比和比例的教案

时间:2023-05-10 06:55:48 其它教案 我要投稿

比和比例的教案15篇

  作为一位杰出的老师,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?下面是小编整理的比和比例的教案,欢迎大家借鉴与参考,希望对大家有所帮助。

比和比例的教案15篇

比和比例的教案1

  教学目标:

  1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

  2、通过练习,巩固对正比例意义的认识。

  3、情感、态度与价值观:初步渗透函数思想。

  重点难点:

  能根据数量关系式或图象判断两种量是否成正比例。

  教学准备:

  投影仪。

  教学过程:

  一、新课讲授

  教学第46页内容。

  教师出示表格(见书),依据表中的数据描点。(见书)

  师:从图中你发现了什么?

  生:这些点都在同一条直线上。

  看图回答问题

  ①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?

  ③铅笔的数量是3支,那么铅笔的`总价是多少?描出这一对应的点,它们是否在同一直线上?

  你还能提出什么问题?有什么体会?

  组织学生分小组汇报,学生汇报时可能会说出

  ①正比例关系的图象是一条经过原点的直线。

  ②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

  二、练习讲授

  1、基本练习。

  (1)投影出示教材第49页第1题。

  教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

  教师要求学生从两个方面说明为什么成正比例。

  a、电是随着用电量的增加而增加;

  b、电费与用电量的比值总是相等的。

  师生共同订正。

  (2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

  ①出示下表,填表。

  一列火车行驶的时间和路程

  ②填表并思考发现了什么?

  ③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

  ④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

  ⑤用式子表示它们的关系:路程÷时间=速度(一定)。

  教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

  2、指导练习。

  (1)完成教材第49页第2题。

  (2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

  (3)解决教材49页第4题:

  ①投影出示书中的表格,引导学生观察表中的数据。

  ②组织学生在小组中合作探究。

  a、动手画一画,指名汇报图象特点。

  b、组织学生说一说,相互交流。

  提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

  三、课堂作业

  1、根据x和y成正比例关系,填写表中的空格。

  2、看图回答问题。

  (1)在这一过程中,哪个量没变?

  (2)路程和时间有什么关系?

  (3)不计算,从图中看出4小时行驶多少千米?

  (4)7小时行驶多少千米?

  课堂小结:

  教师:判断两个相关联的量成正比例的三个要素是什么?

  通过这节课的学习,你有什么收获?

  课后作业:

  完成练习册中本课时的练习。

  板书设计:

  正比例图像

  图像:一条过原点的直线。

比和比例的教案2

  教学内容:

  课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:理解比例的意义和基本性质。

  教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:投影片、小黑板

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示投影,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  (1)根据表中给出的数量写有意义的比。

  (2)观察写出的比,哪些比能用等号连接,为什么?

  (3)根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第2页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的`两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  三、分层练习,辨析理解

  1.完成练习一第1题区别比与比例。

  2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习一第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  练习一第3题。

比和比例的教案3

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙谈话揭题

  上节课我们复习了比的知识,这节课我们来复习比例的知识以及用正、反比例的知识解决问题。[板书课题:比和比例(二)]

  ⊙回顾与整理

  1.构建比例知识网。

  通过课前的复习,你了解了比例的哪些知识?(结合学生回答板书知识网络)

  预设

  生1:我了解了比例的意义和基本性质。

  生2:我知道了解比例的方法。

  生3:我掌握了判断两个比是否能组成比例的方法。

  生4:我理解了正、反比例的意义,并且能判断两个量成正比例还是反比例。

  生5:我了解了比与比例的区别以及正、反比例的区别。

  ……

  2.复习比例的意义和基本性质。

  (1)比例的意义是什么?比例的各部分名称是什么?

  明确:

  ①比例的意义:表示两个比相等的式子叫做比例。

  ②比例的各部分名称:组成比例的四个数叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  (2)比例的基本性质。

  明确:在比例里,两个外项的积等于两个内向的积。这叫做比例的基本性质。

  (3)解比例。

  根据比例的基本性质,已知比例中的任意三项,都可以求出这个比例中的未知项。求比例中的未知项,叫做解比例。

  (4)判断两个比能否组成比例的'方法。

  ①根据比例的意义判断,看两个比的比值是否相等。

  ②根据比例的基本性质判断,看内项之积是否等于外项之积。

  3.复习正比例和反比例。

  (1)正比例的意义和关系式是什么?

