人教版六年级下册数学第一单元教案
在教学工作者开展教学活动前,往往需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。那么应当如何写教案呢?以下是小编为大家整理的人教版六年级下册数学第一单元教案,希望对大家有所帮助。
人教版六年级下册数学第一单元教案1
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学设备:班班通
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。
哈尔滨: -15 ℃~-3 ℃
北京: -5 ℃~5 ℃
深圳: 12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的.刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):
“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
5. “净含量:10±0.1g”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
人教版六年级下册数学第一单元教案2
教学目标:
1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性作出充分的解释。
3、体验数学在解决现实问题中的价值,丰富购物经验。
重难点分析:
教学重点:学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:能对自己设计的理财方案作出合理的解释。
教学过程:
教学过程
一、创设情境
师:同学们,现实生活中,商家为了吸引顾客或扩大销售量,经常搞一些促销活动,谁来说一说,你都知道哪些促销方式?
师:同学们知道的可真多,日常生活中,我们如何利用商家的促销手段,学会合理购物呢?
二、促销问题
(一)观察情境图,先了解方便面的三种包装和一袋的价格,计算出其他两种包装的价格写在书上,再了解三个商店的优惠条件。
师:这节课,我们就来研究购物问题。
板书:学会购物
师:同学们打开书第80页,看方便面促销问题,认真观察上面的图,说说你们从图上都发现了哪些信息?
师:一袋方便面1。5元,5袋一包的多少钱?24袋一箱的多少钱?
师:三家商店都买这种方便面,他们推出了不同的优惠条件。看图,说一说甲、乙、丙三个店的优惠条件各是什么?
生:我发现甲店是“买一包送一袋,买一箱送一包。”乙店是打九折优惠;丙店是购物达到30元就能打八折优惠。
(二)提出:不计算,判断买一袋方便面去哪家商店合适的问题,学生发表意见后,再
讨论“买2袋、3袋呢?”“买几袋才能享受甲店的优惠条件?”
师:作为消费者,买同样的东西肯定愿意买便宜的,也就是少花钱。同学们不计算,你能判断出买1袋方便面去哪家店合适吗?
生:在乙店合适,因为买一袋在甲店、丙店都得不到优惠。
师:那买2袋、3袋呢?
生:买2袋、3袋也不行。
师:买几袋才能享受到甲店的优惠条件呢?
生:买5袋或5袋以上就可以得到甲店的优惠条件。
(三)提出:买5袋方便面在哪个店合适的问题。学生计算后,全班交流。
师:你们真聪明。那么,如果要买5袋,算一算,甲店便宜还是乙店便宜?
学生算完后,指名回答。
(四)先讨论买7袋方便面在甲店可以怎样买,再让学生计算买7袋方便面在哪个商店合适,然后交流。
师:现在如果想买7袋方便面,在甲店可以怎样买?
生:只买6袋就行了。因为商店会送一袋。
师:真聪明,那就是说,要买7袋,只算6袋的钱就可以了。那大家算一算,买7袋方便面,在哪个商店买比较合适?
学生自己计算,然后交流。
甲店:1。5×6=9(元)
乙店:1。5×7×90%=9。 45(元)
结论:甲店合适。
(五)提出:买几袋方便面到乙店就比较合适的问题,鼓励学生自主计算。然后,交流学生探索的过程和结论。
师:通过比较计算结果,买7袋去甲店合适。那么买几袋方便面到乙店就比较合适呢?请同学们自己算一算。
学生自主计算,教师个别指导。
师:谁来说一说你是怎样做的,结果是什么?
如果有学生算到10袋就推出结论,给予表扬。
(六)提出:买10袋方便面能享受丙店的优惠条件?得到否定的答案,并算出买20袋才能达到丙店的优惠条件。
师:现在,请同学们想一想,买10袋方便面能享受丙店的优惠条件吗?
生:不能。因为买10袋方便面才花10元钱,不够丙店的优惠条件。
师:那买多少袋方便面才能达到丙店的优惠条件呢?请同学们算一算。
学生计算后汇报:
生:30÷1。5=20(袋),买20袋才能达到丙店的优惠条件。
(七)提出问题(4)启发学生计算,然后用计算法等说明问题的原因,进一步认识到“合理购物”的意义。
师:看来丙店的优惠条件不是很容易享受到的。请同学们课件中第(4)个问题。两位同学都在丙店买方便面,奇怪的是,李明花钱多买的少,而王强花钱少买的多,这是为什么?
请同学们讨论,并算一算是什么原因。(学生独立计算)
师:谁能解释这到底是为什么?
生1:李明只花了27元不够丙店的优惠条件。
生2:因为王强买了20袋,20×1。5=30 (元),可以打八折优惠,所以只花了24元,
20×1。5×80%=24(元)
师:通过这两位同学的经历,你们有什么收获?
