《方程》教案

时间:2023-01-27 16:49:20 教案 我要投稿

《方程》教案

  作为一名辛苦耕耘的教育工作者,时常需要用到教案,编写教案助于积累教学经验,不断提高教学质量。那么教案应该怎么写才合适呢?以下是小编帮大家整理的《方程》教案,仅供参考,大家一起来看看吧。

《方程》教案

《方程》教案1

  题:稍复杂的方程(一)课型:新授课课时安排:1课时

  教学目标:

  1、能根据等式的基本性质解稍复杂的方程.初步学会列方程解决一些简单的实际问题。

  2、培养抽象概括能力,发展思维的灵活性.培养根据具体情况,灵活选择算法的意识和能力。

  3、感受数学与现实生活的联系,培养数学应用意识与规范书写和自觉检验的习惯。

  4、在教学中渗透环保教育。

  教学重点:用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的问题。

  教学难点:用方程解决问题的思路和数量关系。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据下面叙述说说相等关系,并写出方程。

  (1)公鸡x只,母鸡30只,是公鸡只数的2倍。

  (2)公鸡有x只,母鸡有30只,比公鸡只数的2倍少6只。

  2、足球知识引出准备题:

  准备题:一个足球上有12块黑色皮,白色皮比黑色皮的2倍少4块,共有多少块白色皮?

  理解题意后,引导学生画出线段图,并就学生找出数量关系,独立完成计算。

  二、探究新知:

  1、引入和出示例1:足球上黑色的皮都是五边形,白色的皮都是六边形的。白色皮共有20块,白色皮比黑色皮的2倍少4块,共有多少块黑色皮?

  让学生比较复习题与例1的相同点和不同点。

  2、引导学生把准备题的线段图改为例1的线段图,引导学生进一步理解题意和找出题目中数量关系。

  3、教师:哪个数量是未知的'?怎样设未知数X呢?请同学们任意选择一个你喜欢的关系式尝试列方程解答。

  4、反馈学生的尝试完成情况,引导学生列方程完成例1(重点在于解方程方法的指导)。

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20

  2x=24

  2x÷2=24÷2

  x=12

  5、引导学生口头验算。

  6、引导学生总结列方程解决问题的步骤:

  ①弄清题意,找出未知数,用x表示。

  ②分析、找出数量之间的等量关系,列方程。

  ③解方程。

  ④检验,写出答案。

  三、练习巩固:

  1、完成课本66页练习十二第1题:解方程。

  3x+6=182x-7.5=8.5

  16+8x=404x-3×9=29

  2、找出数量关系,只列方程不计算。(课件出示)

  (1)图书室有文艺书180本,比科技书的2倍多20本,科技书x本。

  (2)养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡x只。

  (3)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只,去年养兔x只。

  3、试一试,我能行:列方程解决问题。

  (1)共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒?

  (2)北京故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。天安门广场的面积是多少万平方米?

  (3)猎豹是世界上跑得最快的动物,能达到每小时110km,比大象的2倍还多30km。大象最快能达到每小时多少km?

  (4)世界上最大的洲是亚洲,最小的洲是大洋州,亚洲的面积比大洋州面积的4倍还多812万平方千米。大洋州的面积是多少万平方千米?

  四、全课总结:

  教师:今天这节课你学到了什么知识?

  板书设计:

  稍复杂的方程

  解:设共有x块黑色皮。

  黑色皮的块数×2-白色皮的块数=4

  2x一20=4

  2x一20+20=4+20(把2x看作一个整体。)

  2x=24

  2x÷2=24÷2

  x=12

  答:共有12块黑色皮。

  稍复杂方程(二)

  课题:稍复杂方程(二)课型:新授课课时安排:1课时

  教学目标:

  1、知识与技能:结合具体的情景掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。

  2、过程与方法:通过学习两积之和的数量关系,来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。

  3、情感、态度与价值观:让学生经历算法多样化的过程,利用迁移类推的方法在解决问题的过程中体会数学和现实生活的密切联系。在教学中渗透环保教育。

  教学重点:正确地寻找数量之间的相等关系,并能根据数量关系列方程解题。

  教学难点:正确地寻找数量之间的相等关系列出方程,并会解稍复杂的方程。

  教学准备:教学课件。

  教学流程:

  一、复习铺垫:

  1、根据问题说出求问题的数量关系。

  (1)足球和篮球一共有多少个?

  (2)每枝钢笔比每枝铅笔贵多少少?

  (3)王师傅每小时比李师傅每小时少加工零件多少个?

《方程》教案2

  教学目标

  1、学会根据一个数的几分之几是多少用乘法来列方程解分数除法的文字题,能正确地解分数方程。

  2、认识分数除法里商的大小规律和分数乘法里积的大小规律,培养学生的计算能力。

  教学重难点

  能正确地解分数方程,并

  认识分数除法里商的大小规律和分数乘法里积的大小规律,培养学生的.计算能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  六、 复习铺垫

  七、教学新课

  八、巩固练习

  九、课堂小结

  十、作业

  1、口答列式

  (1)24的是多少?

  (2)的是多少?

  问:为什么用乘法?

  2、引入新课

  这节课,我们就根据求一个数的几分之几是多少可以列成乘法算式的知识来学习解分数方程。

  问:这道题已知什么?要求什么?你能否用一个数量关系表示这句话的意思?

  1、做练一练

  指出:由于一个数的几分之几是多少要用乘法式子来表示,因此,按照题意就可以设这个数为X,列出方程来解答。

  2、做练习八第13题

  问:观察前面两列,你们发现了什么?

  指出:在乘法里,一个数乘的数小于1,积小于这一个数;一个数乘的数大于1,积大于这一个数。在除法里,除数小于1,商大于被除数;除数大于1,商小于被除数。

  这节课学会了什么?

  练习八11、12

  板书:

  一个数=

  课后感受

  本节课内容较简单,学生们对这一知识有一定的基础,所以本节课基本上是放手让学生自己做,自己讨论发现规律.整个课堂的学习氛围不错.

《方程》教案3

  一、复习引入

  1.已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值.

  2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?

  3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?

  二、探索新知

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  x2-2x=0

  x2+3x-4=0

  x2-5x+6=0

  观察上面的表格,你能得到什么结论?

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的.两根x1,x2与系数p,q之间有什么关系?