  意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  关系式:=k(一定)

  (2)反比例的意义和关系式是什么?

  意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

  关系式:x×y=k(一定)

比和比例的教案4

  整体感知

  本课主要复习比和比例的意义与性质、比例尺的知识。

  本节课知识的呈现是这样的:教材先把比和比例的意义和性质归纳整理成表,通过对比使同学们弄清比和比例的概念,再通过“说一说”、“想一想”、“做一做”等形式进一步巩固所学知识。其中,求比值和化简比是同学们容易混淆发生错误的地方,复习时应从“一般方法”和“结果”两方面加以比较,以便使同学们形成清晰的概念,掌握“比较”的学习方法。

  在复习比例尺时,要使同学们理解比例尺实际上是一个比,是图上距离和实际距离的比。着重训练同学们能够应用比例的知识,求出平面图的比例尺以及根据比例尺求出图上距离和实际距离。

  教学内容:教材第101—103页,完成第101—102页和第103页上面的“做一做”,练习二十二的第1—9题。 素质教育目标

  (一)知识教学点

  1.理解比和比例的意义和及性质。

  2.理解比例尺的含义。

  (二)能力训练点

  1.会化简比和求比值,会解比例。

  2.能正确地解答有关比例尺的应用题。

  (三)德育渗透点

  引导同学们探索知识间的联系,激发同学们学习兴趣。 教学步骤

  一、基本训练

  二、归纳整理

  1.比和比例的意义及性质

  (1)教师引导同学们回忆所学知识并完成下表:

  (2)说一说,比和分数、除法有什么联系?根据同学们的回答完成下表:

  (3)提问:比的基本性质有什么作用?比例的基本性质呢?

  引导同学们小结几种比的化简方法:

  ①整数比化简,比的前项和后项同时除以它们的最大公约数。

  ②小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简。

  ③分数比化简,一般先把比的前项、后项同时乘以分母的最小公倍数,使它成为整数比,再用第一种说法化简。

  ④也可以用求比值的方法化简,求出比值后再写成比的形式。

  例2 解比例 12∶x=8∶2

  指名同学们说出解法,教师板书。

  (4)做教材第101页的“做一做”

  ①李师傅昨天6小时做了72个零件,今天8小时做了96个零件。写出李师傅昨天和今天所做零件个数的比和所用时间的比。这两个比能组成比例吗?为什么?

  ②甲数除以乙数的商是1.4,甲数和乙数的比是多少?

  2.求比值和化简比

  同学们做完后,组织同学们比较求比值和化简比的区别,并整理成下表:

  (2)完成教材第102页“做一做”的题目,做完后集体订正。

  3.比例尺

  (1)教师出示一张中国地图,让同学们观察后提问:

  ②什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (2)完成教材第103页上面的“做一做”的题目,做完后集体订正。

  (3)反馈练习

  在一幅地图上,用3厘米长的线段表示实际距离900千米。这幅地图的比例尺是多少?在这幅图上量得A、B两地的距离是

  2.5厘米,A、B两地的'实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  三、巩固发展

  1.填空。

  (1)根据右面的线段图,写出下面的比。

  ③甲数与甲乙两数和的比是( )。

  ④乙数与甲乙两数和的比是( )。

  不变,后项应该( )。如果前项和后项都除以2,比值是( )。

  (4)把(1吨)∶(250千克)化成最简整数比是( ),它的比值是( )。

  (6)如果 a×3=b×5,那么 a∶b=( )∶( )

  (7)如果a∶4=0.2∶7,那么a=( )

  (9)甲数乙数的比是4∶5,甲数就是乙数的( )

  2.选择正确答案的序号填在( )里。

  (1)1克药放入100克水中,药与药水的比是( )。①1∶99 ②1∶100 ③1∶101 ④100∶101

比和比例的教案5

  教学内容

  教科书第27页第1~3题,练习六第1~3题.

