一、选题的准备、背景、意义、基本思路、方法和主要观点
准备:针对这一论文题目我先进行一些资料的收集,并向指导老师请教了一些相关的论文问题。
背景:本身对几何有些许兴趣,偶然中了解到了等周不等式。
意义:在等周不等式的基础上,做些条件的变换,运用初等方法进行证明。
基本思路:对已经有的一些方法进行推广,得出一些新的求法;不同的条件得到不一样的结果。
方法:吸取原有方法的精髓,在通过自己的观点进行证明。
主要观点:周长定值的情况下,面积最大值。
二、选题的需要性、创新性、科学性和可行性论证
三、研究方法和手段、论证方法及其特点
四、写作提纲
1.三角形(等周长)
1.1 无其他约束条件三角形。
1.2 一边长固定三角形。
1.3 固定以 夹角和一边长三角行。
2.四边形 (等周长)
2.1 无其他约束条件四边形。
2.2 固定一边长四边形。
2.3 固定所有边长四边形。
3.推广到多边形。
五、计划进度(以周为单位)
六、主要参考文献
[1] 张克新 四边形面积定值的一个初等证明 黄冈职业技术学院 438002期
[2] 项武义 等周问题的一个初等证明 庆贺苏步青教授百岁华诞
[3] 田畴 姜国英等曲线与曲面的微积分几何 1976年