  (2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?

  解下列方程,并填写表格:

  方程 x1 x2 x1+x2 x1?x2

  2x2-7x-4=0

  3x2+2x-5=0

  5x2-17x+6=0

  小结:根与系数关系:

  (1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1?x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)

  (2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.

  即:对于方程 ax2+bx+c=0(a≠0)

  ∵a≠0,∴x2+bax+ca=0

  ∴x1+x2=-ba,x1?x2=ca

  (可以利用求根公式给出证明)

  例1 不解方程,写出下列方程的两根和与两根积:

  (1)x2-3x-1=0 (2)2x2+3x-5=0

  (3)13x2-2x=0 (4)2x2+6x=3

  (5)x2-1=0 (6)x2-2x+1=0

  例2 不解方程,检验下列方程的解是否正确?

  (1)x2-22x+1=0 (x1=2+1,x2=2-1)

  (2)2x2-3x-8=0 (x1=7+734,x2=5-734)

  例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)

  例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.

  变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;

  变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.

  三、课堂小结

  1.根与系数的关系.

  2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.

  四、作业布置

  1.不解方程,写出下列方程的两根和与两根积.

  (1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0

  (4)3x2+x+1=0

  2.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.

  3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值

《方程》教案4

  ㈠课时目标

  1.掌握圆的一般式方程及其各系数的几何特征。

  2.待定系数法之应用。

  ㈡问题导学

  问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。 —2ax—2by+ =0

  问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?

  ① ; ② 1

  ③ 0; ④ —2x+4y+4=0

  ⑤ —2x+4y+5=0; ⑥ —2x+4y+6=0

  ㈢教学过程

  [情景设置]

  把圆的标准方程 展开得 —2ax—2by+ =0

  可见,任何一个圆的方程都可以写成下面的形式:

  +Dx+Ey+F=0 ①

  提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?

  [探索研究]

  将①配方得 : ( ) ②

  将方程 ②与圆的标准方程对照。

  ⑴当 >0时, 方程 ②表示圆心在 (— ),半径为 的圆。

  ⑵当 =0时,方程①只表示一个点(— )。

  ⑶当 <0时, 方程①无实数解,因此它不表示任何图形。

  结论: 当 >0时, 方程 ①表示一个圆, 方程 ①叫做圆的一般方程。

  圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:

  ⑴ 和 的系数相同,不等于0;

  ⑵没有xy这样的二次项。

  以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件

  [知识应用与解题研究]

  [例1] 求下列各圆的半径和圆心坐标。

  ⑴ —6x=0; ⑵ +2by=0(b≠0)

  [例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。

  分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。

  [例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为 的点的轨迹,求此曲线的方程,并画出曲线。

  分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。

  反思研究:到O(0,0),A(1,1)的.距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。

  ㈣提炼总结

  1.圆的一般方程: +Dx+Ey+F=0 ( >0)。

  2.二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件是:A=C≠0且B=0。

  3.圆的方程两种形式的选择:与圆心半径有直接关系时用标准式,无直接关系选一般式。

  4.两圆的位置关系(相交、相离、相切、内含)。

  ㈤布置作业

  1.直线l过点P(3,0)且与圆 —8x—2y+12=0截得的弦最短,则直线l的方程为:

  2.求下列各圆的圆心、半径并画出它们的图形。

  ⑴ —2x—5=0; ⑵ +2x—4y—4=0

  3.经过两圆 +6x—4=0和 +6y—28=0的交点,并且圆心在直线x—y—4=0上的圆的方程。

《方程》教案5

  教学内容:

  义务教育人教版数学五年级上册67页内容。

  教学目标:

  知识目标:

  1、通过演示操作理解天平平衡的原理。

  2、初步理解方程的解和解方程的含义。

  3、会检验一个具体的值是不是方程的解,掌握检验的格式。

  能力目标:

  1、提高学生的比较、分析的能力;

  2、培养学生的合作交流的意识。

  情感目标:

  1、感受方程与现实生活的联系。

  2、愿意与别人合作交流。

  教学重点:

  理解方程的解和解方程的含义,会检验方程的解。

  教学难点:

  利用天平平衡的原理来检验方程的解。

  关键:

  天平与方程的联系。

  教具:

  课件

  教学过程:

  一、游戏铺垫,引出课题(出示课件)

  师:明明周末在超市玩起了称糖果的.称,我们一起合作使称保持平衡!

  师:同学们反映真敏捷,能通过观察马上想出使天平保持平衡的策略。

  生:从中你有什么想说的?或者你联想到了什么?

  生:只要两边都拿掉或增加相同数量的糖果,就能保持平衡;让我想到了等式的性质(全班一起口答:等式两边加上或减去同一个数,左右两边任然相等;等式两边乘同一个数,或除以同一个部位0的数,左右两边任然相等)(板书“等式性质”)

  师过渡:是的,知识就是这样被有心人所发现的。

  二、探究新知

  师:这里有个纸箱里面装着一些足球,你猜会有几个呢?(课件逐步出示)

  再给你点信息,这幅图谁能用一个方程来表示。

  生列方程,并说说你是怎么想的。

  1、解方程

  师:在这个方程中,x的值是多少呢?(学生思考,小范围交流)

  汇报预设:①因为9-3=6②因为6+3=9所以x的值为6所以x的值为6(多少)

  师引导:当然,我知道这么简单的问题是难不住大家的,但是我们的思考不能停止,从今天开始我们将学习怎样利用天平保持平衡的原理来寻求x的值,这种思考的方法到初中遇上更加复杂的方程时仍然会用到。

  师:现在我们就将X+3=9这个方程转换到天平上来?(黑板贴图)

  师:球在天平不好摆,我们可以用方块来代替它。

  自主尝试:看着天平,如何去寻求x的值?

  请用笔记录下你的想法。

  组织好语言上台汇报你的想法。

  教师统一书写:

  师介绍:求解x的过程我们在最前面写“解”字。(板书写“解”字)

  追问:两边都拿掉3个,天平还能平衡吗,两边还相等吗?(贴图展示)

  为什么要减3个?(可以方程的一边只剩x,就可以知道x=?)(再叫2-3个)

  生活动:我们看着板书来说说是怎么成功得到x的值,每一步的依据是什么。(2-3个)

  你学会了吗?赶紧和你的同桌说一说方法。

  2、强调格式:

  师:这个求解的过程和以前递等式有什么区别或相同的地方?

