八年级数学上册知识点总结

时间:2023-08-11 16:35:11 蔼媚 总结 我要投稿
  • 相关推荐

八年级数学上册知识点总结

  总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以使我们更有效率,因此,让我们写一份总结吧。但是却发现不知道该写些什么,下面是小编整理的八年级数学上册知识点总结,欢迎阅读与收藏。

八年级数学上册知识点总结

  八年级数学上册知识点总结 1

  一、平移

  1、定义

  在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

  2、性质

  平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

  二、旋转

  1、定义

  在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

  2、性质

  旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

  三、四边形的相关概念

  1、四边形

  在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

  2、四边形具有不稳定性

  3、四边形的内角和定理及外角和定理

  四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。

  推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有n(n3)2条。从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。

  四.平行四边形

  1、平行四边形的定义

  两组对边分别平行的四边形叫做平行四边形。

  2、平行四边形的性质

  (1)平行四边形的对边平行且相等。

  (2)平行四边形相邻的角互补,对角相等

  (3)平行四边形的对角线互相平分。

  (4)平行四边形是中心对称图形,对称中心是对角线的交点。

  常用点:

  (1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

  (2)推论:夹在两条平行线间的平行线段相等。

  3、平行四边形的判定

  (1)定义:两组对边分别平行的四边形是平行四边形

  (2)定理1:两组对角分别相等的四边形是平行四边形

  (3)定理2:两组对边分别相等的四边形是平行四边形

  (4)定理3:对角线互相平分的四边形是平行四边形

  (5)定理4:一组对边平行且相等的四边形是平行四边形

  4、两条平行线的距离

  两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

  平行线间的距离处处相等。

  5、平行四边形的面积

  S平行四边形=底边长x高=ah

  五、矩形

  1、矩形的定义

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)矩形的对边平行且相等

  (2)矩形的四个角都是直角

  (3)矩形的对角线相等且互相平分

  (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形

  (2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积S矩形=长x宽=ab

  六、菱形

  1、菱形的定义

  有一组邻边相等的平行四边形叫做菱形

  2、菱形的性质

  (1)菱形的四条边相等,对边平行

  (2)菱形的相邻的角互补,对角相等

  (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

  (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

  3、菱形的判定

  (1)定义:有一组邻边相等的平行四边形是菱形

  (2)定理1:四边都相等的四边形是菱形

  (3)定理2:对角线互相垂直的平行四边形是菱形

  4、菱形的面积

  S菱形=底边长x高=两条对角线乘积的一半

  七.正方形

  1、正方形的定义

  有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

  2、正方形的性质

  (1)正方形四条边都相等,对边平行

  (2)正方形的四个角都是直角

  (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

  (4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

  3、正方形的判定

  判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

  4、正方形的面积

  设正方形边长为a,对角线长为bS正方形=a2b22

  八、梯形

  (一)梯形的相关概念

  1、梯形的定义

  一组对边平行而另一组对边不平行的四边形叫做梯形。

  梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。

  2、梯形的判定

  (1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

  (2)一组对边平行且不相等的四边形是梯形。

  (二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。

  一般地,梯形的分类如下:

  1、一般梯形

  2、梯形直角梯形

  3、特殊梯形

  4、等腰梯形

  (三)等腰梯形

  1、等腰梯形的定义

  两腰相等的梯形叫做等腰梯形。

  2、等腰梯形的性质

  (1)等腰梯形的两腰相等,两底平行。

  (2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

  (3)等腰梯形的对角线相等。

  (4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

  3、等腰梯形的判定

  (1)定义:两腰相等的梯形是等腰梯形

  (2)定理:在同一底上的两个角相等的梯形是等腰梯形

  (3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

  (四)梯形的面积

  (1)如图,S梯形ABCD12(CDAB)DE

  (2)梯形中有关图形的面积:

  ①SABDSBAC;

  ②SAODSBOC;

  ③SADCSBCD

  八、中心对称图形

  1、定义

  在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  八年级数学上册知识点总结 2

  一、勾股定理

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”。结论为:“勾三股四弦五”。

  a2+b2=c2

  1、如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

  2、满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股数)。利用勾股数可以构造直角三角形。

  二、平方根

  1、定义——一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

  2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

  3、求一个数a的平方根的运算,叫做开平方。

  4、正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

  例如:4的平方根是±2,其中2叫做4的算术平方根,记作=2;2的平方根是±其中2的算术平方根。

  0只有一个平方根,0的平方根也叫做0的算术平方根,即

  三、立方根

  1、定义——一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作“,读作“三次根号a”。

  2、求一个数a的立方根的运算,叫做开立方。

  3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  四、实数

  1、无限不循环小数称为无理数。

  2、有理数和无理数统称为实数。

  3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

  五、近似数与有效数字

  1、例如,本册数学课本约有100千字,这里100是一个近似似数。

  2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

  八年级数学上册知识点总结 3

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  八年级数学上册知识点总结 4

  1、平均数

  ①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数

  ③平均数、中位数和众数都是描述数据集中趋势的统计量

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义

  3、从统计图分析数据的集中趋势

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

  ②数学上,数据的离散程度还可以用方差或标准差刻画

  八年级数学上册知识点总结 5

  (一)定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。

  (二)二元一次方程组的解法

  (1)代入法

  由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。

  (2)因式分解法

  在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。

  (3)配方法

  将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

  (4)韦达定理法

  通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

  (5)消常数项法

  当方程组的两个方程都缺一次项时,可用消去常数项的方法解。

  ③方差是各个数据与平均数差的平方的平均数

  ④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  八年级数学上册知识点总结 6

  1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

  2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

  通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。

  (2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

  3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

  在约分时要注意:

  (1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;

  (2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;

  (3)约分一定要把公因式约完。

【八年级数学上册知识点总结】相关文章:

初三数学上册知识点总结12-20

八年级上册数学复习知识点优秀12-17

初二上册数学知识点总结02-05

苏教版生物八年级上册知识点总结11-02

八年级物理上册知识点总结02-17

数学的知识点总结04-25

高一数学上册基础知识点总结07-21

八年级政治上册人教版知识点总结07-31

五年级上册数学知识点总结01-16