数学学习计划汇编10篇
时间真是转瞬即逝,我们的学习又将迈入新的阶段,是时候制定学习计划了哦。说到写学习计划相信很多人都是毫无头绪、内心崩溃的状态吧!下面是小编整理的数学学习计划10篇,仅供参考,希望能够帮助到大家。
数学学习计划 篇1
一、教材分析本册教材内容包括:小数乘法、小数除法、简易方程、观察物体、多边形的面积、统计与可能性、数学广角和数学综合运用等。
(一)数与代数方面
本册教材安排了小数乘法,小数除法和简易方程。小数乘法和除法是在学生掌握了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学,继续培养学生小数的四则运算能力。简易方程中有用字母表示数、等式的性质、解简单的方程、用方程表示等量关系进而解决简单的实际问题等内容,进一步发展学生的抽象思维能力,提高解决问题的能力。
(二)在空间与图形方面,安排了观察物体和多边形的面积两个单元。在已有知识和经验的基础上,探索并体会各种图形的特征、图形之间的关系,及图形之间的转化,掌握平行四边形、三角形、梯形的面积公式及公式之间的关系,渗透平移、旋转、转化的数学思想方法,促进学生空间观念的进一步发展。
(三)在统计与概率方面,本册教材让学生学习有关可能性和中位数的知识。通过操作与实验,让学生体验事件发生的等可能性以及游戏规则的公平性,学会求一些事件发生的可能性;在平均数的基础上教学中位数。
(四)在用数学解决问题方面,教材一方面结合小数乘法和除法两个单元,教学用所学的乘除法计算知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,通过观察、猜测、实验、推理等活动,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
(五)本册教材还安排了两个数学综合应用的实践活动,让学生通过小组合作的探索活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养数学意识和实践能力。
二、教学重点
小数乘法、除法,简易方程,多边形的面积,统计与可能性等是本册教材的重点教学内容。
三、教学难点
理解小数乘、除法的算理,理解用字母表示数的意义,理解用字母表示数的公式,理解方程的意义及等式的基本性质,根据题意分析数量间的相等关系,理解多边行面积公式的推导过程。
四、教学目标
1、使学生在理解小数的意义和性质的基础上。比较熟练地进行小数乘法和小数除法的笔算和简算。
2、使学生学会用字母表示数,表示常见的数量关系,初步理解方程的含义,会解简易方程。3、探索并掌握平行四边形、三角形和梯形面积的计算公式,会计算它们的面积。
4、能辨认从不同方位看到的物体的形状和相对公式。
5、理解中位数的意义,会求数据的中位数。
6、体验事件发生的等可能性以及游戏规则的公平,会求一些事件发生的可能性;能对简单事件发生的可能性作出预测,进一步体会概率在现实生活中的作用。培养学生的环保意识,争做环保小卫士,向周边的居民宣传有关禁毒知识,做禁毒宣传的小能手。
7、经历从实际生活中发现问题、提出问题、解决问题的过程。体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
8、初步了解数字编码的思想方法,培养发现生活中数学的意识,初步形成观察、分析及推理的能力。
9、体会学习数学的乐趣,提高学习的兴趣,建立学好数学的信心。
10、养成认真作业、书写整洁的良好习惯。
五、教学措施
1、加强学习目的性教育,充分挖掘学生的潜能,发挥学生的主体作用。
2、增强学生的动手实践活动,培养学生的空间观念。
3、加强个别辅导,提高学困生的学习成绩。
4、多创设学习情景,大胆放手让学生自学,解疑问难,发展学生的个性特长。
5、注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验理解数学。
6、合作探究,拓展引申。
6、给特殊群体更多的关心与爱心,因材施教,分层次作业,适当降低要求。
六、课时安排
1、小数乘法———————————————(8课时)
2、小数除法————————————————(11课时)
3、观察物体————————————————(3课时)
4、简易方程(16课时)
(1)用字母表示数(3课时)
(2)解简易方程(12课时)
整理和复习(1课时)
量一量找规律(2课时)
5、多边形的面积——————————————(9课时)
量一量——————————————————(1课时)
6、统计与可能性——————————————(4课时)
铺一铺——————————————————(1课时)
7、数学广角————————————————(3课时)
