六年级上册数学比的教案

时间:2024-06-30 16:00:51 数学教案 我要投稿

六年级上册数学比的教案

  作为一位无私奉献的人民教师,常常要写一份优秀的教案,借助教案可以更好地组织教学活动。那么问题来了,教案应该怎么写?下面是小编精心整理的六年级上册数学比的教案,欢迎阅读,希望大家能够喜欢。

六年级上册数学比的教案

六年级上册数学比的教案1

  教学内容:

  课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:

  理解倒数的意义和怎样求倒数。

  教学难点:

  求倒数方法的.叙述。

  教学过程:

  一、引新:

  开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、练习

  1、判断下列各组数是否互为倒数,为什么?

  和和和和

  2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?

  1)5的倒数是多少?

  2)所有的自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  4、完成课本P19页的“做一做” 。

  5、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:

  0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:

  练习五3—8。

六年级上册数学比的教案2

  百分数的意义

  [教学内容]

  教科书第98——99页例2、练习十九第1——3题。

  [教材简析]

  本节内容是在学生理解分数意义的基础上进行教学的。百分数在生活中有着广泛的应用,现实世界为百分数的学习提供了丰富的学习素材。例1安排了三个层次的学习活动,引导学生逐步理解百分数的意义。第一层次,呈现学校篮球队3名队员在投篮练习中投篮次数和投中次数的统计表,并提出问题,引导学生通过比较表中分数的大小作出判断。第二层次,将表中的几个分数分别改写成分母是100的分数,并比较它们的大小,初步体会百分数的特点和作用。第三层次,在学生初步感知百分数的特点和作用的基础上,揭示百分数的概念,介绍百分数的读、写方法。在“试一试”与练习中进一步完善和理解百分数的意义,初步体会百分数与分数、比之间的联系,初步了解百分率,为进一步学习百分数积累经验。

  [教学目标]

  1.知识与技能:使学生在现实的情境中,初步理解百分数的意义,会正确地读、写百分数。

  2.过程与方法:使学生经历百分数意义的探索过程,体会百分数与分数、比的联系和区别,积累数学活动经验,进一步反站数感。

  3.情感、态度与价值观:使学生在用百分数描述和解释生活现象的过程中,体会百分数与生活的密切联系,增强自主探索与合作交流的意识。

  [教学重点]

  理解百分数的意义,会正确读、写百分数。

  [教学难点]

  体会百分数与分数、比的联系与区别。

  [教具准备]

  课件;课前布置学生收集生活中的百分数。

  [教学过程]

  一、创设情境,导入新知。

  谈话:同学们喜欢看篮球赛吗?说到篮球就会让我们想到一个人,你们知道是谁?(姚明)这里有一项关于姚明的数据统计

  (出示)

  据统计:姚明在nba比赛中的罚球命中率一向很高,前两个赛季罚球命中率高达81%,但上赛季下降到了78.3%。(两个百分数用红色表示)

  教师:大家认识红色的.数吗?看到这两个数能知道些什么呢?今天我们共同认识这个新朋友,你知道他叫什么名字吗?

  (出示课题:认识百分数)

  教师:关于百分数的知识,你想了解些什么?

  学生说一说自己的看法。

  二、例题教学,引出概念。

  1.出示例题,引发探究。

  例1:学校篮球队组织投篮练习,王老师对其中三名队员的投篮情况进行了统计分析。

  教师:我们来看看比赛的数据显示。

  (出示表格)

  姓名

  投篮次数投中次数

  16

  13李星明25张小华20

  吴力军

  3018

  教师:如果你是教练,根据这张表格里的数据,你能判断出哪个队员投篮的成绩好一些?为什么?

  学生独立思考,并在小组中交流想法。

  组织学生在班级中进行讨论,学生可能会提出不同的比较方法,如:谁投中的次数多,谁的成绩就好一些;谁失球的次数最少,谁的成绩就好一些;算投中的次数占投篮次数的几分之几(投中的比率),再比较这几个分数,谁大就表示谁的成绩好一些。

  引导学生比较这些方法,并明确最后一种方法是合理的,并在表格的右边增加“投篮的比率”一栏。

  2.初步理解百分数的意义。

  学生独立计算三名队员投中的比率。

  指名报计算结果,教师完成统计表。(出示书上完整的表格)

  让学生说一说16/25 、13/20 、18/35分别表示哪个数量是哪个数量的几分之几。

  提问:根据上面的计算结果,你能比较出谁投中的比率高一些?

  学生自主探索比较的方法。

  组织学生在班级中进行交流,学生的方法可以是把三个分数,先两个两个比较,再确定哪个分数最大,或者先把三个分数一次性通分,再比较大小,也可以把它们都改写成小数再比较大小。

  谈话:为了便于统计和比较,通常把这些分数用分母是100的分数来表示。

  学生按要求独立进行改写。

  指名口答改写的结果,教师板演。

  提问:64/100表示哪两个数量比较?表示哪个数量是哪个数量的百分之几?

  再让学生说一说65/100 、60/100的实际含义。

  提问:现在能很快看出谁投中的比率高一些?

  学生:张小华投中的比率高一些。

  说明:像上面这样表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫做百分比或百分率。

  提问:百分数怎样写,怎样读呢?

  学生自学课本99页“试一试”上面的内容。

  组织学生说一说读法和写法,教师进一步示范64%的读、写法。

  提问:百分号相当于分数中的什么部分?用百分号形式写分数,什么变了?什么没变?

  学生模仿读一读,写一写。

  学生照样子表示出65/100 、60/100,先写出来,再读一读。

  提问:读百分数时要注意什么?

  说明:百分数不读作“一百分之几”,而要读作“百分之几。”

  提问:你能说说黑板上百分数是什么意思?(尽量引出投篮命中率为后面的“百分率”作铺垫)教师:请大家在规定的时间里写些自己喜欢的百分数,要求一个比一个写得好。记时开始。(停,时间不是很长)

  师:如果老师要求写十个,请用今天学到的知识描述一下你写了几个。

  学生1:我写了5个,我完成了50%

  学生2:我写了7个,我完成了70%

  教师:如果不直接告诉别人,让别人猜猜你写了几个?

  学生1:我还有70%没有完成;

  学生2:我写好的接近50%;

  学生3:??

  [设计意图:创设学生感兴趣话题入手,根据统计表提出“谁的成绩好一些?”引发学生思考,在交流中认识到通过比较三个分数的大小作出判断,并将分数再分别改写成分母是100的分数,从而初步体会到百分数的特点和作用,揭示百分数的概念,在学生自学基础上讨论百分数的读法和写法。学生自主写喜欢的百分数的环节,让学生再次感受了百分数的意义和作用。]

  三、分层练习,加深理解。

  “试一试”

  指导学生做一做。

  第(1)题

  引导学生:根据“男生人数是女生的45%,如果把女生人数看作100份,那么男生人数相当于这样的多少份?

  指名回答男生人数是女生的几分之几,男生与女生人数的比是几比几?

