1、解析几何最经常考什么?
解析几何是一些综合题最喜欢考察的知识点,可难可易。纵观历年高考命题的规律,解析几何主要围绕主干知识--椭圆的方程和性质,运用圆心的轨迹、圆锥曲线的定义、性质、椭圆标准方程的变形、直线斜率、圆的性质和平面几何知识推证椭圆的一些基本性质,会对圆锥曲线中的存在性、唯一性、不变性、恒成立等性质进行论证、运用。
2、三角形题年年考,失分严重怎么办?
对于三角形这个知识点,在复习的时候复习,应重视以图形为载体运用三角变换求角的方法与注意点,已知三角形的中线、角平分线或高等如何解三角形。
3、填空题后几题可能一般比较难,怎么办?
根据对多年高考命题的分析,填空题最后几题之所以难,是因为涉及向量数量积、基本不等式、数列、圆锥曲线等知识点。
那有什么解决的方法呢?其实向量数量积的考核,主要以三角形、平行四边形、梯形、正六边形和圆锥曲线为载体,数形结合求数量积和参数;基本不等式主要考察求最值及参数范围;数列与圆锥曲线基本量的计算,运用抽象函数的性质求函数值与解不等式、三角形的计算与三角求值;命题的否定与必要不充分条件也经常考察。
4、立体几何怎么都搞不定?
复习应关注符号语言表述的命题的真假判断,共(异)面的判断与证明、用性质定理寻找平行线与垂线的方法,运用三棱锥体积求点面距离。
5、关于应用题。
应用题可从解三角形、概率、数列求和、函数、立几等模型出发构建数学模型,概率应用题应注意解题规范。
6、函数重点考什么?为什么每次都错很多?
分析近几年的高考题,函数主要是论证函数的基本性质,难点是将函数与方程、不等式等知识结合,涉及求参数范围、解不等式、证明不等式,重视分类讨论在研究函数问题中的工具作用。
7、数列复习应重视对差、等比数列的综合运用。
掌握证明一个数列不是等差(比)数列的方法,会用整数的基本性质和求不定方程整数解的方法求解数列的基本量,证明数列的一些基本性质(如无穷子数列项的整除性质和不等关系)。
8、学有余力的话,关注一点高等数学的知识和竞赛知识用处大吗?
在中国教育中,如果想要在应试方面有比较明显的优势,高分网高考频道小编建议学生们可以在学有余力的基础上,关注高等数学知识与竞赛知识,在高考中,虽然知识点都出自高考大纲,但高考在思维的考察方面,实际上是站在更高的高度。如果在解题中有一点高等数学的底子,很多知识点交叉的题或者是难题,解决起来都是很方便的。
[高考数学命题规律]