直尺上的边所成的角没有变。

  ∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

  简单地说:同位角相等,两条直线平行。

  符号语言:∵∠1=∠2∴AB∥CD、

  如图(课本P145、2—7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

  用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行。”,可知这样画出的就是平行线。

  学习目标一:了解平行线的概念、平面内两条直线的`两种位置关系。

  题组一:

  1、叫做平行线。

  如图:a与b互相平行,记作,a。

  2、在同一平面内,两条直线的位置关系b只有与两种。

  3、下列生活实例中:

  (1)交通道路上的斑马线;

  (2)天上的彩虹;

  (3)阅兵队的纵队;

  (4)百米跑道线,属于平行线的有。

  学习目标二:掌握两个平行公理;会用三角尺和直尺过已知直线外一点画这条直线的平行线。

  题组二:

  4、通过画图和观察,可得两个平行公理:

  ①、经过点,一条直线平行于已知直线;

  ②、如果两条直线都与第三条直线平行,那么这两条直线,符号表达式:若b∥a,c∥a,则。

  5、在同一平面内直线a与b满足下列条件,写出其对应的位置关系:

  ①、a与b没有公共点,则a与b;

  ②、a与b有且只有一个公共点,则a与b;

  ③、 a与b有两个公共点,则a与b;

  6、过一点画已知直线的平行线有()

  A、有且只有一条;B、有两条;C、不存在;D、不存在或只有一条

  教学设计

  1、落实教学常规,践行学校《教师日常教学行为要求》。

  2、优化教学策略,老师要真正尊重学生的学习主体地位,提升课堂教学的有效性。提倡“学先教后”,让学生“先看、先想、先说、先做”,老师依学定教,点拔引领,让学生在不断的“思考、交流、展示、应用”中内悟知识。提倡“当堂训练”,在教学设计中,要将运用知识解决问题形成能力的环节,当堂落实。力争当堂完成“双基”任务。

七年级数学下册教案3

  一、教材内容分析

  相似变换是图形的一种基本变换,通过学生所熟悉的实际生活的现象,认识相似图形,了解相似变换,进而探索相似变换的一些基本性质;并能认识相似变换的现实生活中的一些简单应用,为今后进一步学习相似三角形打下基础。教材尽可能多地让学生主动参与,动手操作,拓展学生思考与探索的空间,在直观感知,操作确认的基础上,努力探索图形之间的变化关系。

  二、教学目标

  1、认识相似图形和相似变换。

  2、了解相似变换的基本性质,会按要求作出简单的图形(经过相似变换后的图形)。

  3、结合教材和联系生活实际,培养学生的学习兴趣和热爱生活的情感。

  三、教材的重点和难点

  1、 教材重点:认识相似图形和相似变换,会按要求作出简单的图形(经过变换后的图形)。

  2、 教学难点:了解相似变换的基本性质

  四、〔教学过程〕

  教学过程 设计说明

  一、创设情景、引出课题。

  出示教材中的图形F和F’(运用投影)引导学生观察图形的特点。

  (学生可能会从图形的形状上去描述,例如图形的形状一样;也可能从图形的大小上去描述,例如图形的大小不等。)

  教师要引导学生细致思考,回答要全面。

  二、细致观察、认识特点

  由图形F到F’,哪些改变了,哪些没有改变?

  由学生小组讨论,然后填入下列的两个空格中。

  形状: ;大小 。

  从而引出相似图形及相似变换的概念:

  由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫作相似变换。原图形和经相似变换后得到的像,称它为相似图形,图形的放大和缩小都是相似图形。

  并让学生举一些在现实生活中的相似图形。

  如:按不同比例尺画的'地图、在显微镜下观察到的东西与原东西。

  让学生举一些在观察生活中的相似变换的例子。

  如:相片的放大,缩小等。

  例1:如图,把方格纸中的图形作相似变换,放大到形的2倍,并在同一方格纸上画出变换后所得的像。

  图形

  引导学生结合相似变换的概念及其相似图形的特点来解答这个问题。

  1、 取特殊点的方法,在这个方格纸内确定图形的一些特殊点的对应点的位置。然后将它们按原图形的形状用线段连结起来,就得到所得的像。

  通过上述的练习,你能回答下列问题吗?

