六年级数学《比的应用》教案

时间:2023-02-12 12:02:06 数学教案 我要投稿

六年级数学《比的应用》教案

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的六年级数学《比的应用》教案,欢迎阅读,希望大家能够喜欢。

六年级数学《比的应用》教案

六年级数学《比的应用》教案1

  教学内容:

  用比例知识解答应用题。

  教学目标:

  1.通过复习,使学生进一步掌握用正、反比例关系解答应用题的数量关系和解题方法,提高解答此类题的能力。

  2.培养学生的判断能力、灵活运用知识的能力。

  3.培养学生认真审题、认真思考的良好学习习惯。

  教学过程:

  1.基础知识训练。

  判断下面各题中的两种量成不成比例?成什么比例?(口答。)

  (1)工作总量一定,工作效率和工作时间。

  (2)速度一定,路程和时间。

  (3)绳子的长度不变,剪下的米数和剩下的米数。

  (4)单价一定,总价和数量。

  (5)煤的总量一定,每天烧煤量和能够烧的'天数。

  (6)圆的半径和它的面积。

  学生回答后,可让他们说说正、反比例关系的相同点及不同点,正、反比例的判断方法。

  [订正:(1)成反比例(2)成正比例(3)不成比例(4)成正比例(5)成反比例(6)不成比例]

  2.对比练习,加深理解。

  教师谈话:我们已经学习了正、反比例的意义及正、反比例的应用题,这一节课要复习用比例的知识解答应用题。

  (1)教师提问:用正、反比例知识解答应用题的步骤是什么?关键是什么?

  先判断题中的数量关系成不成比例,成什么比例;再根据题中的比例关系,找到等量关系;然后把其中的未知数量用x表示,列出方程解答。关键是正确判断题中的数量关系成不成比例,成什么比例。

  (2)基本练习,区分比较。

  出示复习题。(全班同学动笔完成,指名板演。)

  ①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条路共用几天?

  ②修一条公路,计划每天修0.5千米,24天完成。实际每天修0.6千米。实际多少天修完?

  [订正:

  ①解:设修完这条路共用x天。

  答:修完这条路共用24天。

  ②解:设实际x天修完。

  答:实际20天完成。]

  订正时,可让学生说说解答正、反比例应用题的相同点和不同点是什么?

  [相同点是解题步骤和解题关键相同;不同点是正比例应用题根据商一定列比例式,反比例应用题根据积一定列比例式,所列出的比例式的形式不同。]

  (3)变式练习,加深理解。

  出示复习题。

  ①修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?

  ②修一条公路,计划每天修0.5千米,24天完成。实际每天多修0.1千米。实际多少天可以修完?

  指导学生审题,并与前面的基本题进行比较,找出它们的相同点和不同点,然后让学生独立解答,指名板演。学生可能有如下的解法:

  ①解法一:

  解:设修完这条路还要x天。

  解法二:

  解:设修完这条路一共用x天。

  答:修完这条路一共用21天。

  ②解:设实际x天可以修完。

  (0.5+0.1)x=0.5×24

  0.6x=12

  x=20

  答:实际20天可以完成。

  订正时,重点让学生说说这两题在列式时和前面基本题有什么不同,为什么?(强调列式时要注意对应关系。)

  (4)多种解法,培养能力。

  教师谈话:以上两题你们可以用其它方法解答吗?试一试。

  学生独立解答,指名板演。

  [订正:

  ①(12-1.5)÷(1.5÷3)=21(天)

  或:12÷(1.5÷3)-3=21(天)

  ②24×0.5÷(0.5+0.1)=20(天)]

  订正时,可先让学生说说解题思路,然后比较算术解法和用比例知识解答各自的优点。在此基础上,教师小结:这些应用题用算术方法解,计算时比较方便,但是遇到稍复杂的题目,用比例知识列方程解答容易思考。今后解答这类题时,可以根据具体情况,灵活选用适当的方法解答。

  3.巩固练习,灵活运用。

  (1)用比例知识解答。(全班动笔完成。)

  ①某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时行了50千米。照这样计算,行完全程需要多少小时?

  ②100克蜂蜜里含有34.5克葡萄糖。照这样计算,2千克蜂蜜含有多少克葡萄糖?多少克蜂蜜里含有207克葡萄糖?