8、总复习—————————————————(4课时)
班级学生情况分析
我所任教的五年级(2)班大部分的学生学习态度比过去有很大的进步,有着良好的学习习惯,上课时基本上能积极思考,举手发言,合作意识较强,少数学生能主动、创造性的进行学习。但总体上从期末测试情况看,学生的成绩存在明显的两极分化,学困生的面还是比较大,针对这些情况,本学期在重点抓好基础知识教学的同时,加强学困生的辅导和优等生的指导工作,让不同的学生在数学方面有不同的收获。
数学学习计划 篇2
1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉高考的题型,训练要做到有的放矢。
4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
数学学习计划 篇3
俗话说:“学好数理化,走遍天下都不怕。”这句话虽然说得有些夸张,但也充分说明了数学的重要性。为了提高自己的数学成绩,培养自己的数学兴趣,特拟定如下计划:
一、情况分析
在众多科目中,我的数学成绩最差,每次都考不了高分,长期以来,我对数学也失去了信心,影响了总成绩。
二、任务目标
通过本学期的努力,我要使自己消除对数学的厌烦心里,培养自己学好数学的信心,使自己的数学成绩有较大提高,为高三升学打下坚实的基础。
四、具体做法
1、培养信心
2、养成习惯、每天做到课前预习,课后复习。
3、抓住课堂。课堂上我认真听课,聚精会神,思维紧跟老师,不敢开小差。
4、加大练习力度
刚开始,我从最基础的题入手,以课本上的习题为准,反复练习,打好基础,再找一些课外的习题,帮助自己开拓思路,提高自己的分析、解决能力,掌握一般的解题思路。解题时要求自己细心、精确,以便不再考试时因粗心丢分。
5、牢记 基础理论,善于利用辅导书籍,打好基本功——基础知识万万不可忽视。要把概念、公式都牢牢地印在脑海里。
6、高质量的完成作业。我每次要求自己认真完成老师布置的作业,遇到不会的题目决不轻易放弃,要发扬“钉子”精神,钻进去思考,是在做不出来就向老师和同学请教,这样自己就会对这道题留下深刻的印象,再次遇到相同类型的题时,便能迎刃而解了。
我相信,只要我坚持不懈,持之以恒,我的数学成绩一定能更上一层楼。
数学学习计划 篇4
关键是提高听课的效率
1、课前预习能提高听课的针对性
预习中发现的难点是本次讲座的重点;为了减少听讲座的困难,我们可以弥补在预习中没有掌握好的旧知识。
它有助于提高思维能力。预习之后,你可以比较和分析你所理解的与老师的解释,以提高你的思维水平。预习还可以培养自己的自学能力。第二是专心听讲。
2、特别注意讲课的开头和结尾
在讲座开始时,一般是总结上节课的要点,指出这节课要教的内容,这是一个连接新旧知识的纽带。最后,它往往是对课堂所学知识的总结,具有高度的概括性,是在理解的基础上掌握这一部分知识的方法的提纲。
此外,老师经常在课堂上对一些重点和难点做一些语言、语调,甚至一些动作。
抓好基础
数学练习只不过是数学概念和数学思想的结合应用。明确数学的基本概念、定理和方法,是判断问题类型和知识范围的前提,是正确掌握解题方法的基础。
只有概念清楚,方法全面,遇到问题时,能快速得到解决问题的方法,或者面对新的练习时,能想到我们平时做的练习方法,才能快速解决。
弄清基本定理是正确的,快速解决习题的前提条件,非凡是在复习什么章节的立体中,对基本定理熟悉而灵活掌握就能使习题解清楚,逻辑推理严密。反之,能使解题速度慢、逻辑混乱、叙述不清楚。
制定好计划
复习数学,想好的计划,不仅有大计划这一项,还一个小程序,以每月、每周、每日计划匹配老师的复习计划,而不是彼此冲突,如根据老师的复习计划,今天复习的知识分,今天内应该掌握的知识,加深对知识的理解,测试不同方面和不同角度研究知识。
在每天的复习计划中,我们应该留出一些时间去看课本和笔记,复习过去的知识点,思考老师那天说了什么,总结当天所学的知识。
可以说,日常锻炼可以少做一些,但这些归纳、反思、复习是必不可少的。我希望你在制定计划时谨慎些。
数学学习计划 篇5
本学期我担任高一(3)、(4)两班的数学教学工作,两班学生共有138人。大部分学生初中的基础较差,整体水平不高。从上课两周来看,学生的学习积极性还比较高,爱问问题的学生比较多;但由于基础知识不太牢固,没有良好的学习习惯,自控能力较差,不能正确地定位自己;所以上课效率一般,教学工作有一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学质量目标
(1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的.科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、教学目标.