  第(2)题

  先让学生说一说近视率的含义是什么,再在书上填一填。

  提问:通过解答这两题,谁能说一说对“百分数又叫做百分比或百分率”的理解吗?

  学生在小组中交流后,在班级里说一说。

  明确:百分数的本质是表示两个数量的倍比关系,因此把百分数又叫做百分比或百分率是合适的。

  “练一练”第1题

  学生看题,理解题意,独立做一做。

  做好,交流填写结果。并具体说一说某个百分数表示的实际含义。

  说明:百分数可以表示一个整体中的部分与这个整体的关系。

  第2题

  教师:在日常生活中,你还见过哪些百分数?

  在小组里说一说,并说出这些百分数的含义,再组织学生在班级中交流。

  练习十九第1题

  同座同学互相读一读,并说出每个百分数的含义。

  指名分别说一说每个百分数的含义。

  教师:从三幅图中分别能知道些什么?你还能说出一些与100%有关的例子吗?

  练习十九第2题

  学生独立写一写,写好在小组中交流。

  组织学生交流写法,并说一说百分数表示的含义。

  教师:分母是一百的分数都可以用百分数表示吗?

  练习十九第3题

  出示题,让学生试着判断,并说明理由。

  明确:百分数只表示两个数量的倍比关系,不用来表示某个具体数量。百分数是一种特殊的分数,后面不带单位名称,而分数既可以表示一个具体的数,又可以表示两个数的比,在表示一个具体的数量时,分数后面可以带单位名称。

  四、全课总结。

  教师:今天这节课你有什么收获?

  教师:一个人的收获不仅来自于1%的灵感,更重要的来自于99%的汗水,如果每一节课同学们都能有一点收获,日积月累你们100%会成为一个学识渊博的人。(出示:成功=99%的汗水+1%的灵感)

  教师:你能用百分数来描述你这节课的感受吗?

  [设计意图:选择现实的素材,让学生读、写百分数,说百分数的含义,既练习了百分数的读法,又巩固了百分数的意义,还能让学生体会到生活中处处有百分数,感受百分数的应用价值。在练习三的第3题学生通过判断,了解了百分数与分数的区别,再次加深对百分数意义的理解。课的结束前学生用百分数描述学习的感受,检验了学生对百分数意义的理解和体会。]

  课后反思:

  《百分数的意义》是第九单元的第一课时,本课的教学重点之一是理解百分数的意义,教学难点是体会百分数、分数、比的联系与区别。

  借助例题的学习,我先出示了三名运动员的投篮情况的统计表,统计表中呈现的是每一名运动员投篮次数和投中次数,然后请学生思考:如果你是教练,怎样判断哪名运动员的投篮成绩好些?学生们经过思考马上想出了办法,交流时即刻有学生说出应该通过比较每人投中次数占投篮次数的几分之几来比较。此时,我立即追问学生为什么,学生们联系以前学习的知识说出了理由:因为每一名运动员投篮次数不相同,不能只看投中次数来判断成绩的好坏。应该说这一部分的导入是相当顺利的。

  课前我还布置学生去生活中收集一些百分数,所以课上让学生进行了交流。有些学生找到了衣服商标上的百分数,如:100%羊毛;97.4%棉;葡萄汁70%等。为了帮助学生更好地理解百分数的意义,我请学生们同桌之间先互相说说收集到的这些百分数表示什么意思,然后再请几位学生全班交流,应该说课堂上的学习氛围较好,学生们通过寻找生活中的百分数体会到百分数在生活中的运用,也能更好地理解百分数的意义。

  上完本课后觉得不足之处是对于百分数与分数的区别仅仅借助练习十九的第三题是不够的,很多学生还是不理解两者的区别。我想在第二课时中要想办法解决这一问题。

六年级上册数学比的教案3

  教学内容:

  教科书P39——40,练一练,练习八6——11

  教材简析:

  在三年级下册,学生已经学习了根据分数的意义,用整数乘、除法解决求一个数的几分之几是多少的实际问题。这里再次安排教学,一是让学生理解求一个数的几分之几是多少可以直接用乘法计算,从而扩展对分数乘法意义的理解,二是通过沟通两种方法之间的联系,促使学生加深对相关数量的理解,提高解决实际问题的能力。

  教学目标:

  1.使学生结合具体情境,学习用分数乘法解决“求一个数的几分之几是多少”的实际问题,完善对分数乘法意义的理解,提高正确计算相关分数乘法式题的能力。

  2. 丰富对用分数表示的数量关系的认识,使学生经历解决实际问题的探索过程,进一步培养观察、比较、分析、推理的能力。

  3.使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高数学学习的信心。

  教学重点:

  掌握求一个数的几分之几是多少,可以用乘法计算。

  教学过程:

  一、谈话激情,导入新课

  谈话:昨天我们已经学习了求几个几分之几是多少的实际问题,掌握了分数与整数相乘的计算方法。今天,我们将继续学习有关整数与分数的计算方法,以及相关的简单的实际问题。

  [设计意图:开门见山,让学生明确本节课的学习内容是上节课的延续,使学生在明确的学习目的指引下,迅速投入到新知识的学习中。]

  二、合作探索,获取新知

  (一)小黑板出示P40,练一练第1题的图

  提出要求:涂色表示“12的”、“20的”,涂完后说说你是怎么想的?怎么列式计算?在小组内交流后组织全班交流。

  在交流中使学生明确:涂色“12的”,就是把12个○看作单位“1”,平均分成3份,涂色表示出这样的1份,列式:12÷3=4;涂色 “20的”,就是把20个□看作单位“1”,平均分成5份,涂色这样的4份,列式20÷5×4=16

  [设计意图:把练一练第一题提前作为学习新知的铺垫 ,旨在帮助学生唤醒已学过的求“一个数的几分之几是多少”的一般方法和分数乘法的意义。为学生学习新知识作好心理和知识上的准备。]

  (二)例题教学,探索新知

  谈话:刚才我们用之前学过的分数意义的知识,用整数的乘、除法解决了这两个问题,那么,像这样的有关分数的实际问题,是否有更简单的方法来解决呢?下面就让我们一起来研究。

  1.出示例题及图,交流题目中告诉了我们哪些条件?

  引导学生看图描述题中两个分数的具体含义。

  (估计学生能够说明:把10朵绸花作为单位“1”,红花的朵数是10朵的,绿花的朵数是10朵的。)

  [设计意图:看图说题意,可以帮助学生理清题目中相关数量之间的内在联系,有利于学生学习新的.知识。]

  2.探究解决问题的方法

  问题⑴:红花有多少朵?

  ①通过前面的铺垫估计学生能很快列式10÷2=5(朵);

  ②教师说明:像这样求10朵的是多少的问题,还可以直接用乘法计算。列式10×= ( )

  ③引导学生比较这两种计算方法,有什么想法?