  教学目的

  1.回顾本单元的知识,进一步理解比和比例的意义及它们之间的区别,能较熟练地解比例.

  2.进一步理解成正、反比例的量的意义及它们之间的相同点及不同点,能正确判断两种相关联的量成什么比例.

  3.使学生再一次经历将一些实际问题抽象成代数问题的过程,体会事物之间的联系和区别;根据知识间的联系,渗透整理复习的方法.

  教具、学具准备

  自制多媒体课件.

  教学过程

  一、整理

  1.说一说你在本单元都学了哪些知识?

  让学生在小组内你一言我一语地说,对本单元的知识作一回顾,教师给足学生说的时间,再让每个小组派代表全班交流,教师随机把学生的发言(即各知识点)板书在黑板上.

  2.完成知识结构图.

  这些知识在我们的脑中比较零散,不便于记忆和运用,请大家用你认为好的.方式对这些知识加以整理.分小组讨论整理.

  3.用实物展示屏进行展示交流.

  4.揭示课题:这节课复习前两部分的知识.

  二、复习

  1.下面式子中,哪个是比?哪个是比例?比和比例有什么区别?

  3∶8 4∶9=12∶27 7∶32=35∶10 0.25∶0.8

  2.比例的基本性质是什么?什么叫解比例?解下面的比例.

  ∶=x∶20 =

  = 3.9∶4=2.6∶x

  学生在练习本上练习,指名板演.学生练习后讲评.

  3.什么叫比例尺?怎么求图上距离?怎么求实际距离?

  课件出示:在一幅比例尺是1∶12000000的地图上,量得南昌与北京的距离是20.5厘米,北京与南昌的实际距离是多少千米?

  4.小山看一本《十万个为什么》.下表是每天看的页数与所需天数两种量相对应的数.

  每天看的页数 3 5 8 10

  所用的天数 40 24 15 12

  表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

  5.课件出示:4个同学去买圆珠笔.下表是他们购买圆珠笔的枝数与总价两种量相对应的数.

  购买圆珠笔的枝数 2 3 5 8

  总价 0.50 0.75 1.25 2.00

  表中两种量中相对应的数有什么规律?这两种量叫什么量?它们之间是什么关系?

  6.说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?

  梳理判断两种量是否成正(反)比例的思考步骤:

  (1)先找出三种量,其中两种相关联的量和一个定量;

  (2)根据两种相关联的量之间的数量关系,列出关系;

  (3)根据正(反)比例的意义,作出结论.

  三、分层练习,巩固提高

  1.填空.

  (1)妈妈用10元钱可以买3千克鸡蛋,总价与数量的比是( ),比值是( ).

  (2)汽车3小时行180千米,路程与时间的比是( ),比值是( ).

  (3)因为14∶21与0.8∶1.2的比值都等于( ),所以可以组成比例,( )∶( )=( )∶( ).

  (4)根据比例的基本性质,把6∶2=0.9∶0.3写成乘法形式是( )×( )=( )×( )

  (5)一幅设计图上注明的比例尺是:

  在这幅图上量得长8厘米的线表示实际( )米;图上表示实际距离400米的线段长( )厘米.

  (6)观察表中总价与本数的关系,并填空.

  数量(本) 2 3 5 6 8 9 10

  总价(元) 0.9 1.35 2.35

  2.选择正确答案的字母填入括号里.

  (1)时间一定,所行路程与速度( ).

  (2)正方体的体积和棱长( ).

  (3)全班人数一定,出勤率和出勤人数( ).

  (4)单价一定,总价与数量( ).

  (5)一篇文章的总字数一定,每行的字数与行数( ).

  A.成正比例关系 B.成反比例关系 C.不成比例

  3.判断下面各题中两个变量是否成比例,成什么比例.

  (1)xy=,x与y( )比例;x=,x与y( )比例.

  (2)3a=b,a与b( )比例;=,b与a( )比例.

  (3)x-y=18,x与y( )比例.

  4.独立练习.

  完成练习六第1~3题.