(一)情感目标
(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究基本函数的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时间和空间给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程法。
(二)能力要求
1、培养学生记忆能力。
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示立体集合、函数、数列有关概念、公式和图形的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过概率的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过函数、数列的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、学情分析
高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着。他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长,面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望。我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡。从高一起就注意培养
学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法。
四、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以“双基”教学为主要内容,坚持“抓两头、带中间、整体推进”,使每个学生的数学能力都得到提高和发展。
分层推进措施
1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3.培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
4.让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
5、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
6、加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育;同时重视数学应用意识及应用能力的培养。
7、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。
8、注意研究学生,做好初、高中学习方法的衔接工作。集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,上难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进,使高一的数学教学与高中教学的全局有机结合。
数学学习计划 篇6
数学的学习有一个循序渐进的过程,妄想一步登天是不现实的。熟记书本内容后将书后习题认真写好,有些同学可能认为书后习题太简单不值得做,这种想法是极不可取的,书后习题的作用不仅帮助你将书本内容记牢,还辅助你将书写格式规范化,从而使自己的解题结构紧密而又严整,公式定理能够运用的恰如其分,以减少考试中无谓的失分。
1、按部就班:数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题。
2、强调理解:概念、定理、公式要在理解的基础上记忆。每新学一个定理,尝试先不看答案,做一次例题,看是否能正确运用新定理;若不行,则对照答案,加深对定理的理解。
3、基本训练:学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉考试中的题型,训练要做到有的放矢。
4、重视平时考试出现的错误:订一个错题本,专门搜集自己的错题,这些往往就是自己的薄弱之处。复习时,这个错题本也就成了宝贵的复习资料。
考试篇
攻略一:概念记清,基础夯实。
数学≠做题,千万不要忽视最基本的概念、公理、定理和公式,特别是不定项选择题就要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,要把已经学过的六本教科书中的概念整理出来,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
攻略二:适当做题,巧做为王。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。数学需要实践,需要大量做题,但要埋下头去做题,抬起头来想题,在做题中关注思路、方法、技巧,要苦做更要巧做.考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
攻略三:前后联系,纵横贯通。
在做题中要注重发现题与题之间的内在联系,绝不能傻做.在做一道与以前相似的题目时,要会通过比较,发现规律,穿透实质,以达到触类旁通的境界。特别是几何题中的辅助线添法很有规律性,在做题中要特别记牢。
攻略四:记录错题,避免再犯。
俗话说,一朝被蛇咬,十年怕井绳,可是同学们常会一次又一次地掉入相似甚至相同的陷阱里。因此,我建议大家在平时的做题中就要及时记录错题,还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。毕竟,中考当中是分分必争,一分也失不得。
攻略五:集中兵力,攻下弱点。
每个人都有自己的软肋,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成瘸腿。篇三:数学计划书2.数学启动阶段学习计划(60天)
考研数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。
同时,有一个科学的学习计划,才能更迅速有效地掌握数学知识。我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐,为今后数学水平的提高打下一个坚实的基础。在研究生考试过程中先人一步,胜人一筹。
2.1复习书目推荐
《高等数学》上、下册第五版 同济大学应用数学系主编 高等教育出版社 《高等数学》上、下册第六版 同济大学应用数学系主编 高等教育出版社 《线性代数》第二版居余马编著 清华大学出版社
2.2学习计划
使用说明:
① 高等数学任务表中的用书为推荐教材当中《高等数学》第六版,线性代数任务表中的用书为推荐用书中的《线性代数第二版》 ② 本次计划是60天的学习任务,包括高等数学上册和线性代数的内容。
③ 每个学习任务完成时间是3天,每天的学习时间以2-3小时最佳,同学们根据自己的时间合理安排每天的学习内容。 ④ 计划里明确了每章该看的知识点、该做的习题,后面备有大纲要求,学员要根据大纲要求合理学习知识点。
同学们在复习的时候一定要和您周围的同学、老师多交流学习心得。只有您总结出来的方法才是最适合您的学习方法.
