六年级数学《比的应用》教案

时间:2023-02-12 12:32:28 数学教案 我要投稿

六年级数学《比的应用》教案15篇

  作为一名老师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。如何把教案做到重点突出呢?下面是小编为大家收集的六年级数学《比的应用》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

六年级数学《比的应用》教案15篇

六年级数学《比的应用》教案1

  教学内容:课本第63页例2;练一练;《作业本》第28页。

  教学目标:进一步理解按比例分配的意义,巩固解答按比例分配的基本方法,并能应用按比例分配解决简单的实际问题。

  教学重点:在连比中按比例分配应用题的特征与解答方法

  教学难点:理解连比(三部分比)的意义与分数应用题的关系

  教学关键:理解连比(三部分比)的意义

  教学过程:

  一、基本练习:

  1、你可以想到什么?

  (1)某班男、女生人数比是5∶4;

  (2)柳树、杨树棵数比是1∶6;

  (3)科技书和故事书比是5∶4。

  2、练习:

  (1)学校有故事书80本,故事书和科技书的本数之比是2∶3,科技书有多少本?

  (2)改编1题中的故事书80本为科技书有80本。

  分析:每题有多种不同的解法,想想你能列出几种不同的解法?

  二、新授

  1、出示例2:一种混凝土,由水泥、沙子和石子按2∶3∶5拌制而成。要配制这种混凝土6000千克,需要水泥、沙子和石子各多少千克?

  (1)想:2∶3∶5叫做水泥、沙子和石子这三种量的连比。意思是这种混凝土里水泥占2份,沙子占3份,石子占5份。

  (2)学生尝试解答。

  (3)反馈、讲评。

  2、试一试:一种青铜,内含铜88份,锡10份,锌2份。要炼制这种青铜400吨,需要铜、锡、锌各多少吨?

  3、补充:一个长方体的`棱长总和是24厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?

  三、练一练。P64。

  四、课堂小结。

  这堂课与上堂课有什么不同吗?你学会了什么?

  五、《作业本》第28页。

六年级数学《比的应用》教案2

  教学目的

  使学生初步学会综合算式解答两步应用题,提高学生分析问题、解决问题的能力。

  教学重点

  如何分析应用题,依题意列出综合算式。

  教学难点

  确定先算什么,后算什么,正确使用小括号。

  教具准备

  投影片或教学课件。

  教学过程

  一、复习沟通,建立联系

  出示下面文字题,让学生独立列出综合算式,并请一名同学说一说分析的思路。

  (1)42乘5,再加上36,和是多少?

  (2)75与25的和乘78,积是多少?

  二、探索知识,领悟方法

  1、学习例4,出示题目,让学生独立列式解答,并让学生说一说是怎样想的。

  可能出现以下情况:

  (1)如果学生中既有分步解答,又有用综合算式解答的,教师就让列综合算式的学生说一说怎样想的。其他同学补充或提出不同的意见,然后教师根据学生的回答情况,进行总结:解答这样的两步应用题,既可以用分步算式解答,也可以用综合算式解答。

  (2)如果学生都是分步解答的,教师就让学生小组讨论:如果用综合算式解答这道应用题,应该怎样列算式?

  小组汇报:一个小组汇报,其他组做出补充或提出合理的建议。最后教师小结:要列成一个综合算式,实际上就是把分步解答的'两个算式合并成一个综合算式,首先要弄清先算什么。

  2、独立思考:用综合算式解答两步应用题和解答两步文字题有什么联系和区别?

  3、练习

  让学生独立解答做一做中的题目,并让学生说一说自己的想法。

  三、应用知识,掌握方法

  学生独立完成练习二十一的第6、7、8题。

  四、课堂小结

  通过师生交流,突出两步应用题的数量关系。

  板书设计:

  用综合算式解答两步应用题

  300-180=120(棵)(300-180)3

  1203=40(棵)=1203

  =40(棵)

  答:平均每次要浇40棵。

六年级数学《比的应用》教案3

  教学目标

  1、认识分数应用题的特点,理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  2、认识求一个数的几分之几是多少的.应用题和求一个数的几倍是多少的应用题之间的联系。

  教学重难点

  理解分数乘法应用题的解题思路和方法,认识分数乘法应用题的基本数量关系。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、 复习引新

  二、教学新课

  三、巩固练习

  1、出示复习题(见幻灯课件)

  问:把哪个量看作单位1?题中每个分数表示的意义是什么?

  2、做15页复习题

  问:为什么要用乘法计算?这里的一个数和分数相乘表示什么意义?

