高一数学知识点总结

时间:2024-10-06 06:18:14 总结 我要投稿

高一数学知识点总结

  总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,它能帮我们理顺知识结构,突出重点,突破难点,是时候写一份总结了。你想知道总结怎么写吗?下面是小编整理的高一数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高一数学知识点总结

高一数学知识点总结1

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即ktan。斜率反映直线与轴的倾斜程度。

  当0,90时,k0;当90,180时,k0;当90时,k不存在。

  yy1(x1x2)②过两点的直线的斜率公式:k2x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程

  ①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:

  yy1y2y1xayxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y2

  1b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

  ⑤一般式:AxByC0(A,B不全为0)

  1各式的适用范围○2特殊的方程如:注意:○

  平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系

  平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

  A0xB0yC0(C为常数)

  (二)过定点的直线系

  ()斜率为k的直线系:yy0kxx0,直线过定点x0,y0;

  ()过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为

  ,其中直线l2不在直线系中。A1xB1yC1A2xB2yC20(为参数)(6)两直线平行与垂直

  当l1:yk1xb1,l2:yk2xb2时,l1//l2k1k2,b1b2;l1l2k1k21

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点

  l1:A1xB1yC10l2:A2xB2yC20相交交点坐标即方程组A1xB1yC10的一组解。

  A2xB2yC20方程组无解l1//l2;方程组有无数解l1与l2重合(8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)则|AB|(x2x1)2(y2y1)2

  (9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d(10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  Ax0By0CAB22

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

  半径。

  2、圆的方程

  (1)标准方程xaybr2,圆心a,b,半径为r;

  22(2)一般方程x2y2DxEyF0当DE2224F0时,方程表示圆,此时圆心为22D2,1E,半径为r22D2E24F

  当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图

  形。

  (3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

  (1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为

  dAaBbCAB222,则有drl与C相离;drl与C相切;drl与C相交

  22(2)设直线l:AxByC0,圆C:xaybr2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

  0l与C相离;0l与C相切;0l与C相交

  2注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示半径。

  (3)过圆上一点的切线方程:

  22

  ①圆x2+y2=r,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).

  2222

  ②圆(x-a)+(y-b)=r,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r(课本命题的推广).

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:xa12yb12r2,C2:xa22yb22R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;

  当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d0时,为同心圆。

  三、立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共

  边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱ABCDEA"B"C"D"E"或用对角线的端点字母,如五棱柱

  "AD

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且

  相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥PABCDE

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

  截面距离与高的比的平方。

  (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  """""表示:用各顶点字母,如五棱台PABCDE

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的.曲面所围成的几何体

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

  是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何

  体

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高,h为斜高,l为母线)

  S直棱柱侧面积S正棱台侧面积12chS圆柱侧2rhS正棱锥侧面积(c1c2)h"S圆台侧面积(rR)l

  12ch"S圆锥侧面积rl

  S圆柱表2rrlS圆锥表rrlS圆台表r2rlRlR2

  (3)柱体、锥体、台体的体积公式V柱ShV圆柱ShV台13(S""21rhV锥ShV圆锥1r2h

  33SSS)hV圆台13(S"SSS)h"13(rrRR)h

  22

  (4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系

  球面=4R2

  (1)平面

  ①平面的概念:A.描述性说明;B.平面是无限伸展的;

  ②平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);

  也可以用两个相对顶点的字母来表示,如平面BC。

  ③点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

  直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  (即直线在平面内,或者平面经过直线)

  应用:检验桌面是否平;判断直线是否在平面内

  用符号语言表示公理1:Al,Bl,A,Bl(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:PABABl,Pl公理3的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系

  直线在平面内有无数个公共点.