数学学习计划 篇7
一、班级学生情况分析
我班共有学生31人,其中男生15人,女生16人。绝大部分学生家蒲塘、鲁村等行政村,有水部分学生家离学校较远。根据上学年成绩检测情况分析,学生的基础知识掌握较好,但仍有部分学生成绩不够理想,其原因主要是父母在外地打工,孩子交给爷爷、奶奶管教,学习缺乏主动性和自觉性,没有良好的学习习惯。因此,本学期重点工作除了继续加强学生的基础知识训练以外,还要加强对学困生的个别辅导及良好的学习习惯的培养,力争使学生的整体素质得到提高。
二、教材分析
这一册教材包括下面一些内容:测量、万以内的加法和减法、四边形、有余数的除法、时分秒、多位数成一位数、分数的初步认识、可能性,数学广角和数学实践活动等。
1.计算教学内容的编排体现改革的理念,注重培养学生灵活的计算能力,发展学生的数感。
2.提供丰富的空间与图形的教学内容,注重实践与探索,促进学生空间观念的发展。
3.结合现实问题教学简单的数据分析和平均数,加深学生对统计作用的认识,逐步形成统计观念。
4.加强解决问题能力的教学,培养学生综合运用数学知识解决问题的能力。
5.有步骤地渗透数学思想方法,培养学生数学思维能力。
6.情感、态度、价值观的培养渗透于数学教学中,用数学的魅力和学习的收获激发学生的学习兴趣与内在动机。
三、教学目标和要求
1.会笔算多位数乘一位数的乘法、万以内的加法和减法,会进行相应的乘法估算和验算。
2.会口算一位数乘整十、整百、整千的数,整十、整百数乘整十数,两位数乘整十、整百数(每位乘积不满十)。
3.初步认识简单的分数,初步知道分数是平均分的含义,会读、写分数,初步认识分数的大小,会计算一些分数的加减法。
4.认识时、分、秒三个时间名词,能够很准确的说出三者之间的进制关系及三者之间的大小关系。
5.认识周长的含义,会计算四边形的周长,提醒学生注意漏写周长的单位名称。
6.认识时间单位时、分、秒,了解它们之间的关系;知道每小时是多少分钟、每分钟是多少秒组成的;并学会准确认识时间。
7.了解不同形式的可能性,知道哪些事情发生是一定的、可能的还是不可能的,进一步体会可能性在现实生活中的作用。
8.经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
9.初步了解的思想,形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
10.让学生体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
11.养成认真、按时、按质完成作业、书写整洁的良好习惯。
四、教学重、难点
万以内的加法和减法、四边形、有余数的除法、时分秒、多位数成一位数、分数的初步认识是本册教材的重点教学内容。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
从本册开始引入分数的初步认识,内容比较简单。此时学生在日常生活中经常遇到或用到有关分数的知识和问题,这部分知识的学习,可以扩大用数学解决实际问题的范围,提高学生解决问题的能力;同时也使学生初步学会用简单的分数进行表达和交流,进一步发展数感,并为进一步系统学习分数及分数四则运算做好铺垫。
数学学习计划 篇8
一、预习的方法
(1)看书要动笔。(不动笔墨不读书)
①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;
②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。
③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。
④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。
(2)确定听课要点。把握自己要解决的主要问题,以提高听课的效率。
二、听课的方法。
(1)盯住老师。除在预习中已明确的任务,做到有针对性地解决符合自己的问题外,还要把自己思维活动紧紧跟上教师的讲课,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。公式、定理是如何运用的。许多数学家都十分强调“应该不只看到书面上,而且还要看到书背后的东西。”