  3、引入新课--学习分数应用题

  1、教学例1

  (1)出示例1,学生读题

  找条件,想问题,画线段图,想方法

  (2)分析两种不同的方法

  找相同点、不同点以及存在的联系

  (3)巩固练习做17页练一练1

  2、教学例2

  (1)出示例1,学生读题

  找条件、想问题、画线段图

  (2)列式并说说想的过程

  重点指出把谁看作单位1

  3、教学想一想

  (1)读题、思考、画线段图

  问把谁看作单位1

  (2)列式

  (3)问:算式中的3/2是什么分数?

  (4)说明:条件里一个数量是另一个数量的几分之几,可以是假分数,也可以是真分数。

  (5)做练一练2

  4、小结

  问:今天学习的分数应用题都告诉我们哪两个条件,要求的是什么问题?分析数量关系时都是要先确定哪个数量?

  1、说一说下面各题里单位1的量

  (见幻灯课件)

  2、做练习三第1题

  3、做练习三第5题

  问:这三题有什么相同的地方?都用什么方法?

  4、作业

  练习三第2~4

  课后感受

  初次接触应用题,学生在说想法上还存在一点问题,常常是明白但不知道该怎么表达。特别是数量关系方面,可加强说想法的练习,形式也可多样些。

六年级数学《比的应用》教案4

  教学内容

  教科书第27页的第4~5题,练习六的第4~6题.

  教学目的

  1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.

  2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.

  3.通过一题多解,培养学生思维的变通性和灵活性.

  教具、学具准备

  自制多媒体课件.

  教学过程

  一、揭示课题

  今天我们复习用比例的知识解答应用题.

  二、回忆

  用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:

  (1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.

  (2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.

  (3)解方程.

  (4)验算.

  (5)答题.

  三、分层练习

  1.基本练习.

  (1)判断下面每题中的两种量成什么比例.

  ①速度一定,所行的路程和时间.

  ②一本书的总字数一定,每行的字数与行数.

  ③苹果的单价一定,购买的数量和总价.

  ④工作总量一定,工作效率和魇奔洌?/P>

  (2)实际运用.

  ①晶晶借了一本112页的《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?

  学生独立练习后,小组内交流思考的过程,教师巡视指导.

  ②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?

  学生独立练习后,小组内交流思考的过程,教师巡视指导.

  ③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?

  学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.

  2.综合练习.

  (1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的.版式,那么这篇文章需打印多少行?共需几页纸?

  提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.

  解:设需打印x行.

  30×96=32x

  x=90

  90÷35=2(页)……20(行)

  答:这篇文章需打印90行,共需3页纸.

  (2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?

  学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.

  可能出现的答案有:

  (1)解:设从家直接到少年宫,要x小时. (2)解:设可以省x小时.

  (11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)

  18x=1.5×15 或 (11+7)∶1.5=(11+7-15)∶x

  18x=22.5 解答过程略.

  x=1.25

  1.5-1.25=0.25(小时)

  答:可以省0.25小时.

  3.发展练习.

  六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.

  第一小队 10本 ( )元

  第二小队 12本 ( )元

  第三小队 11本 ( )元

  学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.

  可能的方法有:

  方法一:792÷(10+12+11)=24(元) 方法二:792×10/33=240(元)

  24×10=240(元) 792×12/33=288(元)

  24×12=288(元) 792×11/33=264(元)

  24×11=264(元) 答(略).

  答(略).

  方法三:解:设第一小队应交x元.

  792∶(10+12+11)=x∶10

  x=240

  答(略).

六年级数学《比的应用》教案5

  教学内容

  教科书第112页例1、第113页例2及“做一做”中的题目,完成练习二十九的第1~4题.

  教学目的

  使学生在学过的百分数的意义和分数应用题的基础上,能够正确地解答求一个数是另一个数的百分之几的应用题.

  教具准备

  将复习中的第1题图画在小黑板上,第2题写在黑板上.

  教学过程

  一、复习

  1.看图,回答下面的问题.

  (1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

  (2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

  先让学生想一想,然后,再指定学生回答.

  2.五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的几分之几?

  出示上面的复习题后,先让学生在练习本上做,同时,请3名学生在黑板上每人做一题.

  核对第2题时,教师可以说明:这道题是求五年级学生中已达到国家体育锻炼标准的人数占五年级全体学生人数的几分之几.

  然后提问:

  “解答这样的题目关键是什么?”

  “关键是应该以谁作单位‘1’?”

  “用什么方法计算?怎样列式?”

  教师:这是我们过去学过的分数应用题.百分数的应用题跟分数应用题类似.下面我们就来学习百分数应用题.板书课题:百分数的一般应用题(一).

  二、新课

  1.教学例1.

  出示例1:“五年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占五年级学生人数的百分之几?”

  请学生读题,提问:

  “这道题和上面复习中的第2题有什么不同?”