生:在购物时,一定要先算一算在哪家购物合适,才去买,就能充分利用商家的促销手段,少花钱多购物。
(八)出示“议一议”问题,启发学生可以算一算,然后,交流解决问题的方法和结果。
师:那么现在请大家发挥你的聪明才智讨论一下,如果买35袋方便面,怎样买比较合适?也可以算一算。
给学生思考和计算的时间。
师:谁愿意说说你是怎样判断的,结果是什么?
师:比较这几位同学的方案,哪一种比较合适?
结论:在丙店买最合适。
师:比较一下上面几种购买方案,我们发现,最合适的`要少花5元多钱,所以,购物时我们要根据购物多少的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这种“合理购物”。
三、有奖销售
(一)出示“购物广场”上的销售广告,学生阅读了解广告中的数量信息。
师:为了促进销售,商家还会搞另外一种促销方式——有奖销售。现在让我们到购物广场去看一看吧。打开书77页,读一读上面的销售广告。
学生阅读“购物广场”上的销售广告。交流一下广告中的信息。
(二)出示问题(1),计算奖金额和中奖率。
师:根据这则广告,请同学们算一算,这次有奖销售活动的奖品总金额是多少元?中奖率是百分之几?
学生独立思考并计算。然后全班交流。
1。奖品总金额:
500×10+100×20+50×60=10000(元)
2。中奖率:(60+20+10)÷1000=9%
(三)出示问题(2),学生计算销售额,并分析奖金额与销售额之间的关系,进一步认识“有奖销售”的意义。
师:谁知道如果奖券已经全部发出,商家至少卖出了多少元的商品?
生:商家每发出一张奖券,说明至少已卖出了100元商品,所以1000张奖券全部发完,1000×100=100000(元),商家至少卖出10万元的商品。
师:为什么用“至少”这个词?
生:因为还有很多顾客买的商品不足100元或超过整百的余额部分不能领取奖券,我们无法计算。
师:那么奖金额至多占销售额的百分之几?
学生计算后汇报。
生:奖金额是10000元,而销售额是100000元,10000÷100000=10%,奖金额最多占销售额的10%。
师:至多“10%”说明了什么?
生:说明最多占10%,很可能不到10%。
师:算一算,这次有奖销售,商家计划让利给顾客多少钱?
生:1万元。
四、分析讨论
(一)教师谈话,提出问题(3),让学生自主计算。
师:很好。我们了解到这个商家有奖销售让利给顾客1万元,现在我们换一种方式比较一下,如果这10万元的商品全部按八五折销售,同学们算一算,会让利给顾客多少元?
学生独立思考、计算。
生:100000—100000×85%=15000(元)
(二)分别提出“议一议”的两个问题,让学生充分发表自己的意见。教师进行正确引导。
师:请同学们对比一下这两种结果,你有什么感想?
师:那么如果你是顾客,你会选择哪种销售方式?为什么?
师:大家都可以有不同的想法,但是,我们还是小学生,不能单独参与抽奖活动。如果要做,也要在大人的带领下去做。
人教版六年级下册数学第一单元教案3
教学内容:
学会购物
教学目标:
1、结合具体事例,经历综合运用所学知识解决合理购物问题的过程。
2、了解合理购物的意义,能自己做出购物方案,并对方案的合理性做出充分的解释。
教学重点:
运用百分数相关的知识解决问题。
教学过程:
一、创设生活情境,引入新课
让学生说说生活中商家为了吸引顾客或扩大销量,常常搞一些什么样的`促销活动?那如何学会合理购物呢,从而引入本节新课。
二、探究体验,经历过程
1、出示第12页的例5
2、让学生仔细读题,说说想到了什么?着重理解满100元减50元的意思
3、分别计算出在A商场和B商场所花的实际费用,进行比较
A商场:230×50%=115(元)
B商场:230—50×2=130(元)
4、从而得出在A商场购物更省钱,所以在购物时我们要根据促销方法的不同,选择不同的商店,充分利用商家的优惠政策,就能够少花钱多购物,这就是“合理购物”。
三、课堂练习
第12页做一做
四、作业
第15页第13、14题
人教版六年级下册数学第一单元教案4
教材分析:
本课知识强调百分数在现实生活中的应用价值,沟通数学知识和现实生活中数学问题间的联系,使学生自主建构数学关系,发展应用意识。
学情分析:
这部分内容是在学生学习了百分数的认识和解决简单问题的基础上安排的,学生可利用已有的知识和经验,通过知识间的联系,在逐步解决新问题的过程中形成理财方案和方法。
设计理念:
利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值
教学目标:
知识与能力:学会理财,能对自己设计的理财方案作出合理的解释。
过程与方法:结合具体事例,经历综合运用所学知识解决理财问题的过程。
情感态度价值观:感受理财的重要性,培养科学、合理理财的观念。
教学重点:
学会理财,能对自己设计的理财方案作出合理的解释。
教学难点:
能对自己设计的理财方案作出合理的'解释。
教学准备:
课件
教学过程:
一、创设情境,引入课题
创设情境,引入课题师:同学们在家里面,爸爸妈妈是怎样理财的?你有没有帮你们的爸爸妈妈理财?