  三种位置关系的符号表示:aαa∩α=Aa∥α

  (9)平面与平面之间的位置关系:平行没有公共点;α∥β

  相交有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

  那么这条直线和交线平行。线面平行线线平行

  (1)平面与平面平行的判定及其性质两个平面平行的判定定理

  (2)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为0。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为0。②平面的垂线与平面所成的角:规定为90。③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  第6页

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角7、空间直角坐标系

  (1)定义:如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别以OD,OA,,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。这时建立了一个空间直角坐标系Oxyz.

  1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

  (2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

  (3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

  (4)空间两点距离坐标公式:d(x2x1)2(y2y1)2(z2z1)2

高一数学知识点总结2

  高一数学必修一知识点

  指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  高一上册数学必修一知识点梳理

  空间几何体表面积体积公式:

  1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

  2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

  3、a-边长,S=6a2,V=a3

  4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱锥S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

  11、r-底半径h-高V=πr^2h/3

  12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

  16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

  17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

  人教版高一数学必修一知识点梳理

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

  表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

  分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

  表示:用各顶点字母,如五棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的'平方。

  (3)棱台:

  定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

  分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

  表示:用各顶点字母,如五棱台

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:

  定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:

  定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:

  定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:

  定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

  俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

  侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

高一数学知识点总结3

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

  当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

  注意:当是奇数时,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

  3.实数指数幂的运算性质

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  【第三章:第三章函数的应用】

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.  2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

  3.2.1几类不同增长的函数模型

  【课 型】新授课

  【教学目标】

  结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.

  【教学重点、难点】

  1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

  2.教学难点 选择合适的数学模型分析解决实际问题.

  【学法与教学用具】

  1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.

  2.教学用具:多媒体.

  【教学过程】

  (一)引入实例,创设情景.

  教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.

  (二)互动交流,探求新知.

  1. 观察数据,体会模型.

  教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.

  2. 作出图象,描述特点.

  教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.

  (三)实例运用,巩固提高.

  1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益.学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.

  2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.

  3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。

  4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程.进一步认识三个函数模型的增长差异,并掌握解答的规范要求.

  5.教师引导学生通过以上具体函数进行比较分析,探究幂函数(>0)、指数函数(>1)、对数函数(>1)在区间(0,+∞)上的.增长差异,并从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告.教师对学生的结论进行评析,借助信息技术手段进行验证演示.

  6. 课堂练习

  教材P98练习1、2,并由学生演示,进行讲评。

  (四)归纳总结,提升认识.

  教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律.

  (五)布置作业

  教材P107练习第2题

  收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型.

  3.2.2 函数模型的应用实例(Ⅰ)

  【课 型】新授课

  【教学目标】

  能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.

  【教学重点与难点】

  1.教学重点:运用一次函数、二次函数模型解决一些实际问题.

  2. 教学难点:将实际问题转变为数学模型.

  【学法与教学用具】

  1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究.

  2. 教学用具:多媒体

  【教学过程】

  (一)创设情景,揭示课题

  引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.

  比例激发学生学习兴趣,增强其求知欲望.

  可引导学生运用方程的思想解答“鸡兔同笼”问题.

  (二)结合实例,探求新知

  例1. 某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.

  探索:

  1)本例所涉及的变量有哪些?它们的取值范围怎样;

  2)所涉及的变量的关系如何?

  3)写出本例的解答过程.

  老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.

  学生独立思考,完成解答,并相互讨论、交流、评析.

  例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:

  1)本例所涉及的变量之间的关系可用何种函数模型来描述?

  2)本例涉及到几个函数模型?

  3)如何理解“更省钱?”;

  4)写出具体的解答过程.

  在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。数学模型可采用各种形式,如方程(组),函数解析式,图形与网络等.