  引导学生在比较中认识到:10朵的,就是把10朵花平均分成2份,求每份是多少;而计算10×,要先约分,也就是用10除以2,得出一份是多少。体会两种计算方法思路的一致性。

  得出结论并板书:求一个数的几分之几是多少,可以用乘法计算。

  问题⑵:绿花有多少朵?

  师:你能用求红花朵数的方法,求出绿花的朵数吗?

  (有了求红花朵数的经历,估计学生能很快地列式

  ①10÷5×2=4(朵)②10×=4(朵)。)

  进一步引导学生比较这两种方法,体会它们之间内在的联系。

  (估计学生通过问题⑴的比较,能够认识到绿花的朵数是10朵的,也就是把10朵花平均分成5份,绿花是其中的2份;计算10×,也要先约分,也就是先把10÷5,求出1份是多少,再乘2求出2份是多少。)

  通过比较,再一次得出结论:求一个数的几分之几是多少,可以用乘法计算。

  [设计意图:这部分的教学是本课的重难点,求红花和绿花的朵数,每个问题都用了两种方法解决,通过这两种方法的列式、计算与比较,得出“求一个数的几分之几是多少,可以用乘法计算。”的知识点,使学生的数学思维得到了进一步的发展,同时培养了学生的分析、推理能力]

  三、组织练习,巩固新知

  1.完成P40,练一练

  第1题:在导入时,学生已经通过涂色理解了题目的意义并用以前学过的方法解决了这一问题,此时再看这题,旨在用今天所学的知识解决这一问题,列式:12×、20×,并和同桌说说这样列式的理由。

  第2题,通过填空,引导学生理解:求根(或根)长多少米,就是求这根钢管的(或)是多少,进一步得出结论:求一个数的几分之几,可以用乘法计算。

  2. 完成练习八第6题

  通过一组实际问题的比较,沟通分数乘法意义与整数乘法意义的内在联系。知道“求3瓶是多少毫升”就是求3个900毫升相加的和;求“瓶是多少毫升”,就是求900毫升的是多少;求小明喝了多少毫升,就是求900毫升的是多少。

  3.完成练习八第7、第8题

  学生独立完成后说说你是怎么想的?体会分数乘法的实际问题在生活的运用。

  4.完成练习八第9题

  学生独立读题后交流,明白题目意思,“估计这个月哪个城市空气质量达Ⅰ、Ⅱ级的天数最多”,可以直接比较分数的大小;“计算各有多少天”,是以这个月的总天数“30天”为单位“1”进行计算的,计算得出结果后,再与估计的结果进行比较,检验估计的准确性。

  5.完成练习八,第10、第11题

  通过读题、列式计算,使学生认识到“求一个数的几分之几与求一个数的几倍一样,都可以用乘法计算”。

  [设计意图:通过一系列的练习,继续巩固“求一个数的几分之几,可以用乘法计算”的知识。让学生在解答问题的过程中,体会分数乘法与整数乘法的内在联系,感受分数乘法是整数乘法的进一步发展,帮助学生逐步形成完整的知识结构。]

  四、全课总结

  今天我们学了什么?你有什么收获?

  [设计意图:通过简单的小结,帮助学生梳理本课所学知识点,有利于学生新知识的建构。]

  [总评:本课教学以学生为主体,紧密联系学生生活实际,使学生经历了解决问题的探索过程,在观察、比较、分析、推理等数学活动中,积极主动的获取了新的知识,同时提高了学生应用数学的能力,感受数学知识和方法的应用价值,提高了学生数学学习的自信心。]

六年级上册数学比的教案4

  第12课时 练习课

  教学内容:

  课本第101页练习十六第11-17题。

  教学目标:

  1、使学生进一步理解税率、利率、折扣的含义,知道它们内在实际生活中的应用,能解决相关的实际问题。

  2、进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。

  教学重点:

  理解税率、利率、折扣的含义。

  教学难点:

  百分数解决实际问题的数量之间的关系。

  课前准备:

  小黑板

  教学过程:

  一、基本训练

  1、找出下列各题中的单位“1”,并说出下列句子的含义。

  (1)一件上衣打八折售出。

  (2)今年的'营业额比去年增加20%。

  (3)定期三年的存款年利率是5.00%。

  2、计算。

  40%X=144 X-25%X=3 X+20%X=180

  二、比较练习

  (1)一台电视机原价1800元,打九五折销售,现价多少元?

  (2)一台电视机打九五折后的售价是1710元,原价多少元?

  学生独立练习,完成后讨论比较两道题的相同点和不同点。

  三、巩固练习

  1、做练习十六第12题。

  读题,引导提问:“一共可取回多少元”是什么意思,首先必须求出什么?

  学生独立解答。

  2、做练习十六第13题。

  (1)引导学生弄清题中两个分数的不同含义。

  (2)找出题中数量之间的相等关系

  (3)独立解答,完成后交流解法。

  3、独立完成第14、16题。

  学生独立练习后由学生进行交流评讲。

  四、课堂总结

  通过这节课的学习,你有什么收获呢?

  五、布置作业

  练习十六第11、15、17题。

  六、指导阅读“你知道吗”知识。

  教学反思:

六年级上册数学比的教案5

  1、目标的定位

  目标是教学的灵魂,是一切教学活动的出发点和归宿点,支配着教学的全过程,并规定着教与学的方向。准确把握教学目标是实现有效教学的前提与关键。在课堂设计时,我们应全面了解学生已有的知识经验以及对新知识掌握的情况等,准确把握教学的起点,制定切合学生实际的教学目标。

  《比例尺》这课内容是在学生学习了比的知识、正反比例和图形的放缩的基础上学习的。是比的知识、正比例和乘除法意义的综合应用。依据教材和学生已有知识及年龄特点等来重新审视《比例尺》一课,我们不难发现,这部分内容不仅要使学生理解比例尺的意义、掌握求比例尺的方法,对数值比例尺与线段比例尺能进行转化,培养学生的读图、用图、绘图的能力,并发展学生的空间观念,更重要的'是通过教学使学生认识到所学知识的价值所在。

  值得关注的是:就数值比例尺而言,教材没有就方法比例尺专门的讲解,但是现实生活中有很多这样的例子,就是要学生在理解比的基础上“从不同角度去理解比例尺”,所以我把本节课的重点放在“理解比例尺的含义”上,其次才是计算比例尺,有了深刻的理解,计算自然水到渠成。这样来把握教材,教学起来得心应手,收到良好的效果。

  2、创造性地使用教材

  《比例尺》这一部分内容对学生来说比较陌生、抽象,难于理解,而且我觉得书中的练习和情境可能不太适合我们的学生,学生不一定会十分感兴趣,可能只是为了解题而解题。因此我仔细分析了教材的设计意图,同时又思考如何将这样一节概念教学恰到好处的与学生的生活实际联系起来。结合人教版教材,我对教材进行了取舍,创设了贴近我所教学生生活实际的题目,考虑线段比例尺和放大比例尺在实际生活中应用很广,因些我在把握教材的基础上,还把比例尺的相关内容拓展进来,从而拓宽和活化教材内容,增强学生对学习内容的亲切感,激发学生的求知欲。

  一上课,我首先设计了一个脑筋急转弯题:“老师开车从濮阳到郑州用3个小时,可是有一只蚂蚁却只用5分钟就从濮阳爬到郑州,这是为什么?”,这里创设了情境,激发学生的学习兴趣,然后出示中国地图,让学生从地图中找出濮阳和郑州。接着,引导学生带着老师提出的三个问题进行自学:

  1、什么叫比例尺?