  生:等号对齐;等号两边都要写;最前面要写解字

  3、练习一:

  师:按照大家借助天平运用等式性质的想法,就是说当我们遇到方程33+x=65你也能求解?解:33+x○()=65○()

  x=()那么x-4.5=10呢?(学生独立尝试,一个学生板演)

  生完成填空和独立节解方程。(课件中校对)

  4、介绍概念:像这些(课件中圈出来),使方程左右两边相等的未知数的值,

  叫“方程的解”;举例:x=3是方程x+3=9的解??

  而求方程的解的过程,我们叫“解方程”(板书)

  这些知识在数中有介绍,我们找到划一划读一

  读。(看书)

  两个词都有解字,有什么区别呢?(“方程的解”中的“解”是名词,它指能使方程左右两边相等的未知数的值,是一个数值;“解方程”中的“解”是动词,它指求方程解的过程,是一个演算的过程.)

  5、验算:

  师:刚才我们解出来x的值是不是正确的答案呢?你打算怎么检验?

  生:放进去计算一下。

  师:大家心里都有了想法,但方程的检验也是有一定格式的,下面我们到书本中来学习一下。生自学书本后回答:根据等式性质,把x=6代入方程,看方程左右两边是否相等。生活动:尝试验算一个方程的解,另一个放心里代入验算。

  6、小结

  师:你学会了吗?你会解怎样的方程了?(含加法或减法)

  解方程的步骤?(结合板书和课件)

  生:解方程的步骤:

  a)先写“解:”。

  b)方程左右两边同时加或减一个相同的数,使方程左边只剩X,方程左右两边相等。 c)求出X的值。

  d)验算。

  四、巩固练习

  练习二:解方程比赛(书P67)

  (1)100+x=250(2)x+12=31※(3) x -63=36

  练习三:我是小法官:1.X=10是方程5+x=15的解()。

  2.X=10是方程x-5=15的解()。

  3. X=3是方程5x=15的解()。

  4.下面两位同学谁对谁错?

  X-1.2=4 X+2.4=4.6

  解:X-1.2+1.2=4-1.2=4.6-2.4

  X=2.8 =2.2

  师:谈谈你觉得解方程过程中有什么要提醒大家注意的?

  生:注意等式性质的正确运用!注意解方程时的格式!

  练习四:看图列方程并求解

  五、课堂总结

  师:我们这节课学习了什么?和大家来分享下!

  板书设计:

  解方程(含有加法或减法)等式性质解:X+3-3 =9-解方程(过程)学生板演天平贴图

  X=6 ?解(值)检验:方程左边=x+3

  =6+3

  =9

  =方程右边

  所以,x=6是方程的解。

《方程》教案6

  教学目标:

  1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

  2、理解什么是一元二次方程及一元二次方程的一般形式。

  3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  教学重点

  1、一元二次方程及其它有关的概念。

  2、利用实际问题建立一元二次方程的数学模型。

  教学难点

  1、建立一元二次方程实际问题的数学模型.

  2、把一元二次方程化为一般形式

  教学方法:指导自学,自主探究

  课时:第一课时

  教学过程:

  (学生通过导学提纲,了解本节课自己应该掌握的内容)

  一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

  1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

  2、你发现上述三个方程有什么共同特点?

  你能把这些特点用一个方程概括出来吗?

  3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

  你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

  二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

  1、下列哪些是一元二次方程?哪些不是?

  ①②③

  ④x2+2x-3=1+x2 ⑤ax2+bx+c=0

  2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

  3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

  4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?

  5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

  三、反思:(学生,进一步加深本节课所学内容)

  这节课你学到了什么?

  四、自查自省:(通过当堂小测,及时发现问题,及时应对)

  1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个

  (1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

  3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

  作业:必做题:习题7.1

  选做题:(挑战自我)p41随堂练习

  1、已知关于的方程是一元二次方程,则为何值?

  2、.当m为何值时,方程(m+1)x+1+27mx+5=0是关x于的一元二次方程?

  3、关于的一元二次方程(m-1)x2+x+m2-1=0有一根为,则的值多少?

  4、某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种(如图),根据两种设计各列出方程,求图中道路的宽分别是多少,使图(1),(2)的草坪面积为540米2.?

  (1)(2)

  板书设计:一元二次方程

  定义:一个未知数整式方程可以化为

  一般形式ax2+bx+c=0(a、b、c为常数,a≠0)

  二次项一次项常数项

  系数为a系数为b

  教学反思

  这次我参加了区里组织的优质

  课比赛,这次的优质课采用市里要求的1/3模式,这对于我们来说具有一定的挑战性。所谓“1/3模式”,就是把课堂教学时间大致分为3个部分,1/3的时间个人自主学习,1/3的时间小组合作学习,1/3的'时间全班交流讨论。在1/3模式中,整个教学过程由教师和学生共同参与,每个环节1/3的时间只是大致的划分,可根据学习内容灵活安排。这就对教师提出了较高的要求。

  首先要准备好学案。学案就是学生学习的依据。在学案里,教师要提出明确的学习要求。学习要求可包括以下方面:完成学习任务的时间、学习内容的范围、完成学习任务所要达到的程度、自主学习成果展现的形式等。这就要求教师要提前考虑周全,对于学生学习的要求要一次性提出,内容上有梯度。学生自主学习时,教师要深入学生当中,观察学生的学习状况,检查学习任务完成的情况,有针对性的指导和帮助教师对自主学习方法和途径的指导要适度,既要满足学生完成学习任务的需要,又不能挤占学生自主探究的空间

  其次,学习氛围是合作学习成功的关键之一,教师要营造安全的心理环境、充裕的时空环境、热情的帮助环境、真诚的激励环境,只就要求教师在语言上也要有较高水平,会发动学生,会调动学生的积极性,让课堂气氛活跃起来,让学生充分发挥自己的水平。

  再是,由于课堂上主要是以学生为主。这就要求教师尽量少讲,要充当好组织者、引导者、倾听者的角色,不要急于发表自己的观点,只要学生能讲的教师就不要讲,要避免因为教师呈现自己的观点而打破学生的讨论。学生说完的东西,如果没有问题,教师就不要重复。教师对学习内容要点的讲解要有的放矢,能起到画龙点睛的作用。要在学生原有的水平上进行提升,有助于学生加深对知识的理解。

  我们只有在教学中不断的学习,不断的改进自己,才能保证我们的课堂很精彩,是名副其实的优质课。

《方程》教案7

  教学目标

  1、知识与技能:让学生掌握形如ax±bx=c的方程,掌握设未知数的方法,并会正确地解答。

  2、过程与方法:让学生通过乘法分配律来解答形如ax±bx=c的方程。

  3、情感、态度与价值观:通过观察、分析、比较的方法,提高学生逻辑思维能力。

  教学重难点

  教学重点:教会学生用方程解决实际问题。

  教学难点:分析、找出数量间的相等关系,正确列出方程。

  教学过程

  一、复习。

  1、解方程。 4X+5=54 3×2.1+2X=13.4 0.3X÷2=9 4(X+8)=20

  2、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?