  1、 将一个图形作相似变换时,图形中各个角的大小改变吗?请举例说明。

  2、 将一个图形作相似变换时,图形中各条线段的长改变吗?怎样改变?

  由学生小组讨论,并抽代表回答讨论结果。

  然后归纳出图形相似变换的性质。

  图形的相似变换不改变图形中的每一个角的大小,图形中的每条线段都扩大(或缩小)相同的倍数。

  三、应用新知,体验成功

  补充例题:已知,如图从 ABC 到 A’B’C’是一个相似变换,OA’与OA的长度之比为1 :2

  (1) A’B’与AB的长度之比是多少?

  (2) 已知 ABC的周长为16cm,面积为18cm2

  分别求出 A’B’C’ 的周长和面积。

  A

  A’

  B’ O C’

  B C

  (补充此题的目的是进一步应用前面已经形成的概念解决问题,也为今后学习相似形打好基础)

  四、归纳小结,充实结构

  1、 本节课学习了什么内容。

  2、 如何作出按要求相似变换后的平面图形。

  3、 相似变换的基本性质。 通过观察两幅优美的图片,导入新课,既激发了学生的浓厚的学习兴趣,又为新知识作好铺垫。

  通过小组合作讨论的形式,既提高了学生的参与度,又培养了同学间的合作精神。

  通过让学生举一些现实生活中相似的图形及相似变换的例子;既加深了学生对概念的理解,又培养了学生的学习兴趣和热爱生活的情感。

  在引导学生结合相似变换概念及相似图形的特点解决问题后,并提出问题。

  通过小组讨论的形式来共同探讨、解决问题的方法。一是体现了合作学习;二是教会学生学习数学的方法。在具体的问题中,解决后,要善于归纳规律,从而体现从具体到一般的原则。

  归纳出相似变换的性质后,引导学生运用性质解决问题,从而进一步巩固,深化了相似变换,体现了数学是从一般到具体的过程。并为今后进一步学习相似三角形打下基础。

  设计思路:

  1、本设计按“问题情境——数学活动——概括——巩固应用和拓展”的模式呈现教学内容的,这种方式符合学生的认知规律和学习规律,同时也是课堂教学和设计的立足点。

  2、体现了学生动手实践、自主探索、合作学习的数学学习方式,充分调动学生的学习积极性,提高学生的参与度。

  3、首先引导学生从原有的知识经验中,生成新的知识经验,然后运用它解决问题,形成数学能力。

七年级数学下册教案4

  教学目标

  能确定多项式的公因式,熟练运用提公因式法分解因式.

  经历探索提公因式法的过程,培养逆向思维能力.

  让学生通过参与探索过程,培养合作意识和创新精神.

  重点难点

  重点

  公因式的定义以及提公因式法分解因式.

  难点

  准确找出多项式中各项的公因式.

  教学过程

  一、复习回顾

  1. 什么叫做因式分解?与整式乘法有什么联系?

  2. 计算:

  3. 观察上式运算的结果 ,各项所含的因式有什么特点?

  学生观察到各项含有相同的因式m后,教师给出公因式的概念:

  几个式子的公共的因式称为它们的公因式.

  一个多项式如果各项含有公因式,怎样分解因式呢?

  二、探究新知

  根据 的计算结果,你能将 分解因式吗?分解的根据是什么?你能说说分解的具体做法是什么吗?

  学生思考讨论后,教师引导学生分析分解的`根据是乘法分配律,具体的做法是把各项的公因式提到括号外面. 随后给出这种方法的名称.