  2、怎样求比例尺?

  3、求比例尺时应注意哪些问题?

  这样,培养学生尝试学习和独立思考的能力。只要学生解决好这三个问题,本课的重难点也就解决了。最后提问:学习了比例尺,对我们有什么用处?使学生对今天所学知识有更深入地了解,并引出用比例尺解决问题。

  这样,把问题情境与学生的生活紧密联系起来,不仅有利于学生理解问题情境中的数学问题,而且有利于学生体验到生活中的数学是无处不在的,培养学生的观察能力和初步解决实际问题的能力。

  3、教学中的不足

  在实际教学的过程,孩子们的热情似乎也挺高,反应也不错。像比例尺的概念挺好理解,把线段比例尺改写成数值比例尺也进行了板书,以及必要的练习。自以为这节课的内容也没有什么较大的难度,学生应该都能够接受。可反映到作业本上就不是那么回事了,求比例尺,应该是图上距离比实际距离,有变成实际距离比图上距离的。比例尺互化的格式有几个是创新的,可似乎这几种创新写法不是那么正确。为什么?把孩子叫到身边,我问他们:“我在板书的时候,你们仔细看了吗?”都齐刷刷地回答我看了。“看了怎么连写法都乱七八糟的。”孩子们个个无语,一个个冤枉的样子。

  后来我冷静地想了想,可能是以下几个原因:首先对比例尺的接触较少,缩小的比例尺可能看到过,如地图等,放大的比例尺就比较少见。因此,会有一个错误想法,较小的数是图上距离,继而就出现了实际距离比图上距离的情况,其次为了集中孩子们的注意力,我在课堂上会比较注意口头交流,认为懂了可以不写,但实际上说跟写还真的是两回事,会说不一定会写。如果我们把图上距离1厘米等于实际距离20千米的线段比例尺改写成数值比例尺,会说20千米等于2000000厘米,因此写成数值比例尺是1:2000000。这样,学生在写的时候会觉得怎么写好呢?尽管有板书,但那也是走马观花,没有起到实质性的作用。看来以后在课堂上必要的写还真不能省。

六年级上册数学比的教案6

  教学目标:

  使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。

  教学重点:

  整数除以分数的计算方法的.推导。

  教学难点:

  理解“÷”转化为“×”的转化过程。

  教学过程:

  一、复习

  1、说一说÷18的意义。

  2、一辆汔车2小时行驶90千米,1小时行驶多少千米?

  (1)口述算式和结果。

  (2)板书:数量关系:速度=路程×时间

  二、新授

  今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?

  板书课题:一个数除以分数

  (1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?

  教师板书:18÷ (出示线段图)

  (2)推导18÷的计算方法。

  引导学生分两步进行计算

  第一部分:求小时行多少千米。

  提问

  1)、小时里面有几个小时?

  2)、2个小时行驶多少千米?

  3)、1个小时行驶多少千米?即小时行驶多少千米?

  明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。

  提问

  1)、1小时里面有几个小时?

  2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?

  明确

  1) 为1小时5个小时,所以,要算18××5,也就是18×。

  2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。

  根据上面的推想,板书:18÷=18×,=45千米

  答汔车1小时行驶45千米。

  强调

  1)18÷不便于直接除,把它转化乘法。

  2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。

  3)是的倒数,即的倒数是。

  2、小结:引导学生归纳整数除以分数的计算方法。

  板书:整数除以分数可以转化为乘以这个数的倒数。

  三、巩固练习

  1、在( )里填上适当的分数,使等式成立。

  15÷=15×( )10÷ =10×( )

  8÷=8×( ) ÷9=×( )

  2、列式计算。

  (1)一堆煤,每次用去 ,多少次才能用完?

  (2)王晶小时做15朵花,1小时做多少朵花?

  3、教科书第29页的“做一做”

  四、作业 练习八第1——4题。

六年级上册数学比的教案7

  教学内容:

  课本第70--71页例2和“练一练”,练习十一第4-7题。

  教学目标:

  1、让学生进一步学会用“假设”的策略分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、让学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力。

  3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  让学生掌握用“假设”的策略解决一些简单问题的方法。

  教学难点:

  怎样使用“假设”的策略解决实际问题。

  课前准备:

  小黑板

  教学过程:

  一、复习回顾

  昨天,我们学习了哪种解决问题的策略?

  今天我们继续学习假设的策略解决问题。

  二、例题教学,探索新知

  1、出示例2。

  在1个大盒和5个同样的小盒里装满球,正好是80个。每个大盒比小盒多装8个。大盒里装了多少个球:每个小盒呢?

  2、分析比较。

  提问:这道题和我们昨天学习的问题有什么不同?

  根据回答概括:昨天是倍数关系,而这题是相差关系。

  “每个大盒比每个小盒多装8个”这是什么意思?你能想到什么?

  3、探索假设的'过程。

  (1)出示相应的假设过程图。

  提问:你怎么想的?(假设都是小盒)

  那还能装80个球吗?为什么?

  (2)出示相应的假设过程图。

  提问:还可以怎么想?(假设都是大盒)

  假设以后就全是什么盒子了?

  现在一共能装多少个球?为什么?

  (3)解决问题。

  谈话:下面请同学们任选一种方法,在作业纸上解答。

  出示两份不同的解法,让学生在座位上介绍解题过程。

  追问:①这儿的“8”什么意思?为什么要-8?

  ②这儿的“40”什么意思?为什么还要+40?

  4、回顾反思。

  提问:在解决这道题时,我们用到了什么方法?(假设)通过假设,就可以把两种不同的盒子假设成一种相同的盒子。

  但要注意的是,假设以后什么发生了变化?(装球的总数发生了变化)所以计算时要用80-8或80+40。

  三、巩固反思,提升策略

  1、做“练一练”第1、2题。

  独立练习,完成后交流核对。

  2、练习十一第1、2题。

  直接填写在书上,完成后集体核对。

  3、练习十一第5题。

  先填空,再解答。

  4、练习十一第7题。

  先完成下面的填空,再列式解答。完成后交流解法有什么不同。

  四、课堂总结

  这两节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?