  (1)分析:本题有两种什么树?它们的数量关系是什么?

  (2)独立解答。

  二、新授。

  教学例4。地球的表面积为5.1亿平方千米,其中,海洋面积约为陆地面积的2.4倍。地球上的海洋面积和陆地面积分别是多少亿平方千米?

  问题:从图中你得到了哪些数学信息?

  活动要求:读读例题→思考问题→小组讨论→分享展示

  1、分析题目的已知条件和问题。今天的'题目有2个未知数。为了解答方便,通常设一倍数为X。

  2、列方程并解答。

  数量关系:陆地面积+海洋面积=地球表面积

  方法一:解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

  x+2.4x=5.1

  方法二:解:设陆地的面积为x亿平方千米。那么海洋面积为(5.1-x)亿平方千米。

  x+(5.1-x)=5.1

  方法三:解:设海洋面积为x亿平方千米,那么陆地面积为2.4 ÷x亿平方千米。

  (x÷2.4)+ x=5.1

  海洋面积÷陆地面积=2.4

  方法四:解:设陆地面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

  (5.1-x)÷x=2.4 2.4x=5.1-x

  方法五:解:设陆地的面积为x亿平方千米,那么海洋面积为2.4x亿平方千米。

  2.4x÷x=2.4

  解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。X+2.4X=5.1 (1+2.4)X=5.1

  (这是用了什么运算定律?)乘法分配律让学生自己把方程解完,得X=1.5。

  提问:另一个求知数怎样求?根据是什么? 5.1-1.5=3.6

  (利用和的关系) 2.4X=1.5×2.4=3.6

  (利用倍数的关系)引导学生进行检验。

  提问:除了代入方程检验之外,还可以怎样验算?

  验算陆地面积与海洋面积的和是否等于地球的表面积5.1亿平方千米。 1.5+3.6=5.1验算海洋面积与陆地面积的倍数关系是否等于2.4。 3.6÷5.1=2.4

  答:......

  3、练习:将题目中的“地球的表面积为5.1亿平方千米”改为“海洋面积比陆地面积多2.1亿平方千米”学生独立列方程解答。

  数量关系:陆地面积+海洋面积=地球表面积

  解:设陆地面积为X亿平方千米。那么海洋面积可以表示为2.4X亿平方千米。

  2.4X -X=2.1

  (2.4-1)X=2.1

  4、比较两道题有哪些相同?哪些不同?

  5、小结:今天学习的应用题,是已知两种数量的倍数关系,以及它们的和或差,求这两种数量各是多少?列方程时,通常根据倍数关系,设一倍数为X,另一个数用含有字母的式子表示,再根据这两种数量的和或差,找出数量之间的等量关系,就可列出方程,并解答方程,求出得数。

  三、学生独立完成例5妈妈今年的年龄是我的3倍,妈妈说,我比你大24岁。

  问题:能读懂他的想法吗?从题目中他找到了怎样的等量关系?

  独立完成,然后订正,课件出示。

  四、完成课本78-79页的做一做。

  五、小结:

  这节课学习了什么?还有什么问题?

  六、作业:

  P80练习十七中的第5--10题。

  板书设计:

  稍复杂的方程(三)数量关系:陆地面积+海洋面积=地球表面积

  解:设陆地面积为X亿平方千米,那么海洋面积可以表示为2.4X亿平方千米。X+2.4X=5.1 (1+2.4)X=5.1 3.4X=5.1 3.4X÷3.4=5.1÷3.4 X=1.5

《方程》教案8

  教学目标:

  知识与技能目标:

  经历探索一元二次方程概念的过程,理解一元二次方程中的二次项、一次项、常数项;了解一元二次方程的一般形式,并会将一元二次方程转化成一般形式。

  过程与方法目标:

  经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型;在探索过程中培养和发展学生学习数学的主动性,提高数学的应用能力。

  情感态度与价值观目标:

  培养学生主动参与、合作交流的意识;经历独立克服困难和运用知识解决问题的成功体验,提高学生学习数学的信心。

  教学重点:

  理解一元二次方程的概念及其形式。

  教学难点:

  一元二次方程概念的探索

  教学过程

  一、情境引入

  今天我们学习一元二次方程,温故而知新,我们都学过什么方程?(一元一次方程,分式方程,方程组)同桌两人说说学过这些方程的定义都是什么。你觉得学过这些方程难吗?只要你拿出你的学习热情来,就会感觉这节课的内容,也很简单。请你打开课本39页,从39页到40页议一议以上的内容,希望你准确而又迅速的在课本上列出方程,不用求解。列出方程后组内对一下答案,如有错误,出错的原因。(3’)

  二、探索新知

  列方程正确率百分之百的请举手。祝贺你们,没举手的同学加油!(列对的同学多就问,否则问现在会列这些方程的请举手)

  请你将上述三个方程,化简成等号右边等于0的形式。完成后组内对一下答案,先完成的小组把你们的成果写在黑板上,其余组跟黑板上的答案对一下,有不同意见的把你们组的答案也写上去。(黑板上的答案对吗?如有没约分的,问哪个更好?)

  观察、思考刚才这3个方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的这两个方程x2+3x=0,4x2-5=0是一元一次方程吗?你猜这些方程叫什么方程?对,这样的方程就是我们今天学习的一元二次方程。

  请大家先思考然后小组讨论导学案中探究一中的问题2到6,组长找好本题发言人,最后全班交流你们组对问题5和6的看法。

  2、以上方程与一元一次方程有什么相同与不同之处?