高一数学知识点总结4

  1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

  2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

  3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

  4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

  5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的`位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

  6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

  7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

高一数学知识点总结5

  集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  A?① 任何一个集合是它本身的子集。A

  B那就说集合A是集合B的真子集,记作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同时 B?④ 如果A

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的运算

  1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

  记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集与并集的`性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集与补集

  (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  A}?S且 x? x?记作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

  (3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一数学知识点总结6

  幂函数的性质:

  对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

  首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

  排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

  排除了为0这种可能,即对于x<0x="">0的所有实数,q不能是偶数;

  排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

  总结起来,就可以得到当a为不同的`数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

  如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

  在x大于0时,函数的值域总是大于0的实数。

  在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

  而只有a为正数,0才进入函数的值域。

  由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况。

  可以看到:

  (1)所有的图形都通过(1,1)这点。

  (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

  (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

  (4)当a小于0时,a越小,图形倾斜程度越大。

  (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

  (6)显然幂函数。

  解题方法:换元法

  解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

  换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。

  它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

  练习题:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

  (1)求f(log2x)的最小值及对应的x值;

  (2)x取何值时,f(log2x)>f(1)且log2[f(x)]

  2、已知函数f(x)=3x+k(k为常数),A(—2k,2)是函数y=f—1(x)图象上的点。

  (1)求实数k的值及函数f—1(x)的解析式;

  (2)将y=f—1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f—1(x+—3)—g(x)≥1恒成立,试求实数m的取值范围。

高一数学知识点总结7

  1、高一数学知识点总结:集合一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N或N+整数集Z有理数集Q实数集R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大

  括号内表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  2、高一数学知识点总结:集合间的基本关系

  1.“包含”关系—子集

  注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2

  -1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果A?B,B?C,那么A?C

  ④如果A?B同时B?A那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n个元素的集合,含有2n个子集,2n-1个真子集,一般我们把不含任何元素的集合叫做空集。

  3、高一数学知识点总结:集合的.分类(1)按元素属性分类,如点集,数集。(2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

  1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.

  有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。

  例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.

  无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.

  2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。

  例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”

  而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。

  一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}

  它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一数学知识点总结8

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0180

  (2)直线的斜率

  ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:

  (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90

  (2)k与P1、P2的顺序无关;

  (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式:直线斜率k,且过点

  注意:当直线的斜率为0时,k=0,直线的'方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式:,直线斜率为k,直线在y轴上的截距为b

  ③两点式:()直线两点,

  ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

  ⑤一般式:(A,B不全为0)

  ⑤一般式:(A,B不全为0)

  注意:○1各式的适用范围

  ○2特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

  (4)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线(是不全为0的常数)的直线系:(C为常数)

  (二)过定点的直线系

  (ⅰ)斜率为k的直线系:直线过定点;

  (ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

  (5)两直线平行与垂直;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (6)两条直线的交点

  相交:交点坐标即方程组的一组解。方程组无解;方程组有无数解与重合

  (7)两点间距离公式:设是平面直角坐标系中的两个点,则

  (8)点到直线距离公式:一点到直线的距离

  (9)两平行直线距离公式:在任一直线上任取一点,再转化为点到直线的距离进行求解。

高一数学知识点总结9

  考点要求:

  1、几何体的展开图、几何体的三视图仍是高考的热点。

  2、三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势。

  3、重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型。

  4、要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图。

  知识结构:

  1、多面体的结构特征

  (1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

  正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

  (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

  正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥。特别地,各棱均相等的正三棱锥叫正四面体。反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

  (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

  2、旋转体的结构特征

  (1)圆柱可以由矩形绕一边所在直线旋转一周得到。

  (2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到。

  (3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

  (4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

  3、空间几何体的三视图

  空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的`平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

  三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

  4、空间几何体的直观图

  空间几何体的直观图常用斜二测画法来画,基本步骤是:

  (1)画几何体的底面

  在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴。已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

  (2)画几何体的高

  在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

高一数学知识点总结10

  【(一)、映射、函数、反函数】

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

  注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

  ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

  【(二)、函数的解析式与定义域】

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的`表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.