  [订正:

  ①解:设行完全程用x小时。

  50x=40×7.5

  x=6

  ②解:设20xx克蜂蜜含有x克葡萄糖。

  解:设x克蜂蜜里含有207克葡萄糖。

  (2)选择合适的方法解答。(全班动笔完成。)

  ①学校买来塑料绳135米,先剪下9米做了5根跳绳。照这样计算,剩下的塑料绳还能做几根跳绳?

  ②生产小组加工一批零件,原计划用14天,平均每天加工1500个零件。任务?

  [订正:①(135-9)÷(9÷5)=70(根)

  或:135÷(9÷5)-5=70(根)

  订正时,可让学生说说解题思路,如用其它的方法,只要列式合理,计算正确,就算对。

  (3)用多种方法解。(全班动笔完成。)

  大齿轮与小齿轮的齿数比是4∶3,大齿轮有36个齿,小齿轮有多少个齿?

  (4)思考题。(供学有余力的学生解答)

  一间长4.8米,宽3.6米的房间,用边长0.15米的正方形瓷砖铺地面,需要768块。在长6米,宽4.8米的房间里,如果用同样的瓷砖来铺,需要多少块?如果在第一个房间改铺边长0.2米的正方形瓷砖,要用多少块?

  [提示:如果瓷砖的大小不变时,房间地面的面积与瓷砖的块数成正比例,所以只要求出两个房间地面的面积,就可以求出第二个房间需要多少块瓷砖。解法是:

  解:设需用x块瓷砖。

  如果都是在第一个房间铺,瓷砖的大小变了,总面积一定,瓷砖的块数与每块瓷砖的面积成反比例。(注意这里是与瓷砖的面积成反比例,而不是与瓷砖的边长成反比例。)解法是:

  解:设要用x块瓷砖。

  0.152×768=0.22×x

  x=432]

  4.布置作业。(略)

六年级数学《比的应用》教案2

  教学目标

  进一步理解分数应用题的解题思路、数量关系和解题方法,进一步提高学生分析推理的能力和解题能力。

  教学重难点

  进一步理解分数应用题的解题思路、数量关系和解题方法,进一步提高学生分析推理的能力和解题能力。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 基本训练

  二、应用题练习

  二、讲解思考题

  四、课堂作业

  1、口算

  2、说出单位1的量和分数的对应数量

  (见幻灯投影)

  3、根据条件说出数量关系式(见幻灯投影)

  1、做练习四第6题

  问:把哪个数量看作单位1?为什么?题里有怎样的.数量关系?

  2、做练习四第8题

  问:哪个数量是单位1的量?与对应的哪个数量?要求什么数量?

  又问:这道题你是怎样想的?求萝卜比白菜少多少吨的数量关系式是什么?

  3、做练习四第11题

  问:这两题有什么相同和不同的地方?和吨表示的意思有什么不同?

  又问:这两题都求还剩多少吨,为什么第(1)

  题用乘法,第(2)题用减法?

  4、分析练习四第12题

  1、出示口答题(见幻灯投影)

  2、学生读思考题

  问:这里两个3/10的意义有什么不同?

  练习四7、9、10、12

  说明:解答像上面这样的分数应用题,关键是确定单位1的数量。

  课后感受

  重点还应放在单位1和数量关系上。在一个数是另一个数的几分之同的数量关系方面有些同学不太掌握,需要加强.

六年级数学《比的应用》教案3

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的.体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

六年级数学《比的应用》教案4

  一.揭示课题

  今天这节课,老师准备与同学们一起应用百分数的知识来解决一些实际问题。(出示课题:百分数的综合应用)

  二.基本练习

  师:老师想向大家了解一些情况,你们愿意吗?

  生:愿意。

  师:你的身高是多少?

  生1:我的身高是1米58。

  生2:我的身高是152厘米。

  生3:我的身高是145厘米。

  师:你的体重是多少千克?

  生1:我的体重是43千克。

  生2:我的体重是38.5千克。

  师:自己的身高和体重都知道,但你知道自己体内大约有多少千克的血液在流动吗?(生茫然并窃窃私语。)

  师:你们称过吗?(生:没有)能称吗?(生:不能)

  师:是呀!称体内的血液这不要了大家的命了(众人笑)。所以老师去查了一些资料,终于找到了一个科学研究的结果。(课件出示:人体中血液的重量约占体重的7%)现在能知道了吗?