(2)敢于发言。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,如有疑问或有新的问题,要勇于提出自己的看法。
(3)记笔记。听课时要把老师讲课的要点、补充的内容与方法记下。
三、复习方法。
(1)复习笔记和卷纸。对学习的内容务求弄懂,切实理解掌握。不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,应用它如何拓展加宽等。要勤于复习(知识点、典型题等),经常看,反复看---这就是心理学上讲的艾宾浩斯遗忘曲线所揭示的道理。建议学生采用放电影的方法。完成作业后,把书和笔记合上,回忆课堂上的内容,如定律、公式及例题解答思路、方法等,尽量完整的在大脑中重现。再打开课本及笔记进行对照,重点复习遗漏的知识点。这既巩固了当天上课内容,也可查漏补缺。
(2)适量做题。准备一个错题本,记载做过的错题再次演练。对于自己曾经做错的题目,回想一下为什么会错、错在什么地方。自己曾经犯错误的地方,往往是自己最薄弱的地方,仅有当时的订正是不够的,还要进行适当的强化训练。
(3)大胆质疑,增强学习的主动性。要经常与同学研究,或问老师,不要积攒过多问题。更不要把不会做的题完全寄托在课堂上等待老师去讲。
强调两个思想:
1、方程的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。通过列方程,解决问题的方法是一个重要的数学思想。
2、“数形结合”的思想。
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支:代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
几个小技巧:
1、建立数学纠错本。做作业或复习时做错了题,一旦搞明白,决不放过,建立一本错误登记本,以降低重复性错误,不怕第一次不会,不怕第一次出错,就怕下一次还犯同样的错误把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:平时作业、课外做题及考试中,对出错的数学题建立错题集很有必要。错题集由错题、错误原因、改正措施、订正和巩固防错五项内容组成。
2、记忆数学规律和数学小结论;
3、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。多看其他同学的卷纸,吸取其优良方法,借鉴错误。
4、经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。结合自身特点,寻找最佳学习方法。
5、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,这是学好数学的重要问题。
数学学习计划 篇9
作为教师,首先要使自己具有终身学习的能力。同时教师专业化的发展,对教师自身学习能力提出越来越高的要求,教师不仅要具有专业学科知识,还要具有教师专业技能,所有这一切都要求教师要加快自身学习的速度。而读书是最快捷、最方便的学习形式之一,为让读书成为我们文化生活中不可缺少的一部分,所以特制定如下专业学习计划:
一、更新教育教学理念、行为、方法。
不断更新教育观念,能在现代人才观、质量观和以人为本促进主动发展的教学观的指导下,逐步提高教育教学活动质量;联系教改实际开展教育科研。结合课堂实践,寻找研究切入点。加强学习,进一步提高教育教学研究能力,善于在教育教学实践中发现问题、分析问题,结合教育教学实际,创造性地予以运用,提高对课堂教学的精加工程度,追求教学的品质与效益。
二、努力提高个人素养。
古人曾说:“师者,传道授业解惑也。”简而言之,教师的工作就是教书育人,所以,我要在教育教学上,不断提高个人的素质。为了进一步做好自己的工作,我给自己提出了如下的要求。
1、“教书者先强己,育人者先律己”,首先要提高自己的政治思想素质。在教学过程中注意总结积累,争取把身边发生的事情用随笔或感悟的形式记录下来。“学为人师,身为世范”,引导学生树立各种正确观念,教育学生学会求知、学会做人、学会创造,培养学生成为与时俱进的新型人才。
2、促进个人专业发展,确立教育教学新理念。