  【(三)、函数的值域与最值】

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

  (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

  如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

  【(四)、函数的奇偶性】

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

  注意如下结论的运用:

  (1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

  (2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函数的复合函数的奇偶性通常是偶函数;

  (4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

  3、有关奇偶性的几个性质及结论

  (1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

  (2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

  (3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

  (4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

  (5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

  (6)奇偶性的推广

  函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

  【(五)、函数的单调性】

  1、单调函数

  对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.

  对于函数单调性的定义的理解,要注意以下三点:

  (1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.

  (2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.

  (3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.

  (4)注意定义的两种等价形式:

  设x1、x2∈[a,b],那么:

  ①在[a、b]上是增函数;

  在[a、b]上是减函数.

  ②在[a、b]上是增函数.

  在[a、b]上是减函数.

  需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.

  (5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.

  5、复合函数y=f[g(x)]的单调性

  若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.

  在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

  6、证明函数的单调性的方法

  (1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.

  (2)设函数y=f(x)在某区间内可导.

  如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.

  【(六)、函数的图象】

  函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.

  求作图象的函数表达式

  与f(x)的关系

  由f(x)的图象需经过的变换

  y=f(x)±b(b>0)

  沿y轴向平移b个单位

  y=f(x±a)(a>0)

  沿x轴向平移a个单位

  y=-f(x)

  作关于x轴的对称图形

  y=f(|x|)

  右不动、左右关于y轴对称

  y=|f(x)|

  上不动、下沿x轴翻折

  y=f-1(x)

  作关于直线y=x的对称图形

  y=f(ax)(a>0)

  横坐标缩短到原来的,纵坐标不变

  y=af(x)

  纵坐标伸长到原来的|a|倍,横坐标不变

  y=f(-x)

  作关于y轴对称的图形

  【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

  ①求证:f(0)=1;

  ②求证:y=f(x)是偶函数;

  ③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.

  思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.

  解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.

  ②令x=0,则有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.

  ③分别用(c>0)替换x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是周期函数,2c就是它的一个周期.

高一数学知识点总结11

  集合间的基本关系

  1。“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2。“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3。不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的'真子集。

  有n个元素的集合,含有2n个子集,2n—1个真子集

  集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。记作AB(读作‘A交B’),即AB={x|xA,且xB}。

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作‘A并B’),即AB={x|xA,或xB})。

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

高一数学知识点总结12

  必修一

  一、集合

  一、集合有关概念1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上最高的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{}如:{我校的篮球队员},{太平洋,大西洋,印度洋,

  北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的

  方法。{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:

  (1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合2

  (3)空集不含任何元素的集合例:{x|x=-5}

  二、集合间的基本关系1.“包含”关系子集

  注意:AB有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)2

  实例:设A={x|x-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。nn-1

  有n个元素的集合,含有2个子集,2个真子集

  二、函数

  1、函数定义域、值域求法综合

  2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的.求解策略4、反函数的几种题型及方法

  5、二次函数根的问题一题多解&指数函数y=a^x

  a^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a、b属于Q)指数函数对称规律:

  1、函数y=a^x与y=a^-x关于y轴对称2、函数y=a^x与y=-a^x关于x轴对称

  3、函数y=a^x与y=-a^-x关于坐标原点对称&对数函数y=loga^x

  如果a0,且a1,M0,N0,那么:1loga(MMN)logaM+logaN;○

  2loga○logaM-logaN;n3○logaMNnlogaM(nR).注意:换底公式logcblogab(a0,且a1;c0,且c1;b0).幂函数y=x^a(a属于R)logca1、幂函数定义:一般地,形如yx(aR)的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0时,幂函数的图象通过原点,并且在区间[0,)上是增函数.特别地,当1时,幂函数的图象下凸;当01时,幂函数的图象上凸;(3)0时,幂函数的图象在区间(0,)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴.

  方程的根与函数的零点

  1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。

  2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。

  即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:

  1(代数法)求方程f(x)0的实数根;○

  2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图○

  象联系起来,并利用函数的性质找出零点.4、二次函数的零点:2bxc(a0).二次函数yax2(1)△>0,方程axbxc0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2(2)△=0,方程axbxc0有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.2(3)△<0,方程axbxc0无实根,二次函数的图象与x轴无交点,二次函数无零点.