  五、布置作业

  练习十一第3、4、6题。

  教学反思:

六年级上册数学比的教案8

  教学目的:

  1、使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。

  2、激发学生参与整个课堂教学活动的兴趣,让之在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。

  3、培养学生进行讨论、操作、观察、比较、分析和概括的基本能力。

  4、渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。

  教学重点:圆面的割补及圆面积计算公式的推导。

  教学难点:极限思想的渗透及圆面积公式的推导。

  教具学具:多媒体课件;每人一把剪刀,4张圆纸片,1平方厘米的小正方形若干。

  教学过程:

  一、认识圆面积的内涵——提出问题

  师:你认识圆吗?你已经知道了圆的那些知识?(生答。)回顾以前学的平面图形,你还想知道圆的什么知识?(圆的面积怎样求)

  圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?(教具:大圆)现在你能说出圆的面积指的是什么吗?

  师:对,圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。

  揭示课题:圆的面积

  二、讨论操作——分析问题

  1、想想猜猜,估计大小

  先请看,这是一个圆,我们以它的半径为边画一个正方形。

  媒体显示:

  提问:正方形的面积怎样表示?(板书:r2)那么,请你想一想,与正方形比较一下,估计圆面积的范围?大约是正方形面积的多少倍呢?(老师把学生估计的答案都写在黑板上。)

  师:很显然,猜想只能是个大概,要准确地求出圆的面积,还必须找到科学的方法才行。

  2、积极动脑,讨论推法

  师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。

  如想不出就回忆长方形、平行四边形、三角形的面积公式推导过程。

  如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。

  点出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)

  3、分组操作,反思求悟

  把学生分组根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?

  学生汇报研究情况,让学生在视屏展示台上展示自己的做法。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。

  4、抓住契机,相机引导

  师:摆不行,旋转也不行,只有通过剪、拼转化成已学的图形可以试一试了。

  师:那么,能不能随意剪、随意拼呢?请大家比一比:

  媒体出示大小不一的两个圆(动态显现画的过程)。哪个面积大?为什么?也就是说圆的面积与什么有关?

  得出:圆的面积与半径有关。

  师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?

  请大家再来试试剪和拼。(学生还是很难剪拼出。如有拼出的就让他起来介绍剪拼方法,并在视屏展示台上展示;如没有教师就引导等分剪拼。)

  看来剪和拼还很有点难度,让老师和你一起来研究探讨吧。

  5、学生尝试加媒体显示,研究转化过程

  首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。

  (1)四分法 全体学生在老师的或学生的提示下剪、拼,然后根据情形实物投影、媒体显示。认识拼后有两条边直的,但是上下却凹凸不平弯弯曲曲,不过有点长方形的轮廓。

  (2)八分法 让学生在四分法的基础上剪拼,再媒体显示,比较与四分法时的变化。让学生认识到与刚才拼成的差不多,但上下平多了,像长方形了。

  (3)十六分法 直接媒体显示,上下更平,更像长方形 。

  讨论:如果要让上下完全平,该怎么办呢?

  媒体显示:三十二等分,对插。比刚才十六等分怎样?(更平更直,简直就是长方形。)

  让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成长方形。

  提问:谁能指出圆的边在长方形的什么地方?(学生指,在此作详细的指导。)

  三、转化成长方形,研究推出圆面积公式——解决问题

  1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了长方形,大家现在能够找到圆面积的计算方法吗?

  2、学生合作探究,推导公式。

  (1)讨论探究,出示提示语:

  长方形的长相当于圆的,宽相当于圆的?

  让学生讨论之后动笔试一试,看能否推导出圆的面积公式。

  (2)媒体演示公式推导过程(重点详细讲解。)

  长方形的面积= 长 × 宽

  圆的面积=圆周长的一半 × 半径

  S = πr(C/2) r

  3、揭示字母公式,验证猜想

  S = π r2

  让学生齐读公式,提问验证:这说明“S圆”是“r2”的多少倍?(板书:π≈3.14)

  提问:要求圆的面积只要知道什么就行?(半径r)

  四、在实践中巩固——应用问题

  1、教学例3

  一个圆的半径是5厘米,它的面积是多少平方厘米?

  2、练习:

  从自己身边找一个圆形物体,请你想办法求出它的面积。

  五、课堂总结,渗透学法——研究性学习

  今天这一堂课,通过同学们自己的猜测、讨论、操作、思考及多媒体的帮助,把圆转化成已经学的长方形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。

  圆的面积教学反思

  中塘小学:向庆航

  圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的'认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:

  一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性。

  教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓

  三、演示操作,加深理解

  生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。 平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πr h=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r =πr2。 此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

六年级上册数学比的教案9

  教学内容:

  纳税

  教学目标:

  1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

  2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

  3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

  4、进行学科教学渗透法制教育,主要渗透《宪法》第56条,《中华人民共和国税收征收管理法》第4条,《中华人民共和国个人所得税法》第1条。

  教学重点:

  税额的计算。

  教学难点:

  税率的理解。

  教学过程:

  一、复习

  1、口答算式。

  (1)100的5%是多少?

  (3)1000元的8%是多少?

  2、什么是比率?

  二、新授

  2)50吨的10%是多少?

  (4)50万元的20%是多少?(

  1、阅读p122页有关纳税的内容。说说:什么是纳税?

  进行学科教学渗透法制教育,渗透《宪法》第56条,《宪法》第56条规定:中华人民共和国公民有依照法律纳税的义务。

  2、税率的认识。

  (1)说明:纳税的'种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

  进行学科教学渗透法制教育,渗透《中华人民共和国税收征收管理法》第4条,《中华人民共和国税收征收管理法》第四条规定:法律、行政法规规定负有纳税义务的单位和个人

  为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。

  (2)试说以下税率表示什么。

  a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

  b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

  3、进行学科教学渗透法制教育,渗透《中华人民共和国个人所得税法》第1条,《中华人民共和国个人所得税法》第1条规定:在中国境内有住所,或者无住所而在境内居住满一年的个人,从中国境内和境外取得的所得,依照本法规定缴纳个人所得税。在中国境内无住所又不居住或者无住所而在境内居住不满一年的个人,从中国境内取得的所得,依照本法规定缴纳个人所得税。

  4、税款计算

  (1)出示例5(课本99页)

  一家大型饭店十月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店十月份应缴纳营业税多少万元?

  (2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)

  (3)要求“应缴纳营业税款多少”就是求什么?

  (4)让学生独立完成?

  5、看课本98页内容。读一读,什么是纳税?什么是税率?

  三、练习

  1、巩固练习:练习三十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)

  2、依据第5题,学生各自发表意见。

  板书设计

六年级上册数学比的教案10

  [教学内容]:倒数的认识

  [教材简析]

  学生在前几课时已经学过了分数乘法,会计算分数乘整数,分数乘分数的计算方法,本课以分数乘法为基础,通过计算认识“乘积是1的两个数互为倒数”这一概念,接着教学求倒数的方法,练习六通过一系列的练习,进一步巩固倒数的概念及求一个数的倒数的方法。

  [学情简析]

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。内容看似简单,但对学生来说比较抽象,难理解。教材首先让学生了解倒数的意义,编排了几组乘积为1的乘法算式,通过学生观察、讨论等活动,找出他们的共同特点,从而导出倒数的定义。例1教学求倒数的方法,从让学生自主找一个数的倒数的活动中,体验并概括求一个数倒数的方法,最后提出1和0的倒数问题,让学生讨论得出结论。

  [教学目标]

  1.在举例、观察、比较、分类、归纳的过程中帮助学生理解倒数的`意义。

  2.通过推理、探究,帮助学生掌握求一个数的倒数的方法。

  3.通过学习使学生体会到学习数学的兴趣,发展学生的数学思维能力和质疑的习惯。

  [教学重点]

  倒数的意义与求法。

  [教学难点]理解“互为”的意义,明确倒数只是表示两个数间的关系,而不能单独的说某个数是倒数。

  [教学过程]

  一、复习旧知,作好铺垫

  1、创设情景激趣

  师:请同学们仔细观察,(课件演示风景图片)

  师问:你发现图画上的景物有什么特点?