比和比例的教案6

  教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

  教学准备:CAI课件

  教学过程:

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的'意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

比和比例的教案7

  1、成正比例的量

  教学内容:成正比例的量

  教学目标:

  1.使学生理解正比例的意义,会正确判断成正比例的量。

  2.使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  教学重点:正比例的意义。

  教学难点:正确判断两个量是否成正比例的关系。

  教学过程:

  一揭示课题

  1.在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的此导下,学生会举出一些简单的例子,如:

  (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  (2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  (3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  (4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  2.这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

  二探索新知

  1.教学例1

  (1)出示例题情境图。

  问:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)出示表格。

  高度/㎝24681012

  体积/㎝350100150200250300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的.底面积不变,是25㎝2。

  板书:

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  ①在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  ②学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素:

  第一,两种相关联的量;

  第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三,两个量的比值一定。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  (4)想一想:

  师:生活中还有哪些成正比例的量?

  学生举例说明。如:

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  2.教学例2。

  (1)出示表格(见书)

  (2)依据下表中的数据描点。(见书)

  (3)从图中你发现了什么?

  这些点都在同一条直线上。

  (4)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  生:175㎝3。

  ②体积是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  生:水的体积是350㎝3,相对应的点一定在这条直线上。

  (5)你还能提出什么问题?有什么体会?

  通过交流使学生了解成正比例量的图像特往。

  3.做一做。

  过程要求:

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  比值表示每小时行驶多少千米。

  (2)表中的路程和时间成正比例吗?为什么?

  成正比例。理由:

  ①路程随着时间的变化而变化;

  ②时间增加,路程也增加,时间减少,路程也随着减少;

  ③种程和时间的比值(速度)一定。

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?

  (5)你还能提出什么问题?

  4.课堂小结

  说一说成正比例关系的量的变化特征。

  三巩固练习

  完成课文练习七第1~5题。

  2、成反比例的量

  教学内容:成反比例的量

  教学目标:

  1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。

  2.根据反比例的意义,正确判断两种量是否成反比例。

  教学重点:反比例的意义。

  教学难点:正确判断两种量是否成反比例。

  教学过程:

  一导入新课

  1.让学生说一说成正比例的两种量的变化规律。

  回答要点:

  (1)两种相关联的量;

  (2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;

  (3)两个量的比值一定。

  2.举例说明。

  如:每袋大米质量相同,大米的袋数与总质量成正比例。

  理由:

  (1)每袋大米质量一定,大米的总质量随着袋数的变化而变化;

  (2)大米的袋数增加,大米的总质量也相应增加,大米的袋数

  减少,大米的总质量也相应减少;

  (3)总质量与袋数的比值一定。

  所以,大米的袋数与总质量成正比例。

  板书:

  3.揭示课题。

  今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?

  板书课题:成反比例的量[ 内 容 结 束 ]

比和比例的教案8

  教学目标:

  1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、培养学生猜想与验证、观察与概括的能力。

  4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。

  教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点:自主探究比例的基本性质。

  教学准备:投影片、练习纸

  三案设计:

  学案

  一、自学质疑

  [探究任务一] 比例的意义

  1、投影出示几组比,让学生写出各组的比值,

  二、比例的基本性质

  教案

  一、回顾旧知、孕伏新知:

  1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?

  (生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?

  2、 师板书题目:

  (1)4:5 20:25 (2)0.6:0.3 1.8:0.9

  (3)1/4: 5/8 3:7.5 (4)3:8 9:27

  [评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]

  二、丝丝入扣,深挖比例的意义

  (一)认识意义

  1、 指名口答每组中两个比的比值,在比例下方写上比值。

  师问:你们有什么发现吗?(三组比值相等,一组不等)

  2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25

  师:最后一组能用等号连接吗?为什么?

  数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)

  [评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]

  3、同学们想研究比例的哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  板演:表示两个比相等的式子叫做比例。

  学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  5、质疑:有三个比,他们的比值相等,能组成比例吗?

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]

  (二)练习

  1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第1题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  (1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  (2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、认识比例各部分的名称

  (1)板书出示: 4 : 5

  前项 后项

  (2)板书出示:4 : 5 = 20 : 25

  (3)如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:4/5=20/25

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?

  三、探究比例的基本性质

  1、投影出示:

  你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3

  或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6: 3=10:5……

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证猜想:

  师:这是你的猜想,有了猜想还必须验证。

  (1)请看黑板上这几个比例的内项的积与外项的积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)

  (2)学生任意写一个比例并验证。师巡视指导。

  师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?