  3、你能说说什么样的方程是一元二次方程吗?

  4、如果我们借助字母系数来表示,那么以上方程能都化成一个方程--------------------------,用字母表示系数时,要注意什么吗?

  5、你们组归纳的一元二次方程的概念与课本40页的定义有区别吗?谁的更好?好在哪?

  6、你认为一元二次方程的概念中重点要强调的是什么?为什么?

  请3组同学交流一下你们讨论的问题5、6的结果。老师根据学生的回答,有针对性的提出为什么这样想?你的理由是什么?以强调a≠0。并板书(1)含一个未知数(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、为常数a≠0)有没有要补充或者要发表不同看法的小组?

  请你抢答问题7。

  7、判断下列方程是不是一元二次方程,若不是请说明理由。

  同桌两人能举出几个一元二次方程的例子吗?

  探索二

  先自学课本40最后一段话,然后同桌两人说出黑板上3个方程的二次项、二次项系数、一次项、一次项系数、常数项。

  找一元二次方程各项及其各项系数时,需要注意什么吗?(先要是一般形式,系数带符号)请你完成探究二中问题1,请2组、4组选派一名同学分别上黑板(10、(2)两题。完成后对照课本41页例1自己检查对错,有困难的.同学找组长和我。

  1、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  问题3做对了的同学请举手?祝贺你们。出错的同学能不能把你的宝贵经验告诉我们,我们下次也好注意一下,别再出错?请你说说,谢谢你对我们的提醒。

  三、巩固练习

  请看问题2,

  2、已知关于x的方程(1)k为何值时,此方程为一元二次方程?(2)k为何值时,此方程为一元一次方程?谁能回答?为什么这样想?

  四、课堂:

  先小组内说出本节课你的收获,然后全班交流你们组的收获。大家看看哪个小组的收获多。

  五、自我检测:

  看看我们的收获是不是真的

  硕果累累,请你完成自我检测给你5分钟时间,做完的给我和组长检查。老师和小组长当堂批改

  1、三个连续整数两两相乘,所得积的和为242,这三个数分别是多少?

  根据题意,列出方程为------------------------------------。

  2.把下列方程化为一元二次方程的形式,并写出它的二次项系数、常数项:

  方程

  一般形式

  二次项系数

  常数项

  3x2=5x-1

  (x+2)(x-1)=6

  3、关于x的方程(k-2)x2+2(k+9)x+2k-1=0

  (1)k为何值时,是一元二次方程?k--------------是一元二次方程。

  (2)k为何值时,是一元一次方程?k-------------是一元一次方程。

  六、小组

  请小组长本小组今天大家的表现。

  七、作业

  课本42页1(2),2(1)(2)(3)

  能力挑战:

  已知关于x的方程(k2-1)x2+(k+1)x-2=0

  (1)k为何值时,此方程为一元二次方程?并写出该一元二次方程的二次项系数、一次项系数、常数项。(2)k为何值时,此方程为一元一次方程?

  板书设计:一元二次方程

  (1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

  2x2-13x+11=0(1)含一个未知数(2)2次

  x2-8x-20=0(3)整式方程

  x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、为常数a≠0)

  二次项一次项常数项

  二次项系数一次项系数常数项系数

  参加区优质课评比反思:

  这次有幸参加我区优质课评比,感受颇多。

  一、对三分之一课堂模式有了更深的理解。数学课的三分之一模式不是简单的把课堂分成三大块,也不是自主探索、小组合作、教师引导,一定是严格的都是15分钟,这要根据课程的内容,灵活的把握。我讲的《一元二次方程》这一节中,简单问题我就让大家自主探索,对于难度大的问题,自主探索后先小组合作,最后师生一起进行归纳。

  二、台上一分钟,台下十年功。通过参加这次活动,我想,我在今后的课堂教学中,就要用优质课的进行教学,如果平时的授课方式和优质课的方式差别很大的话,虽然是经过加工了的课,但最后一定会带有很多平时上课的影子,很多不规范的方面还是难以改正的。

  三、集体的智慧很重要。一个人的力量是有限的,但集体的力量是无限的。我很感谢我们数学组的各位老师对我的大力支持,他们一遍一遍的给提出修改建议,一次一次的跟我去听课,尤其是李老师、战老师、林老师,她们给了我教学理念上的很多建议,让我的教学理念有了很大的提升。

《方程》教案9

  教学内容:

  第8页第5-10题

  教学目标:

  1、进一步理解并掌握如ax±b=c、ax±bx=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

  3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯;获得一些成功的体验,进一步树立学好数学的自信心,产生对数学的兴趣。

  教学重点、难点:

  经历将现实问题抽象为方程的过程,积累将现实问题数学化的经验,感受、方程的思想方法及价值,发展抽象能力和符号感。

  教学对策:

  提供基本题和拓展题,让不同程度的学生在原有基础上得到不同的发展。

  教学准备:

  投影片或小黑板

  教学过程:

  一、基本练习

  1、解方程。

  8.2X-7.4=9 2X+52X=162

  32+6X=50 10.5X-7.5X=0.9

  学生独立解答,投影四位学生的解题过程,教师及时讲评,学生集体订正。

  2、看图列方程并求出X。(第8页第5题)

  (图略)学生独立思考后列方程解答,然后交流,同桌之间互相检查解题情况,互相评价。

  3、列方程解决实际问题。(第8页第6-10题)

  (1)第6题。

  学生独立思考数量关系列出方程,组织学生交流自己的思考过程,教师及时评价。

  (2)第7、8、10题。

  学生独立思考并列出方程,指名学生说说数量关系和列出的方程,教师及时评价。

  将第7、8、10题与第6题进行比较,请学生说说两题的分析和解题过程有什么不同。

  (3)第9题。

  提问:根据题中提供的信息,你想到了哪些数量关系?你觉得用什么方法解决这个问题较简便?

  鼓励学生用不同的方法来解决这一问题,然后请学生交流自己的想法,让学生感受方程的思想方法及价值。

  二、拓展练习

  1、小明的储蓄罐里一共有87.5元,都是1元和5角的硬币。如果1元硬币的枚数是5角硬币的3倍。1元和5角的硬币各有多少枚?