  生:这些图画都倒过来了,出现了倒影。

  师:是啊,这些图片有了倒影,显得更加漂亮了。在我国的文字里,也有很有趣的汉字,让我们一起找找看。(课件演示有趣的汉字)

  师:你们发现汉字的特点了吗?

  生:这些汉字上下交换位置以后,都成了新的汉字。

  师:今天我们要研究学习倒数,一个数是不是把它倒过来就是它的倒数呢?

  板书:倒数

  [设计意图:学生已经学过分数的乘法,会计算分数乘整数、分数乘分数,因此,在课始,让学生通过完成练习十的第1题,既可以复习分数乘法,也为引出倒数的概念和为求一个数的倒数做好准备。]

  二、合作探究,揭示倒数的意义。

  1.学生交流自己写的乘积是1的两个数

  (估计学生写的数中,两个数都是分数的较多,也可能有分数与小数、分数与整数、小数与小数、小数与整数的等。如:

  师:你认为倒数是怎么样的数?(估计学生可能会提出:倒数应该是两个数之间的关系;称为“倒数”是否与“颠倒”有关,怎么求倒数……)

  [设计意图:通过学生自己举例两个乘积是1的不同的数,引出“倒数”的概念--乘积是1的两个数互为倒数,知道了倒数的概念,学生一定会产生“倒数”究竟是些什么样的数,怎么求一个数的倒数等疑问。学生有了疑问,才会有探索的动力,使枯燥的求倒数的方法成为学生内在的需要而主动地进行研究。]

  三、观察比较,探讨求倒数的方法。

  探讨研究黑板上板书的几组数。

六年级上册数学比的教案11

  一、教学内容

  1、分数乘法的意义

  2、分数乘法的计算

  3、利用分数乘法解决相关实际问题。

  二、教学目标

  1、使学生理解分数乘法的意义是整数乘法意义的扩展;理解和掌握分数乘法的计算方法,会计算分数乘整数、分数、小数;能运用乘法运算定律进行一些简便计算。

  2、使学生经历分数乘法计算方法的探索过程,经历应用分数乘法解决简单实际问题的过程,进一步培养分析、比较、抽象、概括、归纳、类推的能力,发展初步的合情推理和演绎推理的能力。

  3、使学生感受知识之间的内在联系,提高自主探索与合作交流学习的能力,建立学好数学的信心。

  三、主要变化与具体编排

  (一)主要变化

  1、进一步厘清分数乘法的意义。

  分数乘法的意义是整数乘法意义的扩展,二者在本质上完全一致,只是在表述方式上有所区别。例如,如果脱离情境,在抽象的层面上讨论“5×3”,它既可以表示5个3相加,用“倍”的语言来描述就是“3的5倍”;也可以表示3个5相加,同样可以说成“5的3倍”。类似地,如果以这样的方式来讨论“3×”,它既可以表示3个相加,即“的3倍”;也可以表示“3的”。从表面上看,“一个数的几分之几”是一种全新的表述,但实际上,它只是省略了“3的倍”中的“倍”字,把“一个数的几倍”扩展到“一个数的几分之几”。从另一个角度看,“3的”和“个3”表示的意思完全相同,例如,一根绳子长3 m,“它的长多少米”和“根绳子长多少米”说的是一个意思。因此,不管是整数乘法还是分数乘法,其意义都可以归结为“几个几”,只不过,这里的两个“几”都既可以是整数,也可以是分数。

  根据这样的思路,教材编排了三道例题来教学分数乘法的意义和计算。例1,让学生计算3个m是多少,学生可以直接利用整数乘法的意义,转化成连加进行计算。例2,是例3的铺垫,让学生根据整数乘法中的数量关系“单位量×数量=总量”列出“1桶水12L,桶是多少升”的算式是12×,然后结合直观图和分数的意义,发现12×在这儿表示的就是12L的,进而得出“一个数乘几分之几可以表示求这个数的几分之几是多少”的结论。在这一过程中,把“桶水”变成“1桶水的”,实现了从“量”到“率”的有效转换。有了例2的基础,例3中求“公顷的”,算式列成×就“有据可依”了。

  这样编排,有几个好处。一是在单元之始就把分数乘法意义的两种不同表述方式都呈现出来,使学生对分数乘法的意义有比较全面、完整的认识。二是编排逻辑更加清晰,先让学生理解分数乘法的意义,解决“如何列式”,再解决“如何计算”。三是突破了过去教材中到“问题解决”部分才去解决“求一个数的几分之几是多少”的限制,大大拓宽了本单元其他内容的素材选择范围。例如,既可以出现“蜂鸟的飞行速度是千米/分,分钟飞行多少千米”的题材(分数是一种具体量,带单位),也可以出现“一头鲸长28 m,一个人身高是鲸体长的。这个人身高是多少米”的练习题(分数是一种“率”,不带单位)。

  2、增加分、小数相乘的内容。

  学生在未来的学习中会遇到许多分、小数相乘的情况,例如,解决“按1:5的比配制一杯1.2 L的稀释液,需要多少升浓缩液”的问题时,需要计算形如1.2×的算式。如果学生不会直接约分,计算的繁琐程度和出错概率就会大大增加。因此,教材新编了例5,让学生分别计算2.1×和2.4×,让学生根据数据的特点灵活选择计算方法,能直接约分的尽量直接约分。教学时,要使学生通过2.4×=24×0.1×=×0.1×=0.6×的推导过程理解“为什么能直接约分”的原理。

  3、调整了用分数乘法解决实际问题的类型。

  如前所述,学生已经在“分数乘法的意义和计算”中解决了“求一个数的几分之几是多少”的基本问题。这一基本数量关系的掌握对于解决更复杂的分数乘法问题至关重要。

  此次修订增加了“连续求一个数的几分之几是多少”的问题。这一类问题是“求一个数的几分之几是多少”的延续,已知量和所求的量之间的关系没有直接给出,而是通过一个“中间量”搭建起二者之间的“桥梁”。在解决这一类问题时,需要学生把复杂的问题化归为基本的“求一个数的几分之几是多少”,并抓住这一基本数量关系中的几个关键要素:单位“1”是谁?所求的量是谁?二者之间是几分之几的关系?尤其要注意单位“1”与几分之几之间的对应关系。