  板书:1/2 ∶1/8 = 2∶ 8

  众生沉思片刻,纷纷发现等式不成立。

  生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。

  师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的.基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  [及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]

  四、反馈提升

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9 1.4 :2 和 5 :10

  让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ②20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  ①1.5:3=( ):4

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、课后留白

  同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。

  (1)人高和影长的比是( )

  树高和影长的比是( )

  (2)人高和树高的比是( )

  人影长和树影长的比是( )

  你有什么发现?

  为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。

  [设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]

  六、全课总结:这节课你有什么收获?

  (最后的机会仍然给学生,学生通过清晰的板书总结的很到位)

比和比例的教案9

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的`基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

比和比例的教案10

  教学内容:

  教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:

  投影仪、投影片、小黑板。

  教学过程:

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60=600。

  30 × 20=600。

  40 × 15=600,“这个积600。实际上是什么?”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的.时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:在表l中:在表2中:相关联的量是路程和时间.路程随着相关联的量是速度路程随时间变化,速度是和时间,速度随着时间变化一定。因此,路程和时间,路程是一定的。因此,速成正比例关系。度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程=速度=速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

比和比例的教案11

  一、教学内容:

  正比例函数的图象和性质

  二、教学目标

  (一)知识与能力

  1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。

  2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。

  (二)过程与方法

  1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。

  2、通过观察、探究、分析、引导学生发现正比例函数的性质。

  3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。

  (三)情感态度及价值观

  培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。

  三、教学重点:

  正比例函数图象的画法及性质的探索。

  四、教学难点:

  发现、归纳正比例函数的性质。

  五、教法与学法

  教法:本节课选用引导学生观察,发现法和探索实践归纳法。本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象), 主动参与到整个教学活动中来,最后发现其性质。

  学法指导:教师引导学生观察、发现、归纳的学习方法。

  六、教具:三角板、多媒体

  七、教学过程。 教学过程:

  (1) 温故知新,引入课题。 1、下列函数哪些是正比例函数?

  (1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2

  2、(学生回答完上述问题后提问概念)

  一般地,形如y= kx(K≠0)的函数,叫正比例函数,其中K叫做比例系数。

  3、画函数图象的一般步骤

  (1)列表 (2)描点 (3)连线 学生回答后:

  教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?

  出示课题

  (二)探究正比例函数的图象和性质 例1、画出下列正比例函数的图象。 (1)y=2x(2)y=-2x

  解(1)函数y=2x中x 可取任意实数,列表如下: 描点 连线

  (2)学生练习画出函数y=-2x的图象。

  (3)提出问题

  师:观察上面的函数图象,它们的形状相同吗?是什么?一定经过哪些象限和特殊点?

  生甲:一条直线

  生乙:过原点的直线,y=2x的图象过一、三象限,y=-2x的图象过二、四象限。

  师:点评学生后

  正比例函数的图是经过原点(0,0)和(1、K)的.一条直线。

  师:通过前面的探讨,同学们发现画正比例函数图象有更简单的方法吗?为什么?

  生乙:过原点画一条直线。

  生丙:过原点和(1、K)两点画一条直线。

  师:点评后师生共同归纳出一般规律:一般地,正比例函数y= kx (K≠0)的图象过(0,0),(1、K)两点的直线,我把函数y= kx 的图象叫直线y= kx ,以后画y= kx 图像时通常选取(0,0)和(1、K)两点。

  (三)学生动手实践“两点法”画正比例函数图象。

  11

  (1)y= x (1)y= -x

  22

  1

  y= x

  2

  y= -

  师:比较以上函数,观察它们的图象,思考回答下列问题:

  1、图象的位置与K值有何联系?