  学生认真读题后思考题中的数量关系,请学生交流。

  在理解数量关系后组织学生正确列出方程并解答。

  教师巡视学生练习情况,结合学生实际及时讲评。

  2、甲、乙两车队共有汽车180辆,因运输任务需要从甲队调30辆支援乙队,使乙队的汽车正好是甲队的2倍。问甲、乙两队原有汽车各多少辆?

  启发学生:两个车队的汽车总数没有发生变化,因此数量关系式为:甲车队汽车辆数+乙车队汽车辆数=180辆,然后再思考怎样用含有字母的式子来表示这两个未知的数量。

  学生独立解答后组织交流,教师及时评价学生交流情况。

  3、书上第8页的“思考题”。

  在学生认真读题的基础上,教师引导学生理解“取了若干次后,红球正好取完,白球还有10个”,说明取出的红球比白球多10个。根据这样的数量关系来列出方程,解决本题。

  三、全课总结

  同桌之间互相检查本课练习情况,互相评价学习情况,再请几位学生全班交流。

  四、布置作业

  第8页第5、6、8、9题。

  课后反思:

  今天的练习课中,我主要借助教材上提供的一些实际问题和补充了一些练习题,想通过这些练习,帮助学生进一步提高分析数量关系的能力,能正确、熟练地运用列方程的方法来解决一些实际问题。我还参考了同一年级两位老师的'“课前思考”,在课中根据学生实际情况对教学活动稍做调整,适当降低了练习难度,尽可能考虑到全体学生的发展。

  练习课上,我也选用了高教导设计的一组有关行程问题的对比题,课中注意了对数量关系的分析,给学生较多的时间来思考、分析和交流。课堂上学习效果还不错,所以,我将教材上第8页的第5、6、7、8题作为课内作业,让学生独立完成。批完两个班学生的作业后,我发现自己对学生学习情况还没有摸透,特别是这学期刚接手的六二班。六二班中有接近1/3的学生在列方程解第5题时出现错误,分析错误原因主要是对于三角形面积计算公式和长方形周长计算公式已遗忘,列出错误的方程,因而造成错误,另一原因是在解这两个稍复杂的方程时,有些学生解方程有困难,胡乱计算。这两题虽然是有关几何图形面积和周长的计算,但由于数量关系式的不同,也可以列出不同的方程。而且有些方程可能较简单,更便于解答。看来,这一题还得重视起来,明天的练习课上,我要再组织学生来解答,更好地掌握用列方程的方法来解决有关几何图形的问题。

《方程》教案10

  教学目标:

  1、本节课使学生在学完了可化为一元二次方程的分式方程的解法后,解决实际问题应用之一.——行程问题,使学生正确理解行程问题的有关概念和规律,会列分式方程解有关行程问题的应用题.

  2、本节课通过列分式方程解有关行程问题的应用题,就是把实际问题转化为数学问题,这就要求学生能对实际问题分析、概括、总结、解,从而能进一步地提高学生分析问题和解决问题的能力.

  教学重点:

  列分式方程解有关行程问题.

  教学难点:

  如何分析和使用复杂的数量关系,找出相等关系,对于难点,解决的关键是抓住时间、路程、速度三者之间的关系,通过三者之间的关系的分析设出未知数和列出方程.

  3.疑点:对于列分式方程解应用题,学生往往考虑到所解出的答案是否和题意相吻合,而认为可以不需要检验.通过本节的学习,使学生清楚地懂得列分式方程解应用题应首先检验所求出的方程的解是否是所列分式方程的解,然后考虑所满足方程的'解是否与题意相吻合.

  教学过程:

  在上一节课,我们已经学习了可化为一元二次方程的分式方程的解法,我们知道,我们现在所学习的理论是先人通过千百年的实践总结,概括出来的,我们学习理论是为了更好地解决实践当中所出现的问题.这一节课所学的内容就是运用上节课所学过的分式方程解法的知识去解决实际问题,关于本节内容,是学生在上节课所学过的分式方程的解法的基础上而学习的,所以点出由实践——理论——实践这一观点,能更加激发学生的求知欲,使得学生能充分地认识到学习理论知识和理论知识的运用同等重要,从而抓住学生的注意力,能使得学生充分地参与到教学活动中去.

  为了使学生能充分地利用所学过的理论知识来解决实际问题,首先应对上一节课所学过的分式方程的解法进行复习,同时让学生回忆行程问题中的三个量——速度、路程、时间三者之间的关系,从而将学生的思路调动到本节课的内容中来,这样对于面向全体学生,大面积地提高教学质量大有益处.

  一、新课引入:

  1.解分式方程的基本思路是什么?解分式方程常用的两种方法是什么?

  2.在匀速运动过程中,路程s、速度v、时间t三者之间的关系是什么?

  3.以前所学过的列方程解应用题的步骤有哪些?

  通过对问题1的复习,使学生对前一节内容得到巩固,对问题2的复习给学生设定一种悬念,以抓住学生的注意力,对问题3的复习,使学生对于问题2的悬念有了一种初步的判断,以便于点题——本节课所学的内容.

  通过对前面三个复习问题的设计,学生能充分的认识到本节所要学习的内容,再加上适时点题,完全地将学生的注意力全部地集中到教师身上,充分发挥教师的指导作用,并调动起学生的积极性,发挥学生的主体作用.

  二、新课讲解:

  例1甲、乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小时多走1千米,结果比乙早到半小时.二人每小时各走几千米?

  分析:

  (1)题目中已表明此题是行程问题,实质上是速度、路程、时间三者关系在题中的隐含.

  (2)题目中所隐含的等量关系是:甲从张庄到李庄的时间比乙

《方程》教案11

  一、教学目标

  (一)基础知识目标:

  1.理解方程的概念,掌握如何判断方程。

  2.理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  (一)创设情景,引入新课

  由学生已有的知识出发,结合章前图提出的问题,激发学生进一步探究的欲望。

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  (二)提出问题

  章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的路程有多远?

  你会用算术方法解决这个实际问题么?不妨试一下。

  如果设王家庄到翠湖的路程为x千米,你能列出方程吗?

  根据题意画出示意图。

  由图可以用含x的式子表示关于路程的数量,

  王家庄距青山千米,王家庄距秀水千米,

  由时间表可以得出关于路程的数量,

  从王家庄到青山行车小时,王家庄到秀水小时,

  汽车匀速行驶,各路段车速相等,于是列出方程:

  =(1)

  各表示的意义是什么?