师:那今天我们就来帮助聪聪理财吧!让我们也学会理财,回家也能帮助爸爸妈妈。
出示课题:学会理财
二、新授
(一)存钱计划
1、出示情境图,让学生读图和文字,了解有关的信息和要解决的问题。
2、提出帮聪聪计算每月收入是多少元的要求,让学生自己计算交流计算的结果。
3、让学生读支出项目表,了解聪聪家每月支出的项目和大约钱数,提出帮聪聪家做存钱计划的要求,启发学生从实际出发,合理提出存钱建议,并算一算到期能回收多少钱。
4、交流学生做的计划,一方面要求学生说明怎样做计划的理由,另一方面,关注计算是否正确。
(二)存钱方案
1、教师口述聪聪爸爸获得奖金并计划存钱的事情,提出小组合作做三个存钱方案的要求,鼓励学生小组内大胆发表自己的意见。
2、交流各小组做的方案,重点说一说是怎样考虑的,这样存钱有什么好处等。
3、提出计算每种存钱方案获得的利息的要求,学生计算后交流计算的结果。
(三)议一议
教师提出:哪种存钱方式好,为什么?
重点关注学生是如何阐述理由的。能否对方案的合理性作出说服力的说明。
三、总结
相信同学们通过今天这节课,都具备了一定的理财能力,回家后把你做的理财计划给爸爸妈妈看,请他们做出评价。
人教版六年级下册数学第一单元教案5
实践要求:
1、经历有目的、有设计、有步骤、有合作的实践活动。
2、结合实际情境,体验发现和提出问题、分析和解决问题的过程。
3、在给定目标下,感受针对具体问题提出设计思路、制定简单的方案解决问题的过程。
4、通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。
教学内容:
冀教版小学数学六年级上册69——70页。
教学目标:
1、知识技能:学会理财,能对自己设计的理财方案作出合理的解释。
2、数学思考:如何对自己设计的理财方案作出合理的解释。
3、问题解决:可以通过比较、思考、交流的方法,经历计算对自己的理财方案作出解释。
4、情感态度:感受理财的重要性,经历运用所学的知识学习理财,培养科学、合理的理财观念。
教学重点:
学会理财,会对自己设计的理财方案作出合理的解释。
教学难点:
对自己设计的理财方案作出合理的解释。
教学流程:
一、导入
老师最近看了一套《贝贝熊系列》丛书,是关于培养孩子理财能力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财富有计划、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财富进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财富,即掌握《学会理财》的能力。
{设计意图:通过和学生谈话,轻松引入本节课的课题}
二、任务一
设计方案,解决问题
聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板奖励他8000元的'奖金。再过6年聪聪就要上大学了,爸爸决定把这笔钱存入银行,留给聪聪上大学用。(存款方式为整存整取)
(1)小组合作,做出3个存钱方案。(提示:小组先商议好方案,然后写到学案上)
(2)并算每种方案可获得的利息。(根据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)
(3)议一议:你认为那种存钱方案?为什么?
{设计意图:学生通过前面的学习,已经具备了计算利息的能力,学生能够根据聪聪家的情况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种成功的喜悦感}
三、小组汇报、展示
{在学生计算的过程中,教师巡视,发现学生有代表性的方案进行展示,重点放在解释哪种方案,即学生能对自己制定的方案进行合理的解释}
四、任务二
聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上大学,请你帮聪聪家做一个零存整取的计划。
零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。
(1)计算聪聪家每个月的结余。
(2)根据聪聪家的实际情况,制定合理的存钱计划,并说明理由。
(3)按照你的存钱计划,算一下,到期能取回多少钱?
知识链接:零存整取利息计算公式是:利息=月存金额×累计月积数×月利率。
其中累计月积数=(存入次数+1)÷2×存入次数。据此推算一年期的累计月积数为(12+1)÷2×12=78,以此类推,三年期、五年期的累计月积数分别为666和1830。
五、分享收获
{设计意图:希望学生通过这节课,感受在给定目标下,针对具体问题提出设计思路、制定简单的方案解决问题的过程。}
六、课下作业
为自己的零花钱制定一个零存整取的存钱计划。
{设计意图:作为本节课知识的延续,让学生养成一个合理消费的习惯,做一个生活上有计划的人,合理支配自己的财富}
板书设计:
收入:2160+4180=6340(元)
支出:2500+800+200+160+30=3690(元)
结余:6340—3690=2650(元)
【六年级下册数学第一单元教案】相关文章:
苏教版六年级数学下册第一单元教案12-16
苏教版六年级下册数学第一单元教案模板10-12
人教版六年级下册数学第一单元教案5篇01-19
六年级语文下册第一单元教案12-17
五年级数学下册第一单元教案01-20
五年级下册数学第一单元教案01-24
六年级下册数学七单元的教案01-08
初二英语下册第一单元教案11-09
小学语文六年级下册第一单元教案12-09