  如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种把多项式因式分解的方法叫做提公因式法. 用提公因式法分解因式时要把所有的公因式都提出,使剩下的多项式因式里不含公因式.

  三、典例剖析

  例1 把 因式分解.

  教师引导学生观察各项的公因式,并板书分解过程.

  解:

  反思:分解得 对不对,为什么?

  例2把 因式分解.

  教师引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式.

  板书分解过程:

  解:

  例3 把 因式分解.

  引导学生观察各项的公因式,并总结出找公因式的方法:一看各项系数,找出各系数的最大公因数,二看各项的字母因式,找出相同的字母因式,相同的字母取指数最小的作为公因式.

  板书分解过程:

  解:

  四、课堂练习

  基础训练:

  1.说出下列多项式中各项的公因式:

  (1) ; (2) ;

  (3) .

  2. 在下列括号内填写适当的多项式:

  (1) ;(2) .

  3. 把下列多项式因式分解:

  (1) ; (2) ;

  (3) .

  学生解答各题,教师组织学生互相批改. 补充说明,当多项式首项系数是负数时,一般要把负号提出括号.

  五、小结

  请你总结一下如何确定多项式中各项的公因式.

  六、布置作业

  教材P62第1题,第2题的(1)(2)(3).

七年级数学下册教案5

  教学目标:

  知识目标:使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算.

  能力目标:培养学生快速运算的能力.

  情感目标:培养学生耐心细致的学习习惯.

  教学重点与难点:多项式除以单项式的法则是本节的重难点.

  教学过程:

  一、复习提问

  1.计算并回答问题:

  (1)4a3b4c÷2a2b2c;(2)(a2b2c)÷3ab2

  (3)以上的计算是什么运算?能否叙述这种运算法则?

  2.计算并回答问题:

  (1)3x(x2x+1);(2)4a(a2a+2)

  3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.

  说明:希望学生能写出

  2×3=6,(2的3倍是6)

  3×2=6,(3的2倍是6)

  6÷2=3,(6是2的3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.

  二、新课引入

  对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.

  1.法则的推导.

  引例:(8x312x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆运算的.规定,我们可将上式化为4x·(?)=8x312x2+4x

  然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.

  解:(8x312x2+4x)÷4x

  =8x3÷4x12x2÷4x+4x÷4x

  =2x23x+4x.

  思考题:(8x312x2+4x)÷(4x)=?

七年级数学下册教案6

  【知识讲解】

  一、本讲主要学习内容

  1、代数式的意义

  2、列代数式的注意点

  3、代数式值的意义

  其中列代数式是重点,也是难点。

  下面讲述一下这三点知识的主要内容。

  1、代数式的意义

  用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等

  2.列代数式的注意点

  ⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。

  ⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。

  ⑶数字写在字母的前面。

  ⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。

  ⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。

  (6)两个代数式相乘,应该用分数形式表示。

  3.代数式值的意义

  用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

  二、典型例题

  例1 填空

  ①棱长是acm 的正方体的体积是___cm3。

  ②温度由t°c下降2°c后是___°c。

  ③产量由m千克增长10%,就达到___千克。

  ④a和b 的倒数和是___。

  ⑤a和b的和的倒数是___。

  解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

  说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

  ⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

  例2、用代数式表示

  ⑴被4整除得 m的数

  ⑵被2除商为 a余1的数

  ⑶两数的平均数

  ⑷a和b两数的平方差与这两数平方和的商

  ⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的`一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

  ⑺个位数字是8,十位数字是 b 的两位数。

  解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。

  ⑷ ⑸ ⑹ ⑺10b+8

  分析说明:

  ⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

  ⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。

  ⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。

  ⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

  ⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。

  ⑹平均速度=

  所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。

  题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。

  例3说出下列代数式的意义。

  ⑴ 3a+2 ⑵ 3(a+2) (3)

  (4) a- (5)(a-b)2 (6)a2-b2

  分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。

  ①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;

  ②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;