  “解答这道题应该以谁作单位‘1’?用什么方法计算?怎样列式?”学生口述,教师板书:120÷160=0.75=75%

  教师:这道题和上面复习中的第2题相比,题目的条件完全相同,只是问题不同.因为这道题的问题是求占五年级学生人数的百分之几,所以要把结果化成百分数.

  2.出示练习题:“一班种树40棵,二班种树48棵,二班种树的棵数占一班的百分之几?”先让学生想一想,再提问:

  “这道题怎样列式?”

  让学生讨论一下.

  学生讨论后,教师说明:解答这样的题目,必须看清求的是什么,弄清以谁作单位“1”?把数量关系弄清楚了,才能确定怎样列式.

  3.教学例2.

  教师:百分数在日常生活和生产中的应用非常广泛.比如在农业生产中,要实行科学种田,播种前需要进行种子发芽试验,然后根据发芽的种子数占试验种子总数的百分之几,决定单位面积的播种量.这样既能确保基本苗的`数量,又可以避免浪费种子.通常把“发芽的种子数占试验种子总数的百分之几叫做发芽率”(口述后再板书发芽率的概念).求发芽率是百分数在农业生产上的一种重要应用.

  口述并板书发芽率计算公式:

  发芽率=×100%

  教师指着公式中的百分号说明:在这个公式中为什么要乘100%呢?因为发芽率是指发芽的种子数占试验种子总数的百分之几,如果公式只写成,不加“×100%”,一般来讲,这只是分数形式,除得的商是小数,而不是百分数.如果在的后面加上“×100%”,相当于乘1,这样就可以使除得的结果化成大小不变的百分数了.所以在计算发芽率的公式中必须加上“×100%”.我们在这以后还要学习像出粉率、合格率、出勤率等等,这些也要用百分数表示,所以它们的计算公式也必须加上“×100%”.

六年级数学《比的应用》教案6

  【教学内容】

  小学数学实验教材(北师大版)六年级上册第一单元P23-24内容

  【教学目标】

  1、在具体情景中理解增加百分之几或减少百分之几的意义,加深对百分数意义的理解。

  2、能解决有关增加百分之几或减少百分之几的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  【教学重点】

  理解增加百分之几或减少百分之几的意义,能解决有关增加百分之几或减少百分之几的实际问题。

  【教具准备】

  多媒体课件。

  【学具准备】

  【教学设计】

  教学过程教学过程说明

  一、准备

  线段图是把握数量关系的重要方法之一

  你能用线段图表示下面的数量关系吗?

  在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的`人数比参加围棋班的多25%

  1.学生独立完成线段图

  2.展示学生成果

  3、教师对学生的作品进行评价

  25%=1/432人

  围棋班比围棋班25%

  航模班

  二、百分数的应用

  1、出示教科书P23上面的问题

  2、思考:增产百分之几是什么意思?

  ※学生自由发表自己的见解

  ※教师评价

  杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几

  3、学生独立解答问题

  4、班内交流

  方法一:7-5.6=1.4(吨)

  1.45.6

  =0.25

  =25%

  方法二:75.6

  =1.25

  =125%

  125%-100%=25%

  三、试一试

  1、出示教科书P23下面的问题

  2、几成是什么意思?

  ※成数主要用于农业收成

  ※几成就是十分之几。

  ※一成就是1/10,也就是10%

  二成五就是2.5%,也就是25%

  3、学生独立解决问题

  ※(2.61-2.25)2.25

  =0.362.25

  =0.16

  =16%

  四、练一练

  1.教科书P24练一练第1题

  2.科书P24练一练第2题

  3.教科书P24练一练第3题

  五、课堂总结

  通过今天的学习你有什么收获?

  从复习中引导学生分析数量关系。

  通过介绍某实验田普通水稻与杂交的产量,引出增产百分之几的实际问题。

  引导学生分析数量关系,再一次体会百分数的意义。

  引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。

  重点理解几成的意思。让学生独立完成再交流,发展学生的思维。

六年级数学《比的应用》教案7

  教学内容:

  义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

  教材简析:

  教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

  教学目标:

  1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

  2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

  3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的兴趣。

  教学过程:

  一、创设情境,谈话导入。

  谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

  [设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

  二、自主探究,获取新知。

  1.课件出示教科书73页情境

  谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

  (1)北京故宫的占地面积大约是多少公顷?

  (2)我国的世界文化遗产和自然遗产一共有多少处?

  (3)我国的世界文化遗产比自然遗产多多少处?………

  (4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

  2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

  [设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的.数学思想方法,为新问题的解决做好铺垫。

  3.选择你喜欢的方法试着独立解决这一问题好吗?