  对于“求比一个数多(或少)几分之几的数是多少”这类问题,与实验教材相比,修订后的教材减轻了例题的份量,在例题中只出现不同量的情况(婴儿每分钟心跳的次数比青少年多),对于同一量的情况(嗓音降低),则放在“做一做”中让学生巩固掌握。

  4、把“倒数”的内容移至“分数除法”单元。

  倒数是联结分数乘法和分数除法的`纽带。在进行分数除法计算时,要用到“除以一个数,等于乘上这个数的倒数”这一结论,因此,把“倒数”安排在“分数除法”单元,更能体现出学习倒数的必要性。

  (二)具体编排

  1、例1。

  直接利用整数乘法的意义来引入分数乘法,使学生理解几个相同分数相加和几个相同整数相加都可以用乘法计算。并通过将分数乘法转化为分数加法来探究分数乘法的算理,掌握计算方法。

  从吃蛋糕的实际问题引入,借助圆形直观图帮助学生理解题意,探究计算方法。这一直观图延续了三年级学习简单的分数加法时所用的直观图,有助于学生利用已学的知识自主探索。此例中的分数带单位,是一个“量”,学生对于求几个相同量之和的数量关系非常熟悉。先呈现加法计算,然后直接根据整数乘法的意义列出两个乘法算式,说明在这种情况下整数乘法的意义同样适用。

  计算时,先将分数乘法转化为几个相同分数相加,使学生明白分母不变、分子相乘的道理。在此基础上总结分数乘整数的计算方法,并指出有时可以先约分再相乘的简便算法。

  2、例2。

  让学生利用已学的整数乘法的数量关系进行类推,列出分数乘法算式,结合具体情境,使学生理解“一个数乘几分之几可以表示求这个数的几分之几”。这是“求一个数的几分之几可以用这个数乘几分之几”的列式依据。

  教材呈现了三幅图,都是已知1桶水的体积,分别要求3桶水、桶水、桶水的体积。在这里,列式所依据的数量关系都是“每桶水的体积×桶数=水的体积”,只是桶数可以由整数扩展到分数。接下来,结合情境,说明求桶水、桶水的体积就是求12L的和12L的分别是多少。在此基础上,概括出“一个数乘几分之几,可以表示这个数的几分之几是多少”。

  3、例3。

  本例是在学生会利用“求一个数的几分之几是多少,用乘法计算”列式之后,学习分数乘分数的计算方法。

  教材利用两个小题,由简单到复杂,结合直观操作,使学生在探索和理解分数乘分数算理的基础上,一步一步总结出分数乘分数的计算方法,渗透数形结合的数学思想,培养学生的逻辑推理能力。

  要理解分数乘分数的算理,其根本在于分数意义的理解。在这里,有些分数是带单位的“量”,有些分数是不带单位的“率”,事实上,“量”与“率”也是可以互相转化的。例如,公顷,实际上就是1公顷的;公顷的,就是1公顷的,即公顷。

  4、例4。

  本例是学习分数乘法的简便方法。学生在前面对于分数乘法的意义和算理有了深刻的理解后,教学重点转入寻求便捷的算法。

  在设计情境时,教材特意把两个小题设计成需要运用分数乘法意义的两种不同形式进行列式的情形,旨在进一步巩固分数乘法的意义。其中,第(1)小题是“求一个数的几分之几”,第(2)小题既可以根据“速度×时间=路程”列式,也可以根据“几个相同分数相加”列式。

  在数据处理上,本例中既包含分数与分数相乘,又包含分数与整数相乘。学生可以通过此例,进一步掌握分数乘法的一般性算法。

  5、例5。

  本例是教学分数与小数相乘的计算问题。分、小数混合运算是在日常生活中以及未来的数学与其他学科的学习中经常会遇到的情形,因此,根据分、小数的数据特点灵活选择计算策略,也是学生应该具备的一项技能。为此,教材在修订时增加了这部分内容。

  分数和小数相乘,可把分数化成小数相乘(如果分数可以化成有限小数),也可把小数化成分数相乘。不管哪种方法,都是学生已学的知识,可以让学生自行解决。而当小数与分数的分母存在某种倍数关系时,可以直接“约分”。这种约分虽然与以前学过的约分形式不同,但实质都是除以一个相同的数。

  6、例6。

  从“做一个长方形画框需要多长的木条”的实际问题引入,利用长方形画框的周长计算引出分数混合运算。鼓励学生用不同的方法(除了教材上的两种方法,还有可能用四条边相加的)计算,很自然地呈现各种形式的算式,有两级运算的,有带小括号的。教材直接说明分数混合运算的顺序和整数混合运算顺序相同,让学生自主解决。

  教材特意用两道有关联的算式教学分数混合运算的顺序,为接下来正式教学把整数乘法运算定律推广到分数乘法作了很好的铺垫。在此基础上,再通过观察、计算,归纳得出“整数乘法的交换律、结合律和分配律,对于分数乘法也适用”的结论。

  7、例7。

  教材结合具体计算,说明应用乘法运算定律可以使分数混合运算更加简便。

  8、例8。

  本例是让学生在会解决求一个数的几分之几是多少的基础上,解决连续求一个数的几分之几是多少的实际问题。在这里,由于研究的是三个量之间的关系,在描述其中某两个量的数量关系时,单位“1”是在动态变化的。

  教材按“阅读与理解”“分析与解答”和“回顾与反思”呈现解决问题的一般步骤。到了高年级,随着问题复杂度提高,对于信息的搜集、题意的理解以及整个问题解答过程以及结果合理性的回顾与讨论,显得越来越重要。

  在“分析与解答”环节,一方面,通过折纸或画图等操作活动,借助直观图形帮助学生理解题中的数量关系,体会画图是分析问题、解决问题的重要策略。另一方面,倡导解决问题方法的多样化。既可以先求出萝卜地的面积,再求出红萝卜地的面积;也可以先求出红萝卜地占大棚面积的几分之几,再求出红萝卜地的面积。不同解题思路的呈现,可以提高学生思维的灵活性和发散性。

  “回顾与反思”让学生自己完成。检验的角度很多,比如,看看直观图画得是否符合题意,看看列式是否符合图意,看看计算是否正确。检验的方法也是多样化的。例如,可以看到萝卜地的面积是红萝卜地的4倍,而大棚面积是萝卜地的2倍。用红萝卜地的60m2乘4,得到萝卜地是240 m2,再乘2,是480m2,与题中的信息相符。也可以看看红萝卜地的面积是否占整块萝卜地的。

  9、例9。

  本例是让学生解决求比一个数多(或少)几分之几的数是多少的问题。虽然还是研究两个量间的关系,但由于没有直接给出“一个量是另一个量的几分之几”,需要先求出一个量比另一个量多(或少)的具体数量或者先求出一个量是另一个量的几分之几。