  2、正比例函数中y如何随x的变化而变化?通过研讨,观察、讨论、发现结论:K>0时,y=kx 图象过一、三象限,y随x的增大而增大,k<0时,图象过二、

  1

  x 2

  四象限,y随x的增大而减小。

  师:除了从图上看出,还有别的方法得出y随x的变化规律吗? 生:列表过程中

  (四)巩固练习

  1、用你认为最简单的方法画出下列函数图象。

  (1)y=1.5x (2) y=-3x

  2、正比例函数y=-4x的图象是过( )和( )两点的一条直线,图象过象限,y随x的。

  3、正比例函数y=(m-1)x的图象过一、三象限,则m的取值范围是。 A.m=1 B.m>1C.m<1 D.m≥1

  11

  4、下列函数①y=5x ② y=-3x③y= x ④y= -x中,y随x的增大而

  23

  减小的是 。

  5、正比例函数y=(1-2m)xm2-3图象过第二、四限, 求m值。

  (五)小结:谈一谈,本节课你有什么收获?(知识上,方法上)学生回答后,出示下列内容。

  (六)布置作业

  A:课本习题14.2第1题,练习册33页 第3、9 题。 B:课本习题14.2第1,2题。

  (七)板书设计:

  实践操作正比例函数 分析、发现归纳正巩固练习 图象的画法 比例函数的性质 课堂小结

  (八)课后反思:另附

比和比例的教案12

  一、背景分析

  1.对教材的分析

  本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

  本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

  传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。

  (1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

  (2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

  (3)难点:探索并掌握反比例函数的主要性质。

  2、对学情的分析

  九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

  二、教学过程

  一、忆一忆

  师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?

  生:作一次函数的图象要采用以下几个步骤:

  (1)列表

  (2)描点

  (3)连线。

  生乙:一次函数的图象是一条直线。

  师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数?

  生:反比例函数。

  师:你们能作出它的图象吗?

  生:可以。

  点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。

  二、作图象,试比较

  师:请填写电脑上的表格,并开始在坐标纸上描点,连线。

  师:再按照上述方法作y=-4/x的图象。

  (学生动手操作)

  师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。

  (学生讨论交流,教师参与)

  师:讨论结束,下面哪个小组的同学说说你们的看法?

  生1:它们的图象都是由两支曲线组成的。

  生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。

  点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。

  三、细观察,找规律

  师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。

  (展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)

  师:请同学们谈一谈刚才讨论的结果。

  生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

  师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。

  (1)反比例函数y=k/x的图象是由两支曲线所组成的。

  (2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。

  (3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

  师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?

  (由学生在电脑上进行操作)

  生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。

  师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。

  题目:

  (1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。

  (2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

  生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。

  师:大家的'观察很仔细,总结得也很正确。

  点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。

  四、用规律,练一练

  1、课本137页随堂练习1

  生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。

  2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个?

  (1)y=1/(2x)

  (2)y=0.3/x

  (3)y=10/x

  (4)y=-7/(100x)

  生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。

  五、想一想,谈收获

  师:通过今天的学习,你有什么收获?

  生甲:我今天知道了怎样画反比例函数的图象。

  生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。

  生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大

  生丁:我还能用反比例函数的相关性质解题。

  师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。

  总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。

  教学反思:

  本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。

比和比例的教案13

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的`积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

比和比例的教案14

  教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  教具学具准备:幻灯片、学习卡。

  教学过程:

  一、创设情景,引入新课。

  出示三幅场景图。

  (1)图上描述的是什么情景?这几幅图都与什么有关?

  (2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

  (3)你们有见过这样的国旗吗?或者这样的?

  我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

  二、自主探究,明确意义

  1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

  2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

  3、学生汇报。

  4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

  像这样表示两个比相等的式子叫做比例。(板书)

  5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

  6、深入探讨:

  (1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成比例,关键要看什么?

  7、完成“做一做”。

  三、探究比例的基本性质。

  1、学习比例各部分的名称。

  教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

  (1)指名读一读有关知识。

  (2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

  随着学生的回答教师出示:

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ =

  └------外项-------┘ (内项)(外项)

  (3)如果把比例写成分数形式,你能找出它的内项和外项吗?

  (4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

  2、研究比例的基本性质。

  (1)活动探究,总结性质。

  谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

  ①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

  2.4:1.6=60:40 =

  ②你能举一个例子,验证你的发现吗?

  ③你能得出什么结论?

  ④你能用字母表示这个性质吗?