  以后我们将学习如何解出x,从而得到结果。

  例1某数的3倍减2等于某数与4的和,求某数.

  例2环行跑道一周长400米,沿跑道跑多少周,可以跑3000米?

  五、课堂小结

  用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用到已知数,而方程是根据问题中的等量关系列出的等式,其中有已知数,又有未知数,有了方程后人们解决很多问题就方便了,通过今后的学习,你会逐步认识,从算式到方程是数学的进步。

  六、作业布置

  习题3.1第1,2两题

  3.1从算式到方程

  ——第2课时

  一、教学目标

  (一)基础知识目标:

  1.理解方程的概念,掌握如何判断方程。

  2.理解用字母表示数的好处。

  (二)能力目标

  体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

  (三)情感目标

  增强用数学的意识,激发学习数学的热情。

  二、教学重点

  知道什么是方程、一元一次方程,找相等关系列方程。

  三、教学难点

  如何找相等关系列方程

  四、教学过程

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于

  任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

  师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例1某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系

  ,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

  x-15%x=42500,

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;

  例3(投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果

  分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一

  小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

  3x+9=5x-(5-4),

  解这个方程:2x=10,

  所以x=5.

  其苹果数为3×5+9=24.

  答:第一小组有5名同学,共摘苹果24个.

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

  (设第一小组共摘了x个苹果,则依题意,得)

  课堂练习:

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数.

  五、课堂小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;

  布列方程)

  (2)以上步骤同学应在理解的基础上记忆.

  六、作业布置

  1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.1.3从算是到方程

  ——第3课时

  一、教学目标

  (一).使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  (二).培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯.

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤.

  三、教学过程

  我们可以直接看出像4x=24,x+1=3这样简单方程的解,但是仅仅依靠观察来解决比较复杂的方程是很困难的',因此,我们还要讨论怎么样解方程,方程是含有未知数的等式,为了讨论方程,我们先来看看等式有什么性质。

  像m+n=n+m,x+2x=3x,3x+!=5y这样的式子都是等式。

  由教科书中天平的图形,由它可以发现什么规律?

  我们可发现,如果在平衡的天平两边都加(或减)同样的量,天平还保持平衡。

  等式就像平衡的天平,它具有与上面的事实同样的性质。

  由此,我们得出等式的性质1

  等式两边加(或减)同一个数(或式子),结果仍相等。

  用字母表示:a=b,那么a±c=b±c

  等式的性质2

  等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

  用字母表示:

  如果a=b,那么ac=bc

  如果a=b,(c≠0),那么=

  通过例题来对等式的性质进行巩固。

  例:利用等式的性质解下列方程。

  (1)x+7=26;(2)-5x=20;(3)-x-5=4

  分析:要使方程x+7=26转化为x=a(常数)的形式,要去掉方程左边的7,因此两边要减7,另外两个方程如何转化为x=a的形式。

  解:(1)两边减7,得

  x+7-7=26-7

  于是

  x=19

  (2)两边同时除以-5,得

  =

  于是

  x=-4

  (3)两边加5,得

  -

  化简,得

  两边同乘-3,得

  x=-27

  一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。

  让学生检验上题是否正确。

  (四)课堂练习

  利用等式的性质解下列方程并检验。

  (1)x-5=2;(2)0.3x=45;(3)2-x=3;(4)5x+4=0

  教师引导学生做,做好师生互动。

  四、课后总结

  1.本节课学习了哪些内容?

  2.利用等式的性质解方程方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  五、作业布置;

  习题3。1,3,4,5题

  一元一次方程

  ——系统习题课(第4课时)

  一、教学目标

  (一).及时巩固所学知识;

  (二).培养学生观察能力,提高他们分析问题和解决问题的能力;

  (三).使学生初步养成正确思考问题的良好习惯。

  二、教学重点和难点

  一元一次方程解简单的应用题的方法和步骤。

  三、教学过程

  主要为习题处理,由浅入深,使学生把所学知识系统化。

  主要由学生完成,老师引导。

  习题3.1中,1.2.3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。

  主要针对学生比较难懂的应用题来讲解;

  习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?

  分析:设获得一等奖的学生有X人,由已知条件得:

  X×200+(22-X)×50=1400

  本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22-X.

  习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?

  分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,

  那么:10X+6=12X-6

  所以找到等式就是列出方程的重要一步。

  习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?

  分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式

  12000+800X=20800

  总之,找出他们之间存在的相等关系就是解决问题的关键。

  通过系统的学习,让学生的综合运用能力提高,对拓广探索中的题目老师要细心讲解,因为学生对这些题的理解有困难。

  四、课堂总结

  通过大量的练习,及时巩固所学知识,使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题。

  五、作业布置

  习题3.1第7、8题。

《方程》教案12

  教学内容:

  教材第81页例3、例4,练习十六9---14题。

  教学目标:

  1、经历交流、讨论、练习等学习过程,理解方程的含义和等式的性质,根据等式的性质正确熟练地解方程。

  2、掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。

  3、能根据问题的特点选择恰当的.方法来解答,进一步培养分析数量关系的能力,发展思维。

  教学重点:

  理解方程的含义和等式的性质。

  教学难点:

  较熟练地解简易方程,并能解决一些实际问题。

  教具准备:

  多媒体课件

  教学过程:

  一、导入复习

  1、什么叫做方程?(方程是含有字母的等式。)能举几个是方程的式子吗?

  2、什么叫做方程的解? (使方程两边左右相等的未知数的值叫做方程的解。求方程的解的过程,叫做解方程。)

  3.解方程的依据是等式的性质:等式两边同时乘或除以(加或减去)相同的数,等式的大小不变。

  4、出示例3 学生交流。

  5、出示例4 学生交流。

  二、创设情境,引出知识

  1、出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)

  解题过程

  解:设现在平均每小时走了x千米。

  2.5x=3.83

  2.5x2.5=11.42.5

  x=4.56

  答:平均每小时走了4.56千米?

  2、提出问题

  这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。

  三、分析知识建立联系

  (一)学生汇报各类知识

  小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。

  (二)解方程与方程的解

  1、具体知识

  4.56是方程的解,而求这个解的过程就是解方程。

  方程是含有字母的等式

  补充提问:能举几个是方程的式子吗?