  教材通过线段图直观地表示出“婴儿每分钟心跳的次数比青少年多”的意思,对于学生理解题意、选择解决方法起到了关键性的作用。

  教材体现了多样化的解题策略。可以先计算婴儿每分钟心跳比青少年多多少次,这就需要先解决“75次的是多少次”的问题。还可以先求出婴儿每分钟心跳次数是青少年的几分之几,这就需要先解决“比一个数多的数是这个数的几分之几”的问题。

  “回顾与反思”部分,使学生通过回顾解题的过程,充分认识到画线段图这一策略对于解决问题的重要作用。同时,列举了一种检验结果的方法,引导学生用不同的方法加以检验。

  四、教学建议

  1、在已有知识的基础上,帮助学生自主构建新知识。

  2、通过操作和直观图示帮助学生理解分数乘法的算理,掌握计算方法。

  3、紧密联系分数乘法的意义,引导学生在理解数量关系的基础上正确列式,解决实际问题。

六年级上册数学比的教案12

  教学内容:一个数乘以分数及其应用题。

  教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的'几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

  教学过程:

  一、只列式不计算

  1)两地相距4千米,小明行了4/5千米,还剩多少千米?

  2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

  二、发展练习

  (1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

  (2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

  (3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

  (4)每小时骑车行11千米,这4小时一共行多少千米?

  2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?

  3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?

  4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  五、作业:练习四第11—15题。

六年级上册数学比的教案13

  教学目标

  使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。

  进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点

  分数除法应用题的特点及解题思路和解题方法。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、巩固练习

  四、课堂小结

  五、作业

  1、先说出单位1,再说出数量关系式

  (见课件)

  2、做43页复习题

  问:这道题怎样想?

  3、引入新课

  解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

  1、教学例1

  (1)出示例1,学生读题,说明条件和问题。

  问:关键句是哪一句?谁占果树总棵数的2/5?

  单位1是谁?

  (2)让学生画出线段图

  (3)学生独立列式解答。

  (4)讨论:哪种方法比较简单?

  指出:求单位1的应用题一般来说用方程解。

  2、比较解法

  请同学们比较例1和复习题。

  问:在条件、问题上有什么相同点和不同点?

  在解法上有什么相同点和不同点?

  小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。

  1、做练一练

  让学生先写出数量关系式再解答。

  2、做练习十第4题

  问:要怎样想?根据什么来列方程?

  今天学了什么?解答此类应用题要怎样思考、分析?

  练习十第2、3题

  课后感受

  本节课的.内容比较简单,学生有一定的基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!

六年级上册数学比的教案14

  ——德江县稳坪镇中心完小:安世兵

  一、教案背景:

  1、面向学生:小学生

  2、学科:小学数学

  3、课时:1课时

  二、教学课题:圆的认识

  三、教学内容:义务教育课程标准六年级上册P55/56/57页

  四、教材分析:

  《圆的认识》是人教版小学数学六年级上册第四单元《圆》中的教学内容。本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好扎实的基础。

  (一)、教学目标:

  1、学生从圆中初步去感知,掌握圆的.各部分名称及特征,

  2、理解同圆或等圆中直径与半径的关系。

  3、会使用工具正确规范画圆,培养学生的作图能力.

  4、培养学生观察、分析、综合、概括及动手操作能力。

  (二)、教学重难点:

  教学重点:感知并了解圆的基本特征,认识圆的各部分名称。

  突破方法:通过实践操作归纳总结圆的特征。

  教学难点:理解直径与半径的关系,熟练掌握画圆的方法。

  突破方法:在尝试的基础上发现掌握圆的画法。

  五、教学方法

  1、利用多媒体创设情境,让学生感受数学来源于生活,服务于生活。

  2、课堂上坚持以生为本,创造师生互动、生生互动、情感交融的课堂氛围。

  3、培养学生观察、分析、综合、概括及动手操作能力。

  六、教学准备

  (1)学生准备好圆规、直尺、圆形纸片、一张白纸

  (2)学生自带一个轮廓为圆的物体。

  (3)教师准备好课件、与圆相关的其它教学资源。

  七、教学过程

  师指出:我们把连接圆心到圆上任意一点的距离叫做半径。半径一般用字母“r”表示。

  板书:半径。

  3、请同学们继续观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(出示课件)

  生:回答。

  师:我们把通过圆心并且两端都在圆上的线段叫做直径,直径一般用字母“d”来表示。

  板书:直径

  ㈢研究圆的特征

  1、师:请同学们在圆形纸片上画半径,10秒钟看能画出多少条?生:由学生完成。

  师:如果继续让你们画,你们能画出多少条?

  组织学生讨论。

  师:你们能发现这些半径有什么特点?

  生:……

  师:在同一圆内,有无数条半径,所有半径的长度都相等。

  2、想一想:直径有什么特点呢?

  组织学生讨论:

  师:在同一圆内,有无数条直径,所有直径的长度都相等。

  3、请同学们再用直尺量一量同一个圆里半径和直径的长度?看看它们之间有什么关系?

六年级上册数学比的教案15

  一、教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、教学目标:

  1、理解倒数的意义,掌握求倒数的方法。

  2、能熟练地写出一个数的倒数。

  3、结合教学实际培养学生的抽象概括能力。

  四、教学重点:

  理解倒数的意义,掌握求倒数的方法。

  五、教学难点:

  熟练写出一个数的倒数。

  六、教学过程:

  (一)、谈话

  1、交流

  师:我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么联系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存联系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存联系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

  2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1、学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

  师:4是3的4/3,

  生:3是4的3/4

  师:7是15的7/15;生:15是7的15/7。

  ……

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数)出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习出示卡片(六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2)规则:如果下面的同学拿到的数是以上这些数字的.倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0、4

  小组讨论指名板演

  提问:1、你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2、你是怎么找出7/4的倒数的?

  ……

  提问:我们怎样才能很快地找到一个数的倒数?为什么?

  4、练习请剩下的没有找到朋友的同学继续找倒数

  5、讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6、完善求一个数的倒数的方法

  (三)巩固练习

  填空

  1、因为5/3_3/5=1,所以()和()互为();

  2、因为15_1/15=1,所以()和()互为();

  3、4/7与()互为倒数;

  4、()的倒数是6/11

  5、()的倒数是2

  6、1/8的倒数是()

  7、1/2/7的倒数是()

  8、0、3的倒数是()

  判断

  1、得数是1的两个数互为倒数。()

  2、互为倒数的两个数乘积必定是1。()

  3、 1的倒数是1,所以0的倒数是0 。()

  4、分数的倒数都大于1。()

  思考

  4/5_()=()_8

  (四)总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  (五)布置作业

【六年级上册数学比的教案】相关文章:

数学六年级上册教案01-02

小学数学六年级上册教案05-29

苏教版数学六年级上册教案11-06

六年级上册数学比的教案01-07

六年级上册数学比教案01-07

小学数学六年级上册教案01-12

数学上册教案01-15

六年级上册数学复习教案01-08

六年级上册数学优秀教案01-25