  学生根据自己的体重来计算体内的血液重量。

  反馈:

  生:我的体内有4.7千克的血液。

  师:是怎样计算的?

  生:用自己的体重乘以7%。

  师:你们都是这样来算的吗?

  生:是。

  (学生讲述计算过程,教师板书算式。)

  生:我的体重是44千克,所以是44×7%。

  师:对呀!用这样一条简单的百分数知识就可以解决体内血液的重量问题,其实类似的问题在我们身上还可以找到许多,比如说:12岁左右的少年,头高占自己身高的14.28%。(课件同步出示)看到这里,你能知道什么?

  生:能知道自己的头有多高。

  师:你想知道自己的头高吗?(生:想)请算一算吧!(学生计算,师巡回。)

  反馈:

  生:我的身高是155厘米,头高就是155×14.28%=22.134厘米。

  生:我的身高是141厘米,头高就是141×14.28%=20.13厘米

  师:与上面同学的计算结果比较一下,我们的头高都一样吗?为什么?

  生:头高不一样,是因为身高不相同。

  师:老师的头高是21.7厘米,你能帮老师算算身高吗?(课件同步出示)

  (学生计算,师巡回。)

  反馈:

  生:老师的身高是21.7÷14.28%=151厘米。

  师:都一样吗?(生:一样)噢,老师谢谢你们啦!(个别学生开始举手)你想说什么?

  生:不对,这里是12岁左右的少年头高是身高的14.28%,老师是成年人了。

  师:讲得有道理,人在各个不同的生长时期,头高与身高的百分比是不相同的,老师忘了告诉大家了(课件出示人在各个生长时期头高与身高的百分比)。33.3%

  胎儿的头高约占身高的33.3%

  婴儿的的头高约占身高的25%

  12岁左右的少年,头高约占自己身高的14.28%

  成人的头高约占身高的12.5%

  请你选择合适的条件,再为老师算算身高。(学生计算)

  生:老师的身高应该是21.7÷12.5%=173.6厘米。

  师:大家一样吗?(生:一样)这才差不多,虽然第一次计算身高时选择的条件是错误的,但是思考的方法是(生:正确的)。

  :我们用百分数的知识,能解决这些问题,你还知道日常生活中哪些方面也经常用到百分数的知识?

  生:商店打折的折扣。

  生:银行的存款利率。

  生:小麦的发芽率。

  生:产品的合格率。

  三.巩固深化

  师:看样子,百分数的知识作用可不小啊!老师也收集了一些这方面的材料(课件出示)这些问题你们有信心解决吗?(生:能)

  如果在解决过程中碰到困难可以同桌讨论,也可以向老师求援,能用多种方法解决那就更好了。

  (学生练习,巡回指导。)

  反馈讲评:

  (1)某班有男生25人,女生20人,男生人数比女生多百分之几?

  反馈时提问:为什么除以20,而不除以25呢?还有其它方法吗?

  (2)根据会务组统计,本次活动浙江省参加听课的老师约130人,比江西省参加的老师少90%。江西省参加听课的老师有几人?

  反馈时提问:你是怎样思考的?

  (2)小明家刚买了一套新房,向银行贷款40000元,月利率是0.466%,期限

  一年,到期时应付利息多少元?

  反馈时提问:利息如何算?12从哪里而来?

  (4)如右图,练市到南昌的总路程约是985千米,其中练市

  到杭州约占总路程的10%,老师坐汽车从练市到杭州用了2小时。

  照这样计算,从练市到南昌要多少小时?

  解法一:985÷(985×10%÷2)=20小时

  你是怎样思考的'?

  解法二:2÷10%=20小时

  师:这样简单,你解释一下好吗?

  生:路程是全程的10%,在速度不变的情况下,那么从练市到杭州所用的时间应是全部时间的10%。

  师:从刚才的练习中可以体会到解决这些问题的方法是多种多样的,那么在解决百分数的问题时,你们一般是怎样来思考的呢?