  4.学生汇报交流。

  让学生到前面展示不同的方法,分别说说自己的解题思路。

  (1)272×1/4=68(公顷) 68+4=72(公顷)

  (2)272×1/4+4

  =68+4

  =72(公顷)

  学生在多次交流解题步骤中,教师板书数量关系

  天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

  并展示学生画的线段图。让学生分析线段图。

  [设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

  5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

  学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

  全班交流,展示做题方法。

  (1)30×7/10+30×2/15 (2)30×(7/10+2/15)

  =21+4 =30×25/30

  =25(处) =25(处)

  6.让学生展示线段图的画法,说清解题思路。

  7.点题并板书:分数应用题。

  8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

  9.小结:乘法的分配律在分数中同样适用。

  [设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

  三、巩固练习,加深理解。

  独立完成(第75页第2、3题。)

  指生回答,并说出解题思路。

  (重点说出数量关系。)

  [设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

  四、回归实践,拓展运用。

  课件再次出示本课信息窗情境图。

  谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

  现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

  课本76页第9题。学生读题,指生列式。

  [设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

  五、谈收获。

  这节课你有什么收获?

六年级数学《比的应用》教案8

  教材分材:

  教材通过介绍某实验田普通水稻与杂交水稻的产量,引出“增产百分之几”的实际问题。通过男孩提出“增产百分之几是什么意思”,引导学生分析数量关系,再一次体会百分数的意义。教材中的算一算提供了两种不同的解答方法,这样安排,开拓学生的思路,发展学生思维的灵活性。

  教师可以引导学生画线段图理解。学生明确了“增产百分之几”的意思后,就可以让学生独立解答。需要注意的是,教学时要鼓励学生根据实际问题中的数量关系和增产百分之几的意义解决问题,而不是依靠记忆题型和套用方法来解决问题。

  二、学生分析

  在此学习内容之前,学生已经学习了百分数的定义和读写、百分数和分数、小数的互化、百分数的简单应用、运用方程解决简单的百分数问题。在此基础上,进一步学习百分数的应用。

  教学目标:

  1、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。

  教学过程

  一、导入

  线段图是把握数量关系的重要方法之一

  你能用线段图表示下面的数量关系吗?

  在学校开展的第二课堂活动中,参加围棋班的有32人,参加航模班的人数比参加围棋班的多25%

  学生独立完成线段图

  展示学生成果

  3、教师对学生的作品进行评价

  引导学生分析数量关系,再一次体会百分数的意义。

  从复习中引导学生分析数量关系。

  二、百分数的应用

  1、 出示教科书P23上面的问题

  2、 思考:“增产百分之几”是什么意思?

  学生自由发表自己的见解,教师评价。

  杂交水稻比普通水稻增加的产量是普通水稻产量的百分之几

  学生独立解答问题,通过介绍某实验田普通水稻与杂交的.产量,引出“增产百分之几”的实际问题。

  3、 班内交流

  方法一: 7 - 5.6 = 1.4(吨)

  1.4 ÷ 5.6

  = 0.25

  = 25%

  方法二: 7 ÷ 5.6

  = 1.25

  = 125%

  125% - 100% = 25%

  引导学生用两种不同的方法解答,开拓学生的思路,发展学生思维的灵活性。

  三、试一试

  1、出示教科书P23下面的问题

  2、“几成”是什么意思?

  成数主要用于农业收成

  几成就是十分之几。

  一成就是1/10 ,也就是10%

  二成五就是2.5%,也就是25%

  重点理解“几成”的意思。让学生独立完成再交流,发展学生的思维。

  3、学生独立解决问题

  (2.61 - 2.25) ÷ 2.25

  = 0.36 ÷ 2.25

  = 0.16

  = 16%

  四、练一练

  1、教科书P24练一练第1题

  2、科书P24练一练第2题

  3、教科书P24练一练第3题

  五、课堂总结

  通过今天的学习你有什么收获?

  教学反思:

 整节课教学完成之后,可以说自己感触很深。这节课是百分数的具体应用。进一步提高学生运用百分数解决问题的能力,综观整个课堂,由于学生在课前调查收集的资料准备充分,所以在导入环节,学生兴趣浓厚,气氛较好。

六年级数学《比的应用》教案9

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:理解数量关系。

  教学难点:根据多几分之几或少几分之几找出所求量的对应分率。

  教学过程:

  一、复习

  1、口答:把什么看作单位1的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。(2)用去一部分钱后,还剩下。

  (3)一条路,已修了。(4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的是多少?(2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的稍复杂的分数乘法应

  用题。

  二、新授

  1、教学例2

  (1)运用线段图帮助学生分析题意,寻找解题方法。

  (2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位1的量?让后把线段图表示完整。

  (3)四人小组讨论,根据线段图提出解决办法,并列式计算。

  解法一:80-80=80-10=70(分贝)