  高一数学知识总结数性质三、平面向量

  向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.

  有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.

  单位向量:长度等于1个单位的向量.相等向量:长度相等且方向相同的向量&向量的运算加法运算

  AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

  已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。

  向量的加法满足所有的加法运算定律。

  减法运算

  与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

  数乘运算

  实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ>0时,λa的方向和a的方向相同,当λ<0时,λa的方向和a的方向相反,当λ=0时,λa=0。设λ、μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

  向量的加法运算、减法运算、数乘运算统称线性运算。

  向量的数量积

  已知两个非零向量a、b,那么|a||b|cosθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。四、三角函数

  1、善于用“1“巧解题

  2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法

  15、正弦函数、余弦函数和正切函数的图象与性质:ysinxytanxycosx函图象

  定义域值域最值周期性奇偶性单调性

  RR

  1,1

  当x2kk当x2kk时,

  ymax时,21;当ymax1;当x2kx2kk时,ymin1.ky1.2min时,

  2

  1,1

  xxk,k

  2R

  既无最大值也无最小值

  2

  奇函数

  奇函数

  在

  偶函数

  对称性

  必修四

  角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.k36090,k第一象限角的集合为k360,k第二象限角的集合为k36090k360180第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k3、与角终边相同的角的集合为*k360,k4、已知是第几象限角,确定n所在象限的方法:先把各象限均分n等份,再从x轴的正半

  2k,2k在2k,2kk上232k上是增函数;在是增函数;在2k,2k2k,2kk上是减函数.22k上是减函数.对称中心k,0中心称k对对称轴xkkk,0k

  x2k对称轴2k

  ,k

  22k上是增函数.

  k,0k对称中心无对称轴2在kn轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为区域.

  5、长度等于半径长的弧所对的圆心角叫做1弧度.口诀:奇变偶不变,符号看象限.

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:

  设α为任意角,πα的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  公式三:

  任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα

  sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

  sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα

  (以上k∈Z)

  其他三角函数知识:同角三角函数基本关系

  ⒈同角三角函数的基本关系式倒数关系:

  tanαcotα=1sinαcscα=1cosαsecα=1商的关系:

  sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:

  sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)两角和差公式

  ⒉两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ

  tanα+tanβtan(α+β)=1-tanαtanβ

  tanα-tanβtan(α-β)=1+tanαtanβ

  n终边所落在的

  倍角公式

  ⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosα

  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2tanαtan2α=1-tan^2(α)半角公式

  ⒋半角的正弦、余弦和正切公式(降幂扩角公式)1-cosαsin^2(α/2)=21+cosαcos^2(α/2)=21-cosαtan^2(α/2)=1+cosα万能公式⒌万能公式

  2tan(α/2)sinα=1+tan^2(α/2)

  1-tan^2(α/2)cosα=1+tan^2(α/2)

  2tan(α/2)tanα=1-tan^2(α/2)和差化积公式

  ⒎三角函数的和差化积公式

  α+βα-βsinα+sinβ=2sin----cos---22

  α+βα-βsinα-sinβ=2cos----sin----22

  α+βα-βcosα+cosβ=2cos-----cos-----22

  α+βα-βcosα-cosβ=-2sin-----sin-----22积化和差公式

  ⒏三角函数的积化和差公式

  sinαcosβ=0.5[sin(α+β)+sin(α-β)]cosαsinβ=0.5[sin(α+β)-sin(α-β)]cosαcosβ=0.5[cos(α+β)+cos(α-β)]sinαsinβ=-0.5[cos(α+β)-cos(α-β)]

高一数学知识点总结13

  知识点1

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

  2、集合的中元素的三个特性:

  1、元素的确定性;

  2、元素的互异性;