  ③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。

  解:(1)a的3倍与2的和;

  (2)a与2的和的3倍;

  (3)a与b的差除以c的商;

  (4)a与b除以c的差;

  (5)a与b的差的平方;

  (6)a、b的平方差。

  例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。

  解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

  说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。

  【一周一练】

  1、选择题

  (1)下列各式中,属于代数式的有( )个。

  , s= ah, 5× , -y, x-2=y, a-b, 3x>y

  a、2 b、3 c、4 d、5

  (2)下列代数式,书写正确的是( )

  a、2 b、m· n c、 mn d、(m+n)÷2

  (3)用代数式表示“a的 乘以b减去c的积”是( )

  a、 ab-c b、 a(b-c) c、 a( b-c) d、

  (4)用语言叙述代数式 ,表述不正确的是( )

  a、比a的倒数小2的数; b、a与2的差的倒数

  c、1除以a减去2的商 d、比a小2的数的倒数

  2、判断题

  ⑴n除m用代数式可表示成 ( )

  ⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )

  ⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )

  3、填空题

  ⑴每本练习本是0.3元,买a本练习本需__元。

  ⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。

  ⑶被3整除得n 的数是__。

  ⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。

  ⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。

  ⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。

  ⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__

  ⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。

  4.求下列代数式的值。

  ⑴ 其中a=2

  ⑵当 时,求代数式 的值。

  5、填表

  x

  y

  x+y

  x-y

  xy

  5

  15

  6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。

七年级数学下册教案7

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的.1、2、3、

  5.2.2平行线的判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

七年级数学下册教案8

  一、教学目标

  1、知识目标:掌握数轴三要素,会画数轴。

  2、能力目标:能将已知数在数轴上表示,能说出数轴上的点表示的数,知道有理数都可以用数轴上的点表示;

  3、情感目标:向学生渗透数形结合的思想。

  二、教学重难点

  教学重点:数轴的三要素和用数轴上的点表示有理数。

  教学难点:有理数与数轴上点的对应关系。

  三、教法

  主要采用启发式教学,引导学生自主探索去观察、比较、交流。

  四、教学过程

  (一)创设情境激活思维

  1、学生观看钟祥二中相关背景视频

  意图:吸引学生注意力,激发学生自豪感。

  2、联系实际,提出问题。

  问题1:钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  师生活动:学生思考解决问题的方法,学生代表画图演示。

  学生画图后提问:

  1、马路用什么几何图形代表?(直线)

  2、文中相关地点用什么代表?(直线上的点)

  3、学校大门起什么作用?(基准点、参照物)

  4、你是如何确定问题中各地点的位置的?(方向和距离)

  设计意图:“三要素”为定向,用直线、点、方向、距离等几何符号表示实际问题,这是实际问题的第一次数学抽象。

  问题2:上面的问题中,“南”和“北”具有相反意义。我们知道,正数和负数可以表示两种具有相反意义的量,我们能不能直接用数来表示这些地理位置和学校大门的相对位置关系呢?

  师生活动:

  学生思考后回答解决方法,学生代表画图。

  学生画图后提问:

  1.0代表什么?

  2、数的符号的实际意义是什么?

  3.-75表示什么?100表示什么?

  设计意图:继续以三要素为定向,将点用数表示,实现第二次抽象,为定义数轴概念提供直观基础。

  问题3:生活中常见的温度计,你能描述一下它的结构吗?

  设计意图:借助生活中的常用工具,说明正数和负数的作用,引导学生用三要素表达,为定义数轴的概念提供直观基础。

  问题4:你能说说上述2个实例的共同点吗?

  设计意图:进一步明确“三要素”的意义,体会“用点表示数”和“用数表示点的思想方法,为定义数轴概念提供又一个直观基础。

  (二)自主学习探究新知

  学生活动:带着以下问题自学课本第8页:

  1、什么样的直线叫数轴?它具备什么条件。

  2、如何画数轴?