  (4)鼓励学生根据题意、结合线段图,想出第二种解答方法。

  解法二:80(1-)=80=70(分贝)

  (5)学生讨论两种解法的`不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。

  2、巩固练习:P20做一做

  3、教学例3

  (1)读题理解题意后,提出婴儿每分钟心跳的次数比青少年多表示什么意思?(组织学生讨论,说说自己的理解)

  (2)引导学生将句子转化为婴儿每分钟比青少年多跳的次数是青少年每分钟心跳次数的。着重让学生说说谁与谁比,把谁看作单位1。

  (3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。

  解法一:75+75=75+60=135(次)

  解法二:75(1+)=75=135(次)

  4、巩固练习:P21做一做(列式后让学生说说算式各部分表示什么)

  三、练习

  1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位1的量。

  2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。

  四、布置作业

  练习五第7、8、9、10题。

  教学追记:

  例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位1,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。

六年级数学《比的应用》教案10

  教学目标:

  1、在具体的情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。

  2、能计算出实际问题中“增加百分之几”或“减少百分之几”,提高与用数学解决实际问题的能力。

  3、在解决问题的过程中体会百分数与现实生活的密切联系。

  教学重点:

  在具体的情境中理解“增加百分之几”或“减少百分之几”意义。

  教学难点:

  能计算出实际问题中“增加百分之几”或“减少百分之几”,提高运用数学解决实际问题的能力。

  教学关键:

  充分利用学生已有的知识基础,集合具体的实例让学生理解“增加百分之几”或“减少百分之几”的意义。

  教学过程:

  一、复习引入

  1、复习

  师:关于百分数,你们已经学过那些知识?

  指名回答,引导学生回忆已学的有关百分数的知识。根据学生的回答,教师板书

  百分数的意义

  小数、百分数、分数之间的互化

  百分数的应用

  利用方程解决简单的百分数问题

  2、引入

  师:从这节课开始,我们继续学习有关百分数的知识。

  二、探索新知

  1、创设情景,提出问题

  盒中有45立方厘米的水,结成冰后,冰的体积约为50立方厘米。冰的体积比原来水的体积约增加了百分之几?

  根据这一情景,你能获得哪些信息?

  指名回答,引导学生认识“水结成冰,体积会增加”这种物理现象。

  师:你认为“增加百分之几”是什么意思?

  指名回答,如果学生感到困难,教师可以通过画以下线段图帮助学生理解“增加百分之几”的意思是“冰的.体积比原来水的体积多的部分是水体积的百分之几”

  师:你能独立解决这一问题么?那就请你试一试。

  2、自主探索解决问题

  (1)自主探索。

  让学生独立思考,解决情景图中提出的问题。教师巡视,及时了解学生中典型的算法。

  (2)合作交流。

  指名板演,学生可能会提供以下两种算法

  方法1:(50—45)÷45

  =5÷45

  ≈11%

  方法2:50÷45=111%

  111%—100%=11%

  全班交流时,教师要让学生说一说具体的想法。通过交流,引导学生认识

  方法1:先算增加了多少立方厘米,再算增加了百分之几。

  方法2:先算冰的体积是原来水的体积的百分之几;再算增加百分之几。

  3、即时练习。

  先让学生独立解决问题,再组织全班学生交流。全班交流时,教师重点引导学生理解“降低百分之几”的意义。在本题中,“降低百分之几”的意思是降低的钱数占原来的百分之几。

  三、巩固练习

  指导学生完成课本练一练中的第1题至第5题。

  免责声明:除正式文件通知外,好研网所有文章及所有评论只代表作者个人观点,不代表好研网及海南省教育研究培训院任何观点,所有文章文责自负,若有任何非法及不当信息,请与我们联系,我们会在第一时间作出相应的处理。

六年级数学《比的应用》教案11

  【教学内容】

  北师大版小学数学第十一册第七单元第93-95页内容。

  【学情分析】五年级下册已学习了简单的百分数知识,本单元进一步学习百分数的应用。

  【教学目标】

  知识目标:进一步加强对百分数的意义的理解。

  能力目标:能根据百分数的意义列方程解决实际问题。

  情感目标:通过解决实际问题进一步体会百分数与现实生活的密切联系。

  【教学重点】

  根据百分数的意义列方程解决实际问题。

  【教学难点】

  根据题意找出等量关系。

  【教学策略】通过画线段图来分析数量关系;能根据百分数的意义列方程解决实际问题。

  【养成教育】培养学生认真观察、自主学习、合作交流的好习惯。

  【教具准备】多媒体。

  教学过程:

  一、导入

  通过前面的学习,我们知道百分数与生活有着十分紧密的联系。请同学们想一想,你能给大家说一些生活中用到百分数的事例吗?(让学生自由说一说)

  二、家庭消费

  出示表格

  1.你能给大家说说表格所表示的意思吗?