  (学生讨论,同组互说。)

  归纳:一般是先找关键句,确定单位“1”的量,再根据具体情况,进行具体地分析。

  四.综合练习

  1.课件出示:练市小学的基本概况。

  练市小学创办于1920年,已有80多年的历史。创办初期只有13位教师,8个班级,而现在已有25个班,占地8400平方米,其中绿化面积占总面积的20%,学校教师数比创办初期增加了400%,现在在校学生1220人,相当于创办初期的488%。

  师:根据这些情况,你还能知道一些其它的问题吗?

  生:可以知道练市小学现在有多少位教师。

  生:可以知道练市小学的绿化面积是多少。

  生:可以知道练市小学创办初期有多少学生。

  师:请把你最想知道的问题计算出来。

  反馈:

  师:(指着8400×20%=1680平方米)能说一说你算的是什么吗?

  生:我算的是绿化面积有多少平方米。

  师:指着“13×(1+400%)=65(人)”你猜一猜他算的是什么?

  生:他计算的是现在学校教师的人数。

  师:还有其它的吗?

  生:(指着25÷18=312.5%)我算的是练市小学现在的班级数相当于原来的百分之几?

  师:讲的真不错,从这里我们可以看出练市小学在不断地发展,为了给我们同学更好的学习环境,我校正在新建一座现代化的新校。(出示新校设计效果图)

  课件出示:

  有62吨砂子准备运往建校工地,甲乙两人都想承运这批砂子。

  甲说:我有一辆载重10吨的大卡车,每次运费元。如果这些砂子全部由我运,运费可以打九折。

  乙说:我有一辆载重4吨的小卡车,每次运费90元。如果这些砂子全部由我运,运费可以打八五折。

  师:根据这样的情况,请你们设计几种不同的运货,并算出总运费。(同桌合作)

  生:我们决定全部由甲运:总运费是:62÷10≈7次;7××90%=1260元

  生:我们决定全部由乙运:总运费是:62÷4≈16次;90×16×85%=1224元

  生:我们决定由甲乙合运:甲运5次,乙运3次,总运费是:5×+3×90=1270元。

  师:你怎么会想到由甲运5次,乙运3次呢?

  生:这样运可以不运半车的,效率比较高。

  师:上面有三种不同的运货,你们最喜欢哪一种?请说明理由。

  生:我喜欢第二个,运费比较省。

  生:我喜欢第三种,同时合运比较快。

六年级数学《比的应用》教案5

  教学内容:练习八的第59题。

  教学目的:通过练习,使学生理解和掌握用正比例,反比例的知识解答应用题的

  方法。

  教学过程:

  一、复习

  1.什么叫成正比例的量?它的关系式是什么?

  2.什么叫成反比例的量?它的关系式是什么?

  3.做练习八的第5题:判断下面每题中的两种量成什么比例关系。

  二、课堂练习

  教师:上节课我们学习了用正比例、反比例的意义和判断来解应用题,今天我们要通过练习,进一步理解和掌握用正比例、反比例意义和判断来解答应用题的方法。

  1.做练习八的第6题。

  指名读题,让学生自己解答。集体订正时,请一个同学讲一讲,自己是怎样想的?教师板书; =

  教师:如果把这道题的第三个条件和问题改成要晒17550吨盐,需要多少吨海水?该怎样解答?

  让学生口头列出比例式,教师板书出来。

  教师小结:像这道题,问题虽然变了,但题中基本数量关系没有变。晒出的盐和海水的吨数成正比例关系,解答这样的`应用题的关键:一是要正确判断相关联的两种量是成什么比例,二是要找准相关联的量中相对应的数:

  2.做练习八的第7、8题。

  集体订正后,指名讲一讲是怎样想的。

  3.做练习八的第9题。

  做题前,提示学生选用哪三个数据都可以,但所叙述的事情要符合实际情况。订正时,如果学生在编题中的语言不规范,要注意纠正。

六年级数学《比的应用》教案6

  教学目标

  1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。

  2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

  教学重点

  本金、利息、利率的含义。

  教学难点

  计算定期存款的利息。

  教学过程

  一、师生交流

  课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

  师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。

  让学生汇报调查的情况,并出示课本的银行存款利率表。

  师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。

  二、探讨新知

  1、计算公式

  师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。

  利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。

  请学生讨论利息的算法,老师适当的提示。

  板书 利息=本金×利率×时间

  全班齐读公式。

  师:要求利息就必须要知道什么?

