- 相关推荐
高三等差数列求和七大方法
1.公式法。
2.错位相减法。
3.求和公式。
4.分组法。
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
5.裂项相消法。
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意:余下的项具有如下的特点
1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
6.数学归纳法。
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = [n(n+1)(n+2)(n+3)(n+4)]/5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5
即n=k+1时原等式仍然成立,归纳得证
7.并项求和法。
(常采用先试探后求和的方法)
例:1-2+3-4+5-6+……+(2n-1)-2n
方法一:(并项)
求出奇数项和偶数项的和,再相减。
方法二:
(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^(n+1)
【高三等差数列求和七大方法】相关文章:
解乏提神的七大方法04-26
生活中提高孩子智力的七大方法04-26
高三生调适心态的方法04-25
高三各科冲刺方法有哪些12-19
高三迅速进入复习状态的方法02-28
高三快速记住与单词的方法分享12-20
握手七大规律04-27
高三政治一轮复习方法07-31
与人相处的七大秘诀04-04