  2.比较表中有关数据,你有什么发现?

  3.教师提出问题:

  1985年食品支出比其他支出多210元。你知道这个家庭的总支出是多少元吗?

  4.你准备怎样解答这个问题?(小组讨论)

  ※ 你觉得直接列式方便吗?为什么?

  让学生先尝试分析再进行解答

  5.展示解答过程。

  解:设这个家庭1985年的总支出是X元。

  65%X-35%X=210

  30%X=210

  X=700

  让学生说说每个式子表示的.意义,说出等量关系式。

  6.如果20xx年食品支出占家庭总支出的50%,旅游支出占家庭总支出的10%,两项支出一共是5400元,这个家庭的总支出是多少元?

  ※ 学生独立解决

  ※ 教师评价

  三、试一试

  出示教科书第28页试一试第2题。

  1.“九五折”是什么意思?

  2.学生独立解答然后班内交流

  解:设这本书的原价是X元。

  X-95%X=6

  5%X=6

  X=120

  答:这本书的原价是120元。

  四、练一练。

  1.教科书P29练一练第2题。

  “增产了二成”是什么意思?

  展示解答过程:

  解:设去年的产量是X万吨。

  X+20%X=3.6

  120% X=3.6

  X=3

  答:去年的产量是3万吨。

  鼓励学生独立分析题意,寻找等量关系,然后列方程解答。

  2.教科书第29页练一练第4题。

  3.教科书第29页练一练第5题。

  学生可能提出许多问题,只要合理就给予肯定。学生还可能提出达到二级的比三级的多百分之几类似的问题注意与二级的比三级的多总数的百分之几的区别,这是一个难点,要引导学生加以理解。

  结合实际对学生进行思想道德教育,学会节俭。

  五、课堂总结。

  通过今天的学习你有什么收获?

  板书设计: 百分数应用(三)

  食品支出 比其它支出 多210元

  食品支出 — 其它支出 = 210

  (占总支出的65%)

  解:设这个家庭1985年的总支出是元

  65%x-35%x=210

  30%x=210

  X=700

  【教学反思】

  由于学生已经有了解答百分数应用题的基础,所以教学本节课时让学生独立解答,注重学生思维能力的培养,然后全班交流、比较、发现问题,及时小结。通过本节课的教学,大部分学生掌握的比较好,有的同学还是找不准单位“1”,不会分析数量关系,对列方程有点陌生。在今后的教学中还需加强指导和练习。

六年级数学《比的应用》教案12

  课题:比的基本性质

  教学目标:

  1、使学生理解和掌握比的基本性质,能应用比的基本性质化简比。

  2、培养学生的抽象概括能力。

  3、渗透转化的数学思想。

  教学重点:

  理解比的基本性质,掌握化简比的方法。

  教学难点:

  掌握化简比的方法。

  教材分析:

  比的基本性质是在学生学习比的意义,比与分数、除法的关系,商不变的性质和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的性质和分数基本性质,通过想一想启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。

  学情分析:

  学生在以前的学习中,已经掌握了商不变的性质和分数基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想验证应用,让学生理解比的基本性质,应用性质化简比。

  教学过程:

  活动一

  出示例1,出示例2,让学生解答。

  教学比例的基本性质

  1、猜想:我们学过除法中商不变的性质和分数的基本性质,根据比同除法、分数之间的联系,你有什么联想和猜测呢?

  生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、验证:大家敢于猜想值得表扬,许多发明创造都来自于猜想。不过,猜想毕竟是猜想,它还有待于证明。你们能想办法对自己的`猜想进行验证吗?(让几个小组的代表说一说验证过程并板书在黑板上。)

  ①根据分数、比、除法的关系验证。

  ②根据比值验证。

  ③教师小结:大家的验证都说明了以上的猜想是正确的,这个规律(指板书)就叫做比的基本性质(板书课题)。

  ④总结比的基本性质,为什么强调0除外呢?

  活动二

  教学比的基本性质的应用,请同学们想一想,比的基本性质有什么样的用途?

  比的基本性质主要用来化简比,一般把比化成最简单的整数比(板书:最简单的整数比。)

  根据你自己的理解,能说一说什么是最简单的整数比吗?

  (前项和后项是互质数。)

  请同学们解答的例1(1),这两个比是最简比吗?让学生试着化简比。

  让学生试做后,总结方法。

  出示例1(2)① 1/6:2/9 ② 0.75:2

  学生先讨论方法,再试做。

  小结方法:化简时比的前项和后项都是整数时,可以把比写成分数的形式再化简;是小数先转化为整数;是分数可以用求比值的方法化简。但要注意,这个结果必须是一个比。

  化简比与求比值有什么不同?