  2、计算利息

  师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。

  出示题目:

  笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?

  淘气说:我存三年期的300元,到其实有多少利息? 师:笑笑存的本金是多少?存款的时间是多长?利率是多少?

  怎样算?淘气呢?

  学生回答后,师板书。

  笑笑得到的利息:300×2.52%×1=7.56(元)

  淘气得到的`利息:300×3.69%×1=33.21(元)

  师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。

  师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至20xx年8月14日,利息税是利息的20%,20xx年8月15日至20xx年10月7日,利息税是利息的5%,从20xx年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。

  三、巩固练习

  1、李老师把20xx元钱存入银行,整存整取五年,年利率按4.14%计算。到期时,李老师的本金和利息共有多少元?

  先让学生自己计算,在全班讲评。

  2、光明小学为400名学生投保“平安保险”,保险金额每人5000元,保险期限一年。按年保险费率0.4%计算,全校共应付保险费多少元

  先提醒学生说出保险金额、年保险费率的含义,再让学生计算。

  四、课后总结

  1、同学们现在已经知道了把压岁钱存到银行可以获得利息,而存款方式有好几种,今后打算怎么处置自己的压岁钱呢?

  如果把它存到银行,该怎样存呢?

  建议学生课后亲自到银行存一次钱。

  2、这节课你学到了哪些知识?

  五、布置作业

六年级数学《比的应用》教案7

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的.学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

六年级数学《比的应用》教案8

  教学目标:

  1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;使学生真正成为课堂的主人;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学重点:

  1、正确理解按比例分配的意义。

  2、掌握按比例分配应用题的特征和解题方法。

  教学难点:能正确、熟练地解答按比例分配的实际问题。

  教学过程:

  一、课前组织复习旧知

  同学们,通过前几节课的学习,我们已经认识了什么是“比”,那么,如果我现在告诉你“某兴趣小组男生和女生的人数比是5:4,从这组比中,你能推断出什么信息呢?”(课件出示题目)

  学生自由发言,预设推断如下:

  1、全班人数是9份,男生占其中的5份,女生占其中的4份。

  2、以全班为单位“1”,男生是全班的,女生是全班的。

  3、以男生为单位“1”,女生是男生的,全班是男生的。

  4、以女生为单位“1”,男生是女生的,全班是女生的。

  5、女生比男生少(或20%)。

  6、男生比女生多(或25%)。

  追问:你还可以从中推断出这个兴趣小组的男生和女生可能各有多少人吗?(请3个学生说说,把握总人数比是5:4就可以了。)

  二、探索方法,建立模型

  1.理解题意

  (1)什么是稀释液?怎样配置的?

  (2)什么是按比例分配?

  2.自主探究,合作学习

  自学数学书P49例题2,思考:

  (1)你从例题2中得哪些信息?

  (2) 1:4表示什么?你从中得到哪些信息?

  (3)你能用画图的方法给同位讲解吗?

  (4)方法一先求什么?再求什么?方法二先求什么?再求什么的?

  3.小组展讲

  小结:方法一把各部分数的比看作份数关系,先求每一份,然后再求各部分的.量;方法二把各部分的比转化成分别占总数的几分之几,根据分数乘法的意义,直接求总数的几分之几是多少。

  三、巩固练习

  1.一个三角形三条边的长度比是3∶5∶4.这个三角形的周长是36厘米,三条边的长度分别是多少厘米?

  2.填空

  3.一个长方形的周长是28cm,长与宽的比是5:2,长与宽各是多少cm?

  4.一个班,男生比女生人数多10人,男生与女生人数的比是3:2,全班有多少人?