学习和发展的内容和途径应该是全方位的。今天是一个开放的信息社会,信息的渠道非常广泛,还包括社会考察、网络学习、课题研究、观摩学习、学术讨论、实践和行动研究等。此外,学习的内容也不仅仅局限于教材和教学法,而应该是更广泛的知识领域。要了解学生,了解社会,要让自己做一个真正的文化人。
3、继续更新自己的专业知识,“要给学生一滴水,自己必须要有一桶水。”当今世界,科技突飞猛进、信息与日俱增,社会各个领域的科学知识不断由单一走向多元,不断向更深更广的层面发展。注意搜集专业发展的新动向、新信息,不断更新知识,以适应时代发展的要求和学生学习的需求无疑是当代教师一项富有挑战性的目标和任务。
4、注重个人素质的培养,不贪名利,切实提高自身理论水平和业务水平,力求为学生创造最好的教育。从为应付考试到为有利于学生今后的发展提供方便。
5、提高自己的教育能力,教师学习、提高教育教学能力是一项永不间断的工作:学习专业知识、学习育人方法、学习教学技术,从书本中学、从网络中学、从他人身上学、从教学实践中学……终身学习无疑是艰苦的,同时也是快乐的。在今后的工作中要务实求真,成为热爱学习、学会学习和终身学习的楷模;并将所学知识充分应用于教学实践,以人为本,尊重学生个性,引导和启发学生自主学习,鼓励学生学会思考,学会自我增长和应用知识,学会怀疑和创新。
三、业务理论学习方面:
1、集中学习。充分利用好集中学习的时间,认真学习理论和实践观摩。并及时做好学习笔记。
2、自主学习。认真学习《新教育理念》,《过去的教师》、《教育财富蕴藏其中》等书目,并做好学习笔记。使理论与课堂教学紧密联系起来。提高自身的业务素质。
四、教师师德修养方面:
1、尊重学生人格,严格要求学生,促进学生的全面发展,做学生的良师益友。
2、敬业爱岗 ,精益求精。教学态度上,要刻苦钻研业务,做到课前认真备课,教案完整,课堂认真讲授,板书工整,批改作业认真,课后及时总结,及时改进。课堂教学或实习时不准迟到、早退,中途退堂,不准擅自调课,积极进行教育教学实践研究工作,不断提高教学艺术水平,提高教育质量。
3、团结协作,乐于奉献。尊重同志、团结同志,搞好协作,顾全大局。要正确对待个人和集体的关系,维护集体荣誉,热心公益活动。
4、为人师表,率先垂范。严于律己,作风正派,模范地遵守社会公德,注意自身人格修养,言行一致,举止文明。
总之,这学期我将利用一切可以利用的时间,认真学习理论,以提高自身的理论和实践能力。
数学学习计划 篇10
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
15、等差数列中,若m+n=p+q,则
16、等比数列中,若m+n=p+q,则
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
18、两个等差数列与的和差的数列、仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
、 、 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
24、为等差数列,则 (c0)是等比数列。
25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
26、分组法求数列的和:如an=2n+3n
27、错位相减法求和:如an=(2n-1)2n
28、裂项法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求数列的最大、最小项的方法:
① an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函数f(n)的增减性
31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:
(1)当 0时,满足 的项数m使得 取最大值.
(2)当 0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!
【数学学习计划】相关文章:
数学寒假学习计划08-12
数学学习计划02-25
学习计划初中数学01-16
小学数学的学习计划01-15
数学学习计划01-15
数学学习计划01-01
数学学习计划06-24
关于数学学习计划03-08
数学学习计划范文01-12
小学数学学习计划01-15