  质疑

  活动三

  1、做一做46页化简比。

六年级数学《比的应用》教案13

  教学目的:

  1.理解掌握百分数应用题的思考方法,能解释各种百分率大意义,并会正确灵活列式计算.

  2.经历解答百分数应用题的过程,培养学生归纳总结构建解决问题模式的能力.

  3.经历数学知识的实际应用,感受身边的数学知识,体会学数学,用数学的乐趣.

  教学重点:掌握百分数应用题的解答方法.

  教学难点:理解实际生活中百分率的意义.

  教学准备:

  ①摸奖宣传单③计算器

  ②周日课表

  教学过程:

  一.新授教学

  1.引入:以五一摸奖引入.

  ɑ.五一节有多少人去摸奖?几元一张?.

  b.摸中大奖了吗?

  c.那么多人去摸,那么多大奖,怎么一个人也没中奖呢?

  d.导出中奖的可能性问题.生可能回答的情况:①中奖率太低.

  师:我很惊讶地听到他用了一个新名词,是什么?(师板书)

  师:谁能说说中奖率是什么意思?(视生情况.若知道的人较多,可让生直接说.师板书.若知道的人较少,可让生小组合作讨论通2分钟.

  ③若生回答不出中奖率,师可引导:摸奖的人多,奖票数量多,说明中奖的可能性怎么样?中奖的可能性在数学上用中奖率来表示.(师板书,再同①教学)

  2.集体讨论交流.

  (1)哪一组能说说中奖率是什么意思?同意吗?

  (2)生一起说,师板书.

  (3)那么中奖率怎么计算呢?(师板书:中奖率=中奖票数∕奖票总数100℅)

  (4)可见要计算中奖率要知道哪些条件?

  3.小组计算.

  (1)现在我们来计算一下中奖率到底是多少,好吗?(师投影出示摸奖宣传单或复印件.)

  (2)观察单子,条件都具备了吗?总票数在哪里?(师板书:25000000张)

  (3)自己选一至二项计算各奖项中奖率.

  (4)老师出示小黑板表格:

  (5)集体汇报交流,师填空.

  4.比较小结.

  看了这些中奖率有何感想?(这么低是否不参加了?为公益事业作贡献.科学地参与摸奖活动)

  5.导出生活中的百分率.

  a.类似中奖率这样的百分率生活中还有吗?.

  b.生举,师板书

  c.生选择一个解释给大家听.

  (师可随机问:谁会计算?)

  d.选择出勤率让生计算今天本班的出勤率.

  e.如果一人没来该怎么列式呢?

  6.小结,并出示课题:百分数的`应用

  二.应用练习.

  1.口答(以硬币图投影)

  五分一角五角一元

  a.()是()的()℅

  b.改成()是()的50℅

  2.口答(上台当小老师,讲分析思考过程)投影

  例1.练习题(4)

  3.作业纸小测试(五题每题20分)

  p102356

  把10克盐放入100克水中,求盐水的含盐率.

  (1)选择一优生投影同桌批改.

  (2)统计反馈情况,随机计算正确率.

  (3)计算个人得分率.(有两种算法)

  4.发展练习

  1.投影出示周日课表

  2.选取喜欢的学科课时计算占周总课时的百分率

  3.汇报交流并谈谈你的想法

  5.趣味题(机动題)

  a.头长占身高的百分之几?(14.28)

  b.成人头长占身高的百分之几?(12.5)

六年级数学《比的应用》教案14

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的.分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

六年级数学《比的应用》教案15

  教学内容:课本第5页例3、“试一试”和“练一练”,练习二第5-8题。

  教学目标:

  1.了解储蓄的意义,理解本金、利息、利率的含义,掌握计算利息的基本思考方法,会正确地进行日常存款利息的计算,并能解决有关利息的实际问题。

  2.在解决问题的过程中,进一步增强应用意识和解决问题的能力。

  3.体验数学与现实生活的紧密联系,感受数学在现实生活中的应用价值。

  教学准备:

  实物投影仪,教学光盘及多媒体设备,银行定期存款单,有关利率表格

  教学过程:

  一、创设情境,引入课题

  1.老师的家里有8000元钱暂时还用不着,可是现金放在家里不安全,有哪位同学帮老师想个办法,如何更好地处理这些钱?

  2.这位同学的建议真好,我就把这八千元进行储蓄。在储蓄之前,老师还想了解一下关于储蓄的知识,有哪位同学来介绍一下?