六年级数学《比的应用》教案9

  设计说明

  根据本节课的内容进行如下设计:

  1、创设有效情境,自然引入新课。

  首先利用教材中的情境,让学生交流分橘子的方法,从而引出平均分的方法不公平,而按照学生人数的比来分橘子比较合理,将学生的思路自然而然地引入到本节课,即按一定的比进行分配的问题的探讨中来。

  2、给学生提供了充分思考和活动的空间。

  在新知的探究过程中,给学生提供充分的体验空间。让学生利用手中的小棒代替橘子,鼓励他们实际分配,并做好分配的记录,使学生在这一操作过程中进一步体会比的'意义。有了上面的实际操作经验,在解决把140个橘子按3∶2进行分配时,给学生提供了充分的探究和交流的空间。在学生探究出不同的解决问题的策略后,组织他们将不同的策略进行比较,发现其中的共同点,让学生在比较的基础上选择自己认为合理的策略解决问题。

  课前准备

  教师准备PPT课件

  学生准备小棒

  教学过程

  导入新课

  1、观察情境图,获取图中的信息。(课件出示)

  从这幅图中你知道了哪些信息?(指名回答)

  2、提出问题。

  把这些橘子分给1班和2班,怎样分合理?

  3、讨论分配方案。

  请同学们想一想,说一说你的分法。

  (1)学生思考,同桌交流。

  (2)指名汇报,说明理由。

  预设

  生1:可以每个班各分一半。

  生2:按1班和2班人数的比来分配。

  引导学生说出两个班的人数不一样,平均分看似公平,其实并不公平,而根据两个班人数的比3∶2来分比较合理。

  4、引入课题。

  像这样,把一个数量按一定的比进行分配的问题在生活中常常会遇到,今天我们就来共同学习这类问题的解决方法。(板书课题:比的应用)

  设计意图:通过具体情境,使学生体会到数学与生活的密切联系,激发学生的学习兴趣,引导学生分析情境中的数学信息,为后面的动手操作、分析推导解题方法奠定基础。

  探究新知

  (一)初探新知。

  要把这筐橘子按3∶2分给1班和2班的小朋友,应该怎样分?我们用小棒代替橘子分一分。

  1、小组交流后学生动手分配。

  引导学生明确1班占3份,2班占2份。

  2、记录分配的过程。

  引导学生在记录过程中发现6∶4,30∶20……都等于3∶2,为寻找解决问题的策略奠定基础。

  3、各小组汇报,说说自己的分法。

  引导学生不断调整每次分配的数量,明确1班占3份,2班占2份。

  4、在这次分小棒的过程中,你有什么发现?说说感受。

  (每次分的小棒的根数比都是3∶2)

  设计意图:在分小棒的操作活动中,进一步体会比的意义,在观察记录的过程中发现6∶4,30∶20……都等于3∶2,巩固了化简比的内容。另外,学生不断地调整每次分配的数量,不断地产生新的解题策略,理解按一定的比进行分配的意义。

六年级数学《比的应用》教案10

  教材分析

  这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  学情分析

  在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

  教学目标

  逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

  教学重点和难点

  1、 能确定单位“1”,理清题中的数量关系。

  2、利用题中的等量关系用方程解答。

  教学过程

  一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

  ⑴、梨的重量比苹果多了( )千克。

  ⑵、梨的重量是( )千克。

  2、钢笔X元,比毛笔少了3元 。

  ⑴、钢笔比毛笔少了( )元。

  ⑵、毛笔是( )元。

  3、小结:解答分数应用题的.关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授课

  1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

  (1)卖了 是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

  (4)指名列出方程。解:设运来苹果X千克。

  x-36=20

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。

  解:设航模小组有人。

  (1+)=25

  =25÷

  =20

  答:略。

  三、小结

  1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

六年级数学《比的应用》教案11

  教学内容:

  冀教版小学数学六年级上二单元第5课时(比的应用)

  教学目标:

  1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学重点:

  1、正确理解按比例分配的意义。

  2、掌握按比例分配应用题的特征和解题方法。

  教学难点:

  能正确、熟练地解答按比例分配的实际问题。

  课前准备:

  布置学生预习

  教学过程:

  一、创设情境

  1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)

  2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?

  (组织交流)

  师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

  二、初步感知

  1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)

  2、谁能用自己的语言说说3:2的具体含义。

  3、谁能用算式表示两位各应分得多少元?

  4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

  三、自主探究,合作研习

  1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

  2、此时用PPT出示“学习内容”“学习目标”和“导学提纲”

  学习内容:冀教版小学数学六年级上册第19页。

  学习目标

  1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

  2、认识连比,理解三个数量连比的意义。

  导学提纲

  1、例1中“紫色与红色方块数的比是3:5”的含义是什么?