  3、根据上述实例的经验,“原点”起什么作用?

  4、你是怎么理解“选取适当的长度为单位长度”的?

  师生活动:

  学生自学完后,请代表上黑板画一条数轴,讲解画数轴的一般步骤。

  设计意图:明确画数轴的步骤,使数轴的三要素在同学们的头脑中留下更深刻的印象,同时得到数轴的定义。

  至此,学生已会画数轴,师生共同归纳总结(板书)

  ①数轴的定义。

  ②数轴三要素。

  练习:媒体展示)

  1、判断下列图形是否是数轴。

  2、口答:数轴上各点表示的数。

  3、在数轴上描出下列各点:1.5,-2,-2.5,2,2.5,0,-1.5。

  (三)小组合作交流展示

  问题:观察数轴上的点,你有什么发现?

  数轴上表示3的点在原点的哪一侧?与原点的距离是多少个单位长度?表示-2的点在原点的哪一侧?与原点的距离是多少个单位长度?设a是一个正数,对表示a的点和-a的点进行同样的讨论。

  设计意图:通过从特殊到一般的方法归纳出数轴上不同位置点的特点,培养学生的抽象概括能力。

  (四)归纳总结反思提高

  师生共同回顾本节课所学主要内容,回答以下问题:

  1、什么是数轴?

  2、数轴的“三要素”各指什么?

  3、数轴的画法。

  设计意图:梳理本节课内容,掌握本节课的核心――数轴“三要素”。

  (五)目标检测设计

  1、下列命题正确的是()

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2、画数轴,在数轴上标出-5和+5之间的所有整数,列举到原点的距离小于3的所有整数。

  3、画数轴,表示下列有理数数的'点中,观察数轴,在原点左边的点有XXXXXXX个。4.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是XXXXXXXX。

  五、板书

  1、数轴的定义。

  2、数轴的三要素(图)。

  3、数轴的画法。

  4、性质。

  六、课后反思

  附:活动单

  活动一:画一画

  钟祥二中学校大门南75米是钟祥市统计局,100米是中国建设银行,在她北75米是海韵艺术学校,200米处是中百仓储,请同学们画图表示这一情景。

  思考:如何简明地用数表示这些地理位置与学校大门的相对位置关系?

  活动二:读一读

  带着以下问题阅读教科书P8页:

  1、什么样的直线叫数轴?

  定义:规定了XXXXXXXXX、XXXXXXXX、XXXXXXXXX的直线叫数轴。

  数轴的三要素:XXXXXXXXX、XXXXXXXXX、XXXXXXXXXX。

  2、画数轴的步骤是什么?

  3、“原点”起什么作用?XXXXXXXXXX

  4、你是怎么理解“选取适当的长度为单位长度”的?

  练习:

  1、画一条数轴

  2、在你画好的数轴上表示下列有理数:1.5,-2,-2.5,2,2.5,0,-1.5

  活动三:议一议

  小组讨论:观察你所画的数轴上的点,你有什么发现?

  归纳:一般地,设a是一个正数,则数轴上表示数a在原点的XXXX边,与原点的距离是XXXX个单位长度;表示数-a的点在原点的XXXX边,与原点的距离是XXXX个单位长度。

  练习:

  1、数轴上表示-3的点在原点的XXXXXXX侧,距原点的距离是XXXXXX;表示6的点在原点的XXXXXX侧,距原点的距离是XXXXXX;两点之间的距离为XXXXXXX个单位长度。

  2、距离原点距离为5个单位的点表示的数是XXXXXXXX。

  3、在数轴上,把表示3的点沿着数轴负方向移动5个单位长度,到达点B,则点B表示的数是XXXXXXXX。

  附:目标检测

  1、下列命题正确的是()

  A.数轴上的点都表示整数。

  B.数轴上表示4与-4的点分别在原点的两侧,并且到原点的距离都等于4个单位长度。

  C.数轴包括原点与正方向两个要素。

  D.数轴上的点只能表示正数和零。

  2、画数轴,在数轴上标出-5和+5之间的所有整数。列举到原点的距离小于3的所有整数。

  3、画数轴,观察数轴,在原点左边的点有XXXXXXX个。

  4、在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是XXXXXXXX。

七年级数学下册教案9

  教学过程(师生活动):

  提出问题:

  某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?