  3、元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

  (4)集合元素的三个特性使集合本身具有了确定性和整体性。

  3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2、集合的表示方法:列举法与描述法。

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分类:

  1、有限集含有有限个元素的集合

  2、无限集含有无限个元素的集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知识点2

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线x=—b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b^2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  知识点3

  1、抛物线是轴对称图形。对称轴为直线

  x=—b/2a。

  对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P(—b/2a,(4ac—b’2)/4a)

  当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab>0),对称轴在y轴左;

  当a与b异号时(即ab<0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  Δ=b’2—4ac>0时,抛物线与x轴有2个交点。

  Δ=b’2—4ac=0时,抛物线与x轴有1个交点。

  Δ=b’2—4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  知识点4

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的`定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数。

  知识点5

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

  3、函数零点的求法:

  (1)(代数法)求方程的实数根;

  (2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

  4、二次函数的零点:

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

  (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高一数学知识点总结14

  本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.

  重难点知识归纳

  1、平面

  (1)平面概念的理解

  直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.

  抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.

  (2)平面的表示法

  ①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的'平面图形来表示平面.

  ②字母表示:常用等希腊字母表示平面.

  (3)涉及本部分内容的符号表示有:

  ①点A在直线l内,记作; ②点A不在直线l内,记作;

  ③点A在平面内,记作; ④点A不在平面内,记作;

  ⑤直线l在平面内,记作; ⑥直线l不在平面内,记作;

  注意:符号的使用与集合中这四个符号的使用的区别与联系.

  (4)平面的基本性质

  公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.

  符号表示为:.

  注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.

  公理2:过不在一条直线上的三点,有且只有一个平面.

  符号表示为:直线AB存在唯一的平面,使得.

  注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.

  公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

  符号表示为:.

  注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.

  公理的推论:

  推论1:经过一条直线和直线外的一点有且只有一个平面.

  推论2:经过两条相交直线有且只有一个平面.

  推论3:经过两条平行直线有且只有一个平面.

  2.空间直线

  (1)空间两条直线的位置关系

  ①相交直线:有且仅有一个公共点,可表示为;

  ②平行直线:在同一个平面内,没有公共点,可表示为a//b;

  ③异面直线:不同在任何一个平面内,没有公共点.

  (2)平行直线

  公理4:平行于同一条直线的两条直线互相平行.

  符号表示为:设a、b、c是三条直线,.

  定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

  (3)两条异面直线所成的角

  注意:

  ①两条异面直线a,b所成的角的范围是(0°,90°].

  ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.

  ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

  (i)在空间任取一点,这个点通常是线段的中点或端点.

  (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

  (iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.

  3.空间直线与平面

  直线与平面位置关系有且只有三种:

  (1)直线在平面内:有无数个公共点;

  (2)直线与平面相交:有且只有一个公共点;

  (3)直线与平面平行:没有公共点.

  4.平面与平面

  两个平面之间的位置关系有且只有以下两种:

  (1)两个平面平行:没有公共点;

  (2)两个平面相交:有一条公共直线.

高一数学知识点总结15

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上的山

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集:N_或N+

  整数集:Z

  有理数集:Q

  实数集:R

  1)列举法:{a,b,c……}

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xR|x-3>2},{x|x-3>2}

  3)语言描述法:例:{不是直角三角形的三角形}

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合

  (2)无限集含有无限个元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

  实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:①任何一个集合是它本身的子集。AA

  ②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AB,BC,那么AC

  ④如果AB同时BA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集个数:

  有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

  三、集合的运算

  运算类型交集并集补集

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  记作,即

  CSA=

  AA=A

  AΦ=Φ

  AB=BA

  ABA

  ABB

  AA=A

  AΦ=A

  AB=BA

  ABA

  ABB

  (CuA)(CuB)

  =Cu(AB)

  (CuA)(CuB)

  =Cu(AB)

  A(CuA)=U

  A(CuA)=Φ.