  2、与同学说说例题中每种方法的解题思路。

  3、你能画图理解这两种解题方法与同学交流吗?

  4、你怎样理解例2“按照2:3:5配置混凝土”这句话的'含义?

  5、“练一练”第3题是把1200千克培养料按怎样的比来分配?

  学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

  (1)独立思考,尝试解答。

  (2)小组交流,说说想法。

  (3)组织交流,形成思路。

  (4)选好内容,进行预展示。

  四、集中展示

  1、例1中“紫色与红色块数的比是3:5”的含义是什么?

  预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

  (2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

  茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

  2、展示例2的解题思路及方法……

  3、展示“练一练3”的解题方法

  小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

  预设:

  (1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。

  (2)根据份数先求总份数,再求每份数,最后求几份数。

  五、反馈检测

  1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4:3,你知道参加各项比赛的女运动员有多少名吗?

  2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4:7:9的三角形,请你帮低年级老师算算三条边的长度各是多少?

  3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

  4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

  六、课堂小结

  学了这节课,你有什么收获?

  七、课堂作业

  20页,1、2、4、5。

  板书设计:

  按比例分配的解题方法

  一要知道分配的数量,二要知道按怎样的比分配

六年级数学《比的应用》教案12

  教学内容:教材第20页例2、练一练。

  教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:

  教学重点:进-步掌握圆锥的体积计算方法。

  教学难点:根据不同的.条件计算圆锥的体积。

  教学过程:

  一.铺垫孕伏:

  1.口算。

  2.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  3.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

  二、自主探究:

  l.教学例2。

  出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

  2.组织练习。

  (1)做练一练。

  指名一人板演,其余学生做在练习本上,集体订正。

  (2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后

  学生做在练习本上。集体订正。

  (3)讨论练习三第7题。

  底面周长相等,底面积就相等吗?

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

  四、布置作业

  1.练习三第5题及数训。

  2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

  3.思考练习三第8、9题。

六年级数学《比的应用》教案13

  教学内容:

  小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

  教学目标:

  1、使学生理解按比例分配的意义。

  2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

  3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

  教学重点:掌握按比例分配应用题的解题方法。

  教学难点:按比例分配应用题的实际应用。

  教学准备:自制多媒体课件。实物投影仪。

  教学过程:

  一、复习引入:

  1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

  学生汇报:

  (1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

  (2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

  (3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

  (4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

  (5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

  (6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

  2、口答应用题

  六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的'保洁区是多少平方米?

  口答:100÷2=50(平方米)

  提问:这是一道分配问题,分谁?(100平方米)

  怎么分?(平均分)

  六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

  在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

  指出:按比例分配就是把一个数量按照一定的比来分配。

  二、讲授新课

  1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

  1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

  小组汇报:

  (1)六年级的保洁区面积是二年级的 倍

  (2)二年级的保洁区面积是六年级的

  (3)六年级的保洁区面积占总面积的

  (4)二年级的保洁区面积占总面积的

  ……

  3、课件演示

  4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

  方法一、3+2=5 100÷5=20(平方米)

  20×3=60(平方米) 20×2=40(平方米)

  方法二、3+2=5 100× =60(平方米)

  100×=40(平方米)

  ……

  5、这道题做得对不对呢?我们怎么检验?

  ①两个班级的面积相加,是否等于原来的总面积。

  ②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

  ……

  6、练习:

  如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

  学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

  (1)小组讨论,提出各种各样的分配方案,最后统一到按照各班人数进行分配比较合理。

  (2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

  (3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?

  (4)学生独立解答。

  (5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

  8、小结:观察我们今天学习的按比例应用题有什么特点?

  三、开放运用,体验成功

  小明九月份共用去零花钱30元,具体用途及分配情况见下表:

零花钱30



买学习用品



买零食



玩游戏机



1



3



6









  1.你能算出小明的各项支出是多少元吗?

  2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?

  1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。

  四、总结:

  今天的学习你有什么收获呢?