  你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.

  探究新知:

  1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.

  2、例题.

  解下列不等式,并在数轴上表示解集:

  (1)x≤50(2)-4x3

  (3)7-3x≤10(4)2x-33x+1

  分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.

  3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?

  让学生展开充分讨论,体会不等式和方程的内在联系与不同之处.

  巩固新知:

  1、解下列不等式,并在数轴上表示解集:

  (1)(2)-8x10

  2、用不等式表示下列语句并写出解集:

  (1)x的3倍大于或等于1;

  (2)y的的`差不大于-2.

  解决问题:

  测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?

  总结归纳:

  围绕以下几个问题:

  1、这节课的主要内容是什么?

  2、通过学习,我取得了哪些收获?

  3、还有哪些问题需要注意?

  让学生自己归纳,教师仅做必要的补充和点拨?

七年级数学下册教案10

  一.教学目标:

  1.认知目标:

  1)了解二元一次方程组的概念。

  2)理解二元一次方程组的解的概念。

  3)会用列表尝试的方法找二元一次方程组的解。

  2.能力目标:

  1)渗透把实际问题抽象成数学模型的思想。

  2)通过尝试求解,培养学生的探索能力。

  3.情感目标:

  1)培养学生细致,认真的学习习惯。

  2)在积极的教学评价中,促进师生的情感交流。

  二.教学重难点

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  三.教学过程

  (一)创设情景,引入课题

  1、本班共有40人,请问能确定男女生各几人吗?为什么?

  (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)

  (2)这是什么方程?根据什么?

  2、男生比女生多了2人。设男生x人,女生y人。方程如何表示?x,y的值是多少?

  3、本班男生比女生多2人且男女生共40人。设该班男生x人,女生y人。方程如何表示?

  两个方程中的x表示什么?类似的两个方程中的y都表示?

  像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

  4、点明课题:二元一次方程组。

  (设计意图:从学生身边取数据,让他们感受到生活中处处有数学)

  (二)探究新知,练习巩固

  1.二元一次方程组的概念

  (1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

  [让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]

  (2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。

  ①x2+y=0 ②y=2x+4 ③y+?x ④x=2/y+1 ⑤(x+y)/3-2=0

  (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。)

  2.二元一次方程组的解的概念

  (1)由学生给出引例的答案,教师指出这就是此方程组的解。

  (2)练习:把下列各组数的题序填入图中适当的位置:

  方程x+y=0的.解,方程2x+3y=2的解,方程组的解。

  (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

  (4)练习:已知是方程组的解,求a,b的值。

  (三)合作探索,尝试求解

  现在我们一起来探索如何寻找方程组的解呢?

  1、已知两个整数x,y,试找出方程组的解。

  学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

  一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

  (设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验)

  2、据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

  (1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

  由学生独立完成,并分析讲解。

  3、例已知方程3X+2Y=10

  ⑴当X=2时,求所对应的Y的值;

  ⑵取一个你自己喜欢的数作为X的值,求所对应的Y的值;

  ⑶用含X的代数式表示Y;

  ⑷用含Y的代数式表示X;

  ⑸当X=-2,0时,所对应的Y值是多少;

  (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。)

  (四)课堂小结,布置作业

  1、这节课学哪些知识和方法?

  2、你还有什么问题或想法需要和大家交流?