《方程》教案13

  教学目标

  知识与技能

  1.初步理解方程的解和解方程的含义。

  2.结合图例,理解根据等式的性质解方程的方法并进行检验。

  3.掌握解方程的格式和写法。

  过程与方法

  经历方程的解和解方程的认识过程,提高学生比较、分析的能力。

  情感态度与价值观

  在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。

  教学重难点

  重点:理解方程的解和解方程的含义。

  难点:会检验方程的解。

  教学工具

  多媒体设备

  教学过程

  教学过程设计

  1、复习旧知,迁移导入

  (1)在上一节课的学习活动中,我们探究了哪些规律?

  学生回顾天平保持平衡的规律及等式保持不变的规律。

  (2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。

  【板书课题:解方程(1)】

  2、合作探究,获取新知

  8.2.1教学教材第67页例1。

  (1)课件出示例1。

  从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9

  学生自己先列出方程,然后指名回答。

  【板书:χ+3=9】

  如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?

  (2)出示第67页分析图示,学生观察图示,交流想法。

  根据学生的汇报,板书解方程的过程:

  (3)为什么方程两边同时减去3,而不是别的数?

  引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。

  追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。

  (4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。

  【板书】:

  小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的`数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。

  【注意】:在书写的过程中写的都是等式,而不是递等式。

  (5)认识、区别方程的解和解方程。

  ①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。

  【板书】:使方程左右两边相等的未知知数的值,叫做方程的解

  求方程的解的过程叫做解方程。

  ②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?

  在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。

  ③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。

  8.2.2教学教材第68页例2。

  (1)利用等式不变的规律,我们再来解一个方程。

  出示例2:解方程3χ=18

  怎样才能求到1个χ是多少呢?

  观察示意图,互相讨论,指名回答。

  在方程两边同时除以3,得到χ=6。

  让学生打开书68页,把例2中的解题过程补充完整。

  为什么两边同时除以的是3,而不是其它数呢?

  两边同时除以3,刚好把左边变成1个χ。

  使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。

  (2)组织学生动手检验。

  (3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?

  8.2.3教学教材第68页例3。

  (1)出示:解方程20-χ=9

  (2)指名学生板演,解出方程20-χ=9的解。

  (3)交流归纳解方程的方法。

  (4)小结:等式两边加上相同的式子,左右两边仍然相等。

  3、深化理解,拓展应用

  (1)随堂练习。

  ①、完成“做一做”的第1、2题,集体评讲,强调验算。

  ②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?

  等式保持不变的规律。

  (2)拓展练习。

  亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍?

  4、自主评价,全课总结

  你觉得自己今天学会了什么?还有什么不太理解的地方?

  讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?

  课后习题

  练习十五1—5题。

  板书

  所以,χ=6是方程的解。

  使方程左右两边相等的未知数的值,叫方程的解。

  求方程的解的过程叫解方程。

《方程》教案14

  教学目标:

  1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

  2、利用探索发现的等式的性质,解决简单的`方程。

  3、经历了从生活情境的方程模型的建构过程。

  4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

  教学重难点:

  重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

  难点:推导等式性质(一)。

  教学准备:

  一架天平、课件及班班通

  教学过程:

  一、创设情境,以情激趣

  师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

  学生讨论纷纷。

  师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

  二、运用教具,探究新知

  (一)等式两边都加上一个数

  1、课件出示天平

  怎样看出天平平衡?如果天平平衡,则说明什么?

  学生回答。

  2、出示摆有砝码的天平

  操作、演示、讨论、板书:

  5=5 5+2=5+2

  X=10 X+5=15

  观察等式,发现什么规律?

  3、探索规律

  初次感知:等式两边都加上同一个数,等式仍然成立。

  再次感知:举例验证。

  (二)等式两边都减去同一个数

  观察课件,你又发现了什么?

  学生汇报师板书:

  X+2=10

  X+2-2=10-2

  X =8

  (三)运用规律,解方程

  三、巩固练习

  1、完成课本68页“练一练”第2题

  先说出数量关系,再列式解答。

  2、小组合作完成69页“练一练”第3题。

  完成后汇报,集体订正。

  四、课堂小结

  这节课你学到了什么?学生交流总结。

  板书设计: 解方程(一)

  X+2=10

  解: X+2-2=10-2 ( 方程两边都减去2)

  X =8

《方程》教案15

  教学内容:教科书第13~14页,“练习与应用”第5~7题,“探索与实践”第8~9题及“与反思”。

  教学目标:

  1、通过练习与应用,使学生进一步掌握列方程解决实际问题的方法与步骤,提高列方程解决实际问题的意识和能力。

  2、通过小组合作,进一步培养学生探索的'意识,发展思维能力。

  3、通过与反思,使学生养成良好的学习习惯,获得成功体验,增强学好数学的信心。

  教学过程:

  一、练习与应用

  1、谈话引入这节课我们继续对列方程解决实际问题进行练习。板书课题。

  2、指导练习。独立完成5~7题。展示交流。集体评讲。你是根据什么等量关系列出方程的?在解方程时要注意什么?(步骤、格式、检验)

  二、探索与实践

  1、完成第8题。理解题意,完成填写。小组中交流第一个问题。汇报自己发现。把得到的和分别除以3,看看可以发现什么?可以得出什么结论?独立解答第二个问题。你是怎么解答第二个问题的?指导解答第三个问题。试着连续写出5个奇数,看看有什么发现?怎样求n的值呢?5个连续偶数的和有这样的规律吗?试试看。

  2、完成第9题。小组中讨论方法,巡视指导。可以先把左边的两边都去掉两个苹果。1个梨=3个苹果再根据右边图:3个苹果=6个猕猴桃=1个梨

  三、与反思

  在小组中说说自己对每次指标的理解。自我反思与。说说自己的优点与不足。

  四、阅读“你知道吗”可以再查找资料,详细了解。

  五、课堂这节课我们复习了哪些内容?你有了哪些收获?

【《方程》教案】相关文章:

《方程的意义》教案02-18

小学数学方程教案02-14

解方程2教案12-16

教案式样:方程的意义12-16

《椭圆的标准方程》教案12-17

《方程的意义》教案15篇02-18

数学教案:函数与方程02-25

数学教案:简易方程01-19

解方程复习课教案12-16