因式分解教案范文集合六篇
作为一名人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。我们该怎么去写教案呢?以下是小编精心整理的因式分解教案6篇,欢迎大家分享。
因式分解教案 篇1
教学目标
教学知识点
使学生了解因式分解的好处,明白它与整式乘法在整式变形过程中的相反关系。
潜力训练要求。
透过观察,发现分解因式与整式乘法的关系,培养学生观察潜力和语言概括潜力。
情感与价值观要求。
透过观察,推导分解因式与整式乘法的关系,让学生了解事物间的因果联系。
教学重点
1、理解因式分解的好处。
2、识别分解因式与整式乘法的关系。
教学难点透过观察,归纳分解因式与整式乘法的关系。
教学方法观察讨论法
教学过程
Ⅰ、创设问题情境,引入新课
导入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、讲授新课
1、讨论993-99能被100整除吗?你是怎样想的?与同伴交流。
993-99=99×98×100
2、议一议
你能尝试把a3-a化成n个整式的乘积的形式吗?与同伴交流。
3、做一做
(1)计算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根据上面的算式填空:
①3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定义:把一个多项式化成几个整式的积的.形式,叫做把这个多项式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的变形是什么运算?由a3-a得到a(a+1)(a-1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?
下面我们一齐来总结一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法与分解因式的联系和区别
ma+mb+mcm(a+b+c)。因式分解与整式乘法是相反方向的变形。
6。例题下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、课堂练习
P40随堂练习
Ⅳ、课时小结
本节课学习了因式分解的好处,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是相反方向的变形。
因式分解教案 篇2
第6.4因式分解的简单应用
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y
(3)2 a2b-8a2b (4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2 a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2 a2b-8a2b)÷(4a-b)= ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2 a2b-8a2b=2 ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2 a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合, [运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)] ÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的.实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0 (2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=0 4x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
因式分解教案 篇3
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的`特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2 (a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习 计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1) ,一课一练
(九)教学反思:
因式分解教案 篇4
(一)学习目标
1、会用因式分解进行简单的多项式除法
2、会用因式分解解简单的方程
(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。
难点:应用因式分解解方程涉及到的较多的.推理过程是本节课的难点。
(三)教学过程设计
看一看
1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:
①________________②__________
2.应用因式分解解简单的一元二次方程.
依据__________,一般步骤:__________
做一做
1.计算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成课后练习题
想一想
你还有哪些地方不是很懂?请写出来。
____________________________________
(四)预习检测
1.计算:
2.先请同学们思考、讨论以下问题:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的值
(3)如果AB=0,下列结论中哪个正确( )
①A、B同时都为零,即A=0,
且B=0;
②A、B中至少有一个为零,即A=0,或B=0;
(五)应用探究
1.解下列方程
2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值
(六)拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?
(七)堂堂清练习
1.计算
2.解下列方程
①7x2+2x=0
②x2+2x+1=0
③x2=(2x-5)2
④x2+3x=4x
因式分解教案 篇5
教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
二、教学重点与难点教学重点:
教学重点
因式分解在多项式除法和解方程两方面的应用。
教学难点:
应用因式分解解方程涉及较多的推理过程。
三、教学过程
(一)引入新课
1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y
(二)师生互动,讲授新课
1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一个小问题 :这里的x能等于3/2吗 ?为什么?
想一想:那么(4x —9) (3—2x) 呢?练习:课本P162课内练习
合作学习
想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若AB=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0
试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2
等练习:课本P162课内练习2
做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的.基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知识,总结收获因式分解的两种应用:
(1)运用因式分解进行多项式除法
(2)运用因式分解解简单的方程
(四)布置课后作业
作业本6、42、课本P163作业题(选做)
因式分解教案 篇6
教学目标:
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
教学重点:灵活运用因式分解解决问题
教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3
教学过程:
一、创设情景:若a=101,b=99,求a2—b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1)、x2—4y2=(x+2y)(x—2y)因式分解(2)。2x(x—3y)=2x2—6xy整式乘法
(3)、(5a—1)2=25a2—10a+1整式乘法(4)。x2+4x+4=(x+2)2因式分解
(5)、(a—3)(a+3)=a2—9整式乘法(6)。m2—4=(m+4)(m—4)因式分解
(7)、2πR+2πr=2π(R+r)因式分解
2、规律总结(教师讲解):分解因式与整式乘法是互逆过程。
分解因式要注意以下几点:
(1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。
(3)。要分解到不能分解为止。
3、因式分解的方法
提取公因式法:—6x2+6xy+3x=—3x(2x—2y—1)公因式的概念;公因式的求法
公式法:平方差公式:a2—b2=(a+b)(a—b)完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
教学引入
师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:
场景一:正方形折叠演示
师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。
[学生活动:各自测量。]
鼓励学生将测量结果与邻近同学进行比较,找出共同点。
讲授新课
找一两个学生表述其结论,表述是要注意纠正其语言的'规范性。
动画演示:
场景二:正方形的性质
师:这些性质里那些是矩形的性质?
[学生活动:寻找矩形性质。]
动画演示:
场景三:矩形的性质
师:同样在这些性质里寻找属于菱形的性质。
[学生活动;寻找菱形性质。]
动画演示:
场景四:菱形的性质
师:这说明正方形具有矩形和菱形的全部性质。
及时提出问题,引导学生进行思考。
师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?
[学生活动:积极思考,有同学做跃跃欲试状。]
师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。
学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:
“有一组邻边相等的矩形叫做正方形。”
“有一个角是直角的菱形叫做正方形。”
“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”
[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]
师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。
试一试把下列各式因式分解:
(1)。1—x2=(1+x)(1—x)(2)。4a2+4a+1=(2a+1)2
(3)。4x2—8x=4x(x—2)(4)。2x2y—6xy2=2xy(x—3y)
三、例题讲解
例1、分解因式
(1)—x3y3+x2y+xy(2)6(x—2)+2x(2—x)
(3)(4)y2+y+
例2、分解因式
1、a3—ab2=2、(a—b)(x—y)—(b—a)(x+y)=3、(a+b)2+2(a+b)—15=
4、—1—2a—a2=5、x2—6x+9—y26、x2—4y2+x+2y=
例3、分解因式
1、72—2(13x—7)22、8a2b2—2a4b—8b3
四、知识应用
1、(4x2—9y2)÷(2x+3y)2、(a2b—ab2)÷(b—a)
3、解方程:(1)x2=5x(2)(x—2)2=(2x+1)2
4、。若x=—3,求20x2—60x的值。5、1993—199能被200整除吗?还能被哪些整数整除?
五、拓展应用
1。计算:7652×17—2352×17解:7652×17—2352×17=17(7652—2352)=17(765+235)(765—235)
2、20042+20xx被20xx整除吗?
3、若n是整数,证明(2n+1)2—(2n—1)2是8的倍数。
五、课堂小结
今天你对因式分解又有哪些新的认识?
【因式分解教案】相关文章:
因式分解教案设计12-16
整式乘法与因式分解评研课教案12-16
因式分解的应用10-02
初中因式分解方法11-04
初学因式分解的“四个注意”10-02
初学因式分解的“四个注意” 论文10-02
基于双群进化策略的多项式近似因式分解12-09
第一册因式分解中转化思想的应用09-29
一类图的伴随多项式的因式分解及色性分析12-10
运用因式分解法解一元二次方程12-10