  3、教材P82

  教学设计说明:

  1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

  2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

  3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

七年级数学下册教案11

  情景设置:

  同学们,现在我们家里都有电视机,大家都知道电视机的横切面是个长方形,下面我们一起来研究这样一个问题:将几台型号相同的电视机叠放在一起组成“电视墙” ,计算图中这些电视墙的面积。

  (每一个小长方形的长为a,宽为b)

  我们可以看到,“电视墙”是一个长方形,由9个小长方形组成。

  从整体上看,“电视墙”的'面积为长方形的长与宽的积:3a·3b;

  从局部看,“电视墙”中的每个小长方形的面积都是ab,“电视墙”的面积是这些小长方形的面积和:9ab。

  于是,我们有:3a·3b = 9ab.

  新课讲解:

  1.探索研究

  一起来观察上面这个等式:3a·3b = 9ab,根据上学期的学习,同学们知道,3a、3b都是单项式,9ab也是个单项式,那么计算时是否有一定的规律性?4ab·5b这两个单项式的积是20ab吗?

  请学生回答,教师加以总结归纳:

  两个单项式3a与3b相乘,只要把两个单项式的系数3与3相乘,再把这两个单项式的字母a与b相乘,即3a·3b =(3×3)·(a·b)= 9ab.

  4ab·5b这两个单项式的积是20ab。

  同学们回答的太棒了,两个单项式相乘,实际上是运用了乘法交换律与结合律。由此,我们可以得到单项式乘单项式法则: 单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式。

  2.例题

  计算:(1)a·(6ab);

  (2)(2x)·(-3xy).

  解: (1)a·(6ab)

  = (×6)·(a·a)·b

  = 2ab;(教师规范格式)

  (2)(2x)·(-3xy).

  = 8x·(-3xy)

  = 【8×(-3)】(x·x)y

  = -24xy.

七年级数学下册教案12

  教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.

  重点:探索两直线平行的条件

  难点:理解“同位角相等,两条直线平行”

  教学过程

  一、情景导入.

  装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

  要解决这个问题,就要弄清楚平行的判定。

  二、直线平行的条件

  以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?

  三角板经过点P的`边与靠在直尺上的边所成的角没有变。

  简化图5.2-5,得图.

  图3

  ∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

  简单地说:同位角相等,两条直线平行.

  符号语言:∵∠1=∠2∴AB∥CD.

  如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

  用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。

  如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=1800,能得出a∥b吗?

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

  简单地说:内错角相等,两直线平行.

  符号语言:∵∠2=∠3∴a∥b.

  (2)∵∠4+∠2=180°,∠4+∠1=180°(已知)

  ∴∠2=∠1(同角的补角相等)

  ∴a∥b.(同位角相等,两条直线平行)

  你能用文字语言概括上面的结论吗?

  两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.

  简单地说:同旁内角互补,两直线平行.

  符号语言:∵∠4+∠2=180°∴a∥b.

  四、课堂练习

  1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?

  2、课本P162题。

  五、课堂小结:怎样判断两条直线平行?

  六、布置作业::P16、1、2题;P174、5、6。

  平行线,三角板,同位角,数学,教学

七年级数学下册教案13

  教学目标

  1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。

  2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质

  过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。

  3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的`密切联系,

  增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。

  教学重点

  同底数幂乘法的运算性质,并能解决一些实际问题。

  教学过程

  一、复习回顾

  活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:

  二、情境引入

  活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。

  三、讲授新课

  1.利用乘方的意义,提问学生,引出法则:计算103×102.

  解:103×102=(10×10×10)×(10×10)(幂的意义)

  =10×10×10×10×10(乘法的结合律)=105.

  2.引导学生建立幂的运算法则:

  将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.

  用字母m,n表示正整数,则有即am·an=am+n.

  3.引导学生剖析法则

  (1)等号左边是什么运算?(2)等号两边的底数有什么关系?

  (3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么

  (5)当三个以上同底数幂相乘时,上述法则是否成立?

  要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

  四、应用提高

  活动内容:

  1.完成课本“想一想”:a?a?a等于什么?