  二、联系生活,理解概念

  1.让学生介绍自己所了解的储蓄知识

  2.说得真好,储蓄能支持国家建设,这是储蓄的优点,我们一起看以下的信息,投影:20xx年12月,中国各银行给工业发放贷款18363亿元,给商业发放贷款8563亿元,给建筑业发放贷款20xx亿元,给农业发放贷款5711亿元。这些钱都是我们大家平时的储蓄。据统计,到20xx年底,我国城市居民的存款总数已经突破10万亿,所以把暂时不用的钱存入银行,对国家、个人都有好处。

  3.储蓄时要做哪些工作?储蓄分几种类型?

  结合自己的理解,向大家说说什么是活期和定期,什么是零存整取各整存整取吗?

  三、参与实践,内化体验

  1.同学们了解的知识还真不少,老师先谢谢大家能相互交流这么多的储蓄知识。现在老师就带上这些钱,准备把钱存入我们昆山的建设银行,存款之前,银行的工作人员给了老师一些存款单,要老师完整的填写这张存款单,现在同学们的桌子上就有这样一张存款单,你知道各部分该如何填写吗?试试看!(学生一边相互讨论一边填写)

  2.学生展示所填表格,并相应介绍

  3.刚才同学们都顺利的把八千元存入了信用社。假设过了几年之后,存款到期了,老师去信用社把它取出来,同学们都记得当初存入银行的金额是人民币八千元整,现在取出来是不是也只是人民币八千元整?是少了还是多了?这些多出来的一部分钱有一个专有名词叫什么?

  4.什么是利息?八千元又是什么?利息的多少一般由什么决定?你还知道什么?

  5.根据国家的经济发展变化,银行存款的利率有时会进行调整,我国1998年到20xx年银行活期和整存整取的利率如下:(投影)

  从表中你能获得哪些信息?

  根据刚才的交流,你认为应如何计算利息?

  6.根据你们刚才所填写的`存单,你能帮助老师算出八千元到期时有多少利息吗?

  四、联系例题,升华认识

  1.你能帮亮亮算一算,到期时他可以得到多少利息吗?

  学生计算后看书,与书上校对。

  指名读:根据国家税法规定,个人在银行存款所得到的利息要按20%的税率缴纳利息税。

  2.存款的利息必须按20%的利率纳税,纳税是我们每一个公民应尽的义务,在座的同学长大之后都要依法进行纳税。那么亮亮应缴纳的利息税是多少元?亮亮实得利息多少元?

  学生尝试练习,可能会有两种思路:

  (1)18-18×5%=14.4元 (2)18×(1-5%)=14.4元

  集体交流:18×5%表示什么?(上缴的利息税)

  18-18×5%表示什么?(应得利息-上缴的利息税=实得利息)

  1-5%表示什么?(实得利息占应得利息的百分率)

  18×(1-5%)表示什么?(应得利息×实得利息的百分率=实得利息)

  (板书:应得利息 实得利息)提问:谁来说说应得利息和实得利息有什么区别和联系?

  3.“练一练”。

  学生读题后独立思考并计算,然后汇报交流。

  4.提问:想一想,什么情况下可以不纳税?

  如果你购买的是国库券和建设债券不仅仅可以用来支持国家的发展,而且不要纳税,希望同学们今后多支持国家的建设和发展。哪个同学知道,还有哪种储蓄形式不纳税?

  五、巩固练习,拓展提高

  1.练习二第7题。

  引导学生阅读存单,分析题意:从存单上你了解到哪些信息?你对“王强一共可以取回多少元”是怎样理解的?

  学生独立做题,然后指名交流,共同订正。

  2.课后拓展

  学生到银行做调查,把练习二第8题的表格填好。

  小华准备将过年时收到的1000元压岁钱存入银行,定期一年。到期后把利息捐赠给“希望工程”。按现在的年利率计算,到期后小华可以捐多少钱?

  甲、乙两人不久前各向银行存入1000元。甲先存一年定期,到期后连本带息又存了一年定期;乙直接存了两年定期。到期后,你认为谁取回的钱多?

  六、自主归纳,实际运用

  1.这节课你获得了哪些信息?掌握了什么本领?

  2.运用所学知识完成练习二的5、6、7、8题。

  七、布置作业

  课堂作业:练习二第5、6、7题。

  板书设计: 利息问题

  利息=本金×利率×时间 实得利息=应得利息-利息税

  200×4.50%×2=18元

【六年级数学《比的应用》教案】相关文章:

六年级数学《比的应用》教案02-12

《比和比的应用》数学教案02-25

数学教案-比例的应用09-29

六年级上册数学《比的应用》教案03-14

六年级上册数学比的应用教案03-15

小学六年级数学《比的应用》教案01-21

六年级数学上册《比的应用》教案02-11

小学六年级上册数学《比的应用》教案02-05

数学教案-对数函数的应用 教案09-29