  (2)运用性质。

  ①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

  ②运用比例的基本性质,判断下面哪组中的'两个比可以组成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、巩固练习。

  1、填空

  (1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

  (2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

  (3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

  (4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判断。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。( )

  (2)18:30和3:5可以组成比例。( )

  (3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

  (4)因为3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改写成比例:(能写几个写几个)

  16 × 3 = 4 × 12

  四、总结归纳

  1、这节课我们学习了什么知识?你有什么收获?

  2、判断两个比能不能组成比例,有几种方法?

  比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

  板书设计

  比例的意义和基本性质

  表示两个比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ 或 =

  └------外项-------┘ (外项)(内项)

  在比例里,两个外项的积等于两个内项的积。

  A:B=C → AD=BC

比和比例的教案15

  【教学内容】

  比和比例(1)。

  【教学目标】

  1.使学生进一步理解比和比例的含义及性质,会化简比和求比值,会解比例。

  2.经历比和比例的复习,体验对比、归纳的学习方法,培养学生归纳整理、灵活运用知识的能力。

  【重点难点】

  理解比和比例、求比值及化简比等知识。

  【教学准备】

  多媒体课件。

  【复习导入】

  教师:我们已经学习了比和比例,你知道比和比例的哪些知识?

  学生逐一说出一些知识后,教师揭示课题。

  【归纳整理】

  1.复习比和比例的意义和性质

  出示表格,通过提问进行填空。

  引导提问:

  什么叫做比?举例说明。各部分名称是什么?

  什么叫做比的基本性质?举例说明。

  什么叫做比例?举例说明。各部分名称是什么?

  什么叫做比例的`基本性质?举例说明。

  (1)组织学生议一议,并相互交流。

  (2)指名学生汇报,汇报时注意举例说明,并进行集体评议。

  (3)学生汇报后,教师板书表格。

  比例的基本性质有什么用处?

  指名学生回答。

  练习:解比例:

  一人板演,其余做在草稿本上。

  2.复习比、分数、除法的关系。

  提问:比和分数有什么关系?

  比和除法有什么关系?

  出示表格:

  比、分数与除法的关系:

  组织学生认真填写表格,并议一议,相互交流。

  用投影仪汇报学生的完成情况,并进行集体评议。

  教师根据学生的交流板书:

  教师举例:5∶6==()÷()

  由一名学生板演,其他做在练习本上。

  3.复习求比值和化简比。

  出示习题:化简下面各比并求比值。

  请四名学生板演:其余学生做在练习本上。

  做完后集体订正,请同学们说一说求比值与化简比的方法。

  出示表格。

  化简比与求比值的不同之处

  (1)组织学生独立思考,认真填写表格。

  (2)学生互相议一议,互相交流。

  (3)指名说一说,并进行集体评议。

  教师板书:

  4.复习比例尺。

  (1)什么叫做比例尺?

  指名回答后,教师板书:=比例尺

  (2)说出下面各比例尺的具体意义。

  ①比例尺1:3000000表示

  ②比例尺20:1表示

  ③比例尺表示

  组织学生先想一想,同桌相互交流。

  教师指名说。(多点一些基础较差的人说)

  (3)巩固练习。

  ①求比例尺。

  一条绿化带长350m,在平面图上用7cm的线段表示。这幅图纸的比例尺是多少?

  ②求实际距离。

  在比例尺是的地图上,量得A地到B地的距离是5cm。求AB两地的实际距离。

  学生独立作业后再集体订正。

  答案:①1∶5000②400km。

  【课堂作业】

  教材85页练习十七第1题。

  学生独立作业,然后再集体订正。

  【课堂小结】

  通过这节课的学习,你对比和比例有了更深刻的认识了吧。你学到了哪些知识,同桌之间相互说一说。

  【课后作业】

  完成练习册中本课时的练习。

【比和比例的教案】相关文章:

比和比例的教案02-10

《比和比例》数学教案 比与比例的教案02-20

“比和比例”的教案加旁注12-16

《比和比例》网络助学教案12-16

数学教案-比和比例09-29

比和比例09-29

比例和比例尺09-29

正比例和反比例的比较教案(精选12篇)10-19

数学教案-正比例和反比例的比较09-29