  2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。

  3.独立处理例2,从实际情境中学会处理问题的方法。

  4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp

  五、拓展延伸

  活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73

  (5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542

  2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3

  (11)-a·(-a)3(12)(-a)2·(-a)3·(-a)

  六、课堂小结

  活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。

  七、布置作业

  1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。

  2.完成课本习题1.4中所有习题。

七年级数学下册教案14

  【教学目标】

  1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程。

  2.发展学生的形象思维能力,和数形结合的意识。

  3.用坐标表示平移体现了平面直角坐标系在数学中的'应用。

  4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化。

  重点:掌握坐标变化与图形平移的关系。

  难点:利用坐标变化与图形平移的关系解决实际问题。

  【教学过程】

  一、引言

  上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用。

  二、新

  展示问题:教材第75页图.

  (1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位

  长度呢?

  (2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

  (3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

  规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(

  ,));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(,)).

  教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐

  标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

  例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).

  (1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点

  ,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?

  (2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点

  ,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?

  引导学生动手操作,按要求画出图形后,解答此例题.

  解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向

  左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC

  向下平移5个单位长度得到.

  课本P77思考题:由学生动手画图并解答.

  归纳:

  三、练习:教材第78页练习;习题7.2中第1、2、4题.

  四、作业布置第78页第3题.

七年级数学下册教案15

  情景引入→探究新知→知识应用→知识拓展→归纳小结,布置作业→探寻点的坐标变化与点平移规律

  (一)情境引入

  本环节主要是创设情境,在实际问题中引出本节课题.

  【设计意图】

  引导学生发现:可以借助游戏创设情境,导入新课.

  (二)探究新知

  1、利用丹凤地图的实际情境探索点的平移与坐标变化的规律.

  2、如图,已知A(–2,–3),根据下列条件,在相应的坐标系中分别画出平移后的点,写出它们的坐标,并观察平移前后点的坐标变化.

  (1)将点A向右平移5个单位长度,得到点A1;

  (2)将点A向左平移2个单位长度,得到点A2;

  (3)将点A向上平移6个单位长度,得到点A3;

  (4)将点A向下平移4个单位长度,得到点A4;

  教学过程中注重让学生明确:将哪个点沿着什么方向,平移几个单位后,得到的是哪个点.

  3、在此基础上可以归纳出:点的左右平移点的横坐标变化,纵坐标不变

  点的上下平移点的横坐标不变,纵坐标变化

  4、点的平移的'应用.(见课件)

  5、比一比看谁反应快

  (1)点A(–4,2)先向右平移3个单位长度后得到点B,求点B的坐标.

  (2)点A(–4,2)先向左平移2个单位长度后得到点B,求点B的坐标.

  (3)点A(–4,2)先向下平移4个单位长度后得到点B,求点B的坐标.

  (4)点A(–4,2)先向上平移3个单位长度后得到点B,求点B的坐标.

  6、逆向思维:由点的变化探索点的方向和距离

  (1)如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向___平移___个单位长度得到点B;将点B向___平移___个单位长度得到点A。

  (2)如果P、Q的坐标分别为P(-3,-5),Q(2,-5),将点P向___平移___个单位长度得到点Q;将点Q向___平移___个单位长度得到点P。

  (3)点A′(6,3)是由点A(-2,3)经过__________________得到的.点B(4,3)向______________得到B′(4,5)

  7、应用平移解决简单问题在平面直角坐标系中,有一点(1,3),要使它平移到点(-2,-2),应怎样平移?说出平移的路线。

【七年级数学下册教案】相关文章:

七年级数学下册教案10-13

人教版七年级数学下册教案01-30

七年级数学下册教案【荐】03-19

【精】七年级数学下册教案03-19

七年级数学下册教案【推荐】03-19

七年级数学下册优秀教案02-15

七年级下册数学教学教案09-29

七年级下册数学教案07-21

「初一教案」七年级数学下册教案12-17

小学数学下册教案11-15