  二、函数的有关概念

  1.函数的概念

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,

  (7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);

  ②定义域一致(两点必须同时具备)

  2.值域:先考虑其定义域

  (1)观察法(2)配方法(3)代换法

  3.函数图象知识归纳

  (1)定义:

  在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  1.描点法:2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.

  5.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

  对于映射f:A→B来说,则应满足:

  (1)集合A中的每一个元素,在集合B中都有象,并且象是的;

  (2)集合A中不同的元素,在集合B中对应的象可以是同一个;

  (3)不要求集合B中的每一个元素在集合A中都有原象。

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

  二.函数的`性质

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1

  注意:函数的单调性是函数的局部性质;

  (2)图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的

  (3).函数单调区间与单调性的判定方法

  (A)定义法:

  (1)任取x1,x2∈D,且x1

  (2)作差f(x1)-f(x2);或者做商

  (3)变形(通常是因式分解和配方);

  (4)定号(即判断差f(x1)-f(x2)的正负);

  (5)下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  9.利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  ○2确定f(-x)与f(x)的关系;

  ○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

  注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.

  10、函数的解析表达式

  (1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

  11.函数(小)值

  ○1利用二次函数的性质(配方法)求函数的(小)值

  ○2利用图象求函数的(小)值

  ○3利用函数单调性的判断函数的(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

  第三章基本初等函数

  一、指数函数

  (一)指数与指数幂的运算

  1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.

  负数没有偶次方根;0的任何次方根都是0,记作。

  当是奇数时,,当是偶数时,

  2.分数指数幂

  正数的分数指数幂的意义,规定:

  ,

  0的正分数指数幂等于0,0的负分数指数幂没有意义

  3.实数指数幂的运算性质

  (1);

  (2);

  (3).

  (二)指数函数及其性质

  1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.

  注意:指数函数的底数的取值范围,底数不能是负数、零和1.

  2、指数函数的图象和性质

  a>10

  定义域R定义域R

  值域y>0值域y>0

  在R上单调递增在R上单调递减

  非奇非偶函数非奇非偶函数

  函数图象都过定点(0,1)函数图象都过定点(0,1)

  注意:利用函数的单调性,结合图象还可以看出:

  (1)在[a,b]上,值域是或;

  (2)若,则;取遍所有正数当且仅当;

  (3)对于指数函数,总有;

  二、对数函数

  (一)对数

  1.对数的概念:

  一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)

  说明:○1注意底数的限制,且;

  ○2;

  ○3注意对数的书写格式.

  两个重要对数:

  ○1常用对数:以10为底的对数;

  ○2自然对数:以无理数为底的对数的对数.

  指数式与对数式的互化

  幂值真数

  =N=b

  底数

  指数对数

  (二)对数的运算性质

  如果,且,,,那么:

  ○1+;

  ○2-;

  ○3.

  注意:换底公式:(,且;,且;).

  利用换底公式推导下面的结论:(1);(2).

  (3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式

  (二)对数函数

  1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).

  注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.

  ○2对数函数对底数的限制:,且.

  2、对数函数的性质:

  a>10

  定义域x>0定义域x>0

  值域为R值域为R

  在R上递增在R上递减

  函数图象都过定点(1,0)函数图象都过定点(1,0)

  (三)幂函数

  1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.

  2、幂函数性质归纳.

  (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

  (2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;

  (3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.

  第四章函数的应用

  一、方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

  即:方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  ○1(代数法)求方程的实数根;

  ○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  (1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  (2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  (3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

【高一数学知识点总结】相关文章:

高一必修数学知识点总结08-05

高一数学下知识点总结06-09

高一数学知识点总结09-02

数学高一高二知识点总结01-17

关于高一数学知识点总结08-28

高一数学必修一知识点总结05-19

高一必修一数学知识点总结07-22

高一数学必修二知识点总结归纳10-21

高一数学全部集合知识点10-23