  五、布置作业:练习十三的第1~4题。

六年级数学《比的应用》教案14

  教材分析

  本节课的教学内容是学生学习了百分数和百分数的基本应用以后学习的内容,主要是利用百分数进行利息的计算,同时让学生学会解决储蓄的有关问题,养成不乱花钱的.好习惯

  学情分析

  在五年级的下册,学生已经学习了百分数的意义及运用方程解决的百分数问题,在此基础上,本单元进一步学习百分数的应用。本节课是利用百分数计算利息,与已有知识联系紧密,难度不大,易于掌握。同时也可以让学生真切地体会到百分数与生活的紧密联系,从而激发学习的欲望。

  教学目标

  知识与技能

  1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决问题的能力。

  2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

  过程与方法

  1、结合具体事例,认识与储蓄有关的术语的含义。

  2、经历通过模拟实践、合作交流,探索利息的计算公式,并应用公式计算利息,掌握利息的计算方法的过程。

  情感态度与价值观

  感受数学与日常生活的密切关系,了解数学的价值,提高学习数学的兴趣。

  教学重点和难点

  重点:认识储蓄的意义及作用。

  难点:掌握利息和税后利息的的计算方法。

六年级数学《比的应用》教案15

  学情分析:

  掌握各部分量占总数量的几分之几,能熟练地按已知一个数求它的几分之几是多少,用乘法求各部分量的新方法。

  教学难点:

  能根据实际情况,判断各部分量之间应该按怎样的比例来分配。

  教学重点:

  掌握按比例分配应用题的特征及解题方法.教学难点:按比例分配应用题的实际应用

  教学目标:

  1、使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

  2、培养学生应用所学数学知识解决实际问题的能力;

  3、通过实例使学生感受到数学来源于生活,生活离不开数学。

  教学策略:

  引导学生将比转化成分数、份数,指导学生试算

  教学准备:

  学生课前作调查;

  教学过程:

  一、导入

  1、看题目:“比的应用”,你想知道什么?

  2、小小调查员:前几天,我已经请同学们去作了课外调查,看看在我们日常生活中,哪些地方用到了比的知识。下面,请汇报一下你调查到的信息。

  3、小结:通过调查,我们已经初步感受到比和我们的日常生活有密切的联系。今天,我们就随一位小朋友:小明一起去看看,比在生活中有什么用处?

  二、新课

  1、配置奶茶

  星期天的上午,小明家来了一位客人。刚巧爸爸妈妈有事出去了。于是小明就做起了小主人,亲自招待这位王叔叔。

  师:请客人坐下后,一般要干什么?(泡茶)对,这是待客的'基本礼仪。小明打算亲手配制一杯又香又浓的奶茶,招待王叔叔。

  (1)奶茶中,奶和茶的比是2:9。看了这句话,你知道了些什么?

  (2)小明想要配制220毫升的奶茶,

  (a)先要解决什么问题?(奶和茶各取多少毫升?)

  (b)请你先独立计算一下,奶和茶各取多少毫升?

  (4)评价

  (a)请你谈谈你对这些不同解法的看法?你比较喜欢哪一种解法,为什么?

  (b)其实,这些方法都很好。不过,第(b)种解法是我们今天所学到的一种新方法。它是“把一个数量按照一定的比例分配”的问题,我们把它叫做“按比例分配”。(显示课题,齐读)

  2、 计算电费

  (1) 刚才小明就按大家计算的结果给王叔叔配制了一份奶茶。王叔叔在小明家坐了一会儿,刚巧看到桌子上放着一张电费的清单。原来,“小明家和另外两户居民合用一个总电表。九月份共应付电费60元。”(显示)王叔叔想看小明这个小主人合不合格,就问小明:“你们家上个月交了多少元电费?”

  (a) 你觉得小明家应付多少元电费?你是怎么想的?

  (b) 你为什么不同意他的想法?(不公平)

  三、课堂小结

  今天这堂课我们学习了“按比例分配”,你有什么收获?

【六年级数学《比的应用》教案】相关文章:

《比和比的应用》数学教案02-25

数学教案-比例的应用09-29

六年级上册数学比的应用教案03-15

六年级上册数学《比的应用》教案03-14

小学六年级数学《比的应用》教案01-21

六年级数学上册《比的应用》教案02-11

六年级数学《比的应用》教案15篇02-12

小学六年级上册数学《比的应用》教案02-05

数学教案-对数函数的应用 教案09-29