论材料力学教学中的三大关键问题

时间:2023-05-01 02:27:17 资料 我要投稿
  • 相关推荐

论材料力学教学中的三大关键问题

摘 要 根据材料力学工程背景强、理论抽象、公式繁多等特点,结合教学实践从建立科学的理论体系、采用恰当的教学方法、复杂问题化繁为简和化难为易三方面探讨了材料力学教学的关键问题,以期提高教学质量、培养学生科学的思维方式。   关键词 材料力学 理论体系 教学方法 化繁为简   中图分类号:G424 文献标识码:A   1 建立科学的理论体系   在教学实践中,一般院校采用模块化教学,即将内容模块化,分为杆件的基本变形与组合变形、静载荷与动载荷、能量方法与超静定三大模块,各模块之间虽各有其内在规律,但却存在本质联系,这集中体现在一个核心、一条主线上。   广义胡克定律又称为本构方程,它反映出线弹性条件下变形与受力的本质关系。“变形”是研究强度、刚度以及稳定性的前提,而工程实际中构件受力往往易知,变形却需要求解计算,本构方程在其中发挥着桥梁作用,故它是一切公式的根本,是材料力学理论体系的核心。   三大模块的内容遵循相似的分析思路,即首先通过外力分析确定构件发生基本变形还是组合变形;随后根据构件外在的变形特点,进一步分析杆件横截面间的内力,并结合杆件形状特点确定危险截面;最后根据构件的变形内在规律确定应力和变形计算公式,若横截面只有一种应力,直接由该应力最大值建立强度条件,若正应力切应力同时存在,则需计算危险点的主应力,由强度理论建立强度条件,因此,“外力—内力—应力与变形”是材料力学理论体系的主线。   动载荷、能量方法、超静定属于三个专题,与工程实际联系更为紧密,可利用前面的基本理论解决此类实际问题。其中,动载荷的关键就是转化为静载荷,便可同样仿照前面外力—内力—应力的思路分析强度了;能量方法用以解决复杂结构的复杂变形,是基本力学知识的综合应用,同样遵循外力—内力—变形这一主线;材料力学的研究对象决定了其基本理论可解超静定结构,而在具体求解及进一步解决实际问题时,同样遵循这一主线。可见,后续三个专题在理论体系上是前面基本内容的延伸与综合。在授课实践中,教师需围绕一个核心(本构方程),由一条主线(外力—内力—应力与变形—强度与刚度)将各模块的知识有机连接,帮助学生建立一个整体化、系统化的理论体系。这样,有助于使学生加深对材料力学知识的理解,从而达到对基本知识举一反三、灵活运用的目的。   2 采用恰当的教学方法   对于基本变形部分,鼓励学生对比四种基本变形的特点,总结公式与分析思路的共性与个性,帮助学生由研究方法的相似性和公式的类比性理解内容、记忆公式,提高学生对问题的归纳能力。   复杂应力状态与强度理论,首先需帮助学生理解应力状态分析的意义在于解释构件破坏的原因以及研究组合变形杆件的强度。强度理论在讲解时,要体现其哲学内涵,一方面抓住主要矛盾,从而将复杂问题简单化;一方面,体现在“实践是检验真理的唯一标准”,推测强度失效的假说,经长期的实践检验才能确定该理论的实用性和适用范围。   组合变形在基本变形基础上讲授,采用类比方式重点强调在分析方法上与基本变形的异同点,即同样遵循外力—内力—应力的主线,但每一过程都需在基本变形分析结果基础上更进一步。外力分析除计算约束力外,更需将力平移、分解,而使每一类外力只对应一种基本变形;内力分析应综合考虑多种基本变形确定危险截面;应力分析在计算出每一种基本变形的应力后,更要将他们叠加以找出危险点,对于复杂的应力状态由强度理论建立强度条件。组合变形虽看似复杂,但有规律可循,故要将基本理论讲深讲透,从而启发学生归纳普遍规律与通用公式,做到“深入浅出”是讲好组合变形的关键。   稳定问题需强调其非常规特点,即压杆的外力与压缩相同、变形形式与弯曲相同、压杆失稳是整体效应,故被压弯变为了主要矛盾,原始尺寸原理此时不再适用,而应考虑变形后的尺寸分析内力,这样就使压杆稳定的分析过程比强度、刚度复杂了。由于压杆稳定理论的复杂性,公式推导时要启发学生寻找通用方法,归纳不同约束类型与不同柔度对临界力的影响;启发学生体会稳定问题与强度、刚度问题研究方法的异同点,通过不同类型的例题加深对稳定问题的理解。   动载荷需特别强调动载荷与静载荷之间的转换方法,这是动载荷问题的核心。能量方法和超静定以案例式为主,通过例题提高学生运用基本理论和方法解决实际问题、综合问题的能力。   无论哪类教学方法,目的都在于培养学生的创新精神,激发学生的创造性思维,科学思维方式的养成和科学方法论教育是教学的根本落脚点,故在材料力学的教学中,要始终贯穿“具体—抽象—具体”的思维模式,对于实际问题,首先抓住主要矛盾及控制因素建立力学模型,将复杂的实际问题简单化,然后用材料力学的相关理论分析问题、解决问题,挖掘问题的实质,总结普遍规律,最后用所得结论指导新的实际问题,也是“提出问题—解决问题—总结升华”的思维过程,这是解决一切实际问题的根本方法。   3 复杂问题化整为零、化难为简   对于一些复杂问题、综合问题,可将问题串化整为零、化难为简,将综合问题分解为一个个基本问题,应用前面的基本理论各个击破,从而降低难度便于学生接受。   例如对于扭弯组合变形,教材[4]上讲述的内容实质是圆截面杆斜弯曲与扭转变形的组合。而前面学习的是对称弯曲,没有详细讲过斜弯曲,再组合扭转变形,问题是复杂的,课本中对于这一问题直接给出结论“对截面为圆形的轴,包含轴线的任意纵向面都是纵向对称面。所以,把两个方向的弯矩合成后,仍可按照对称弯曲的公式计算正应力。”直接讲述学生一般难以理解。可在讲完拉(压)弯组合变形后,紧跟讲述斜弯曲(包括圆截面梁、矩形截面梁等),把斜弯曲的理论讲清讲透,然后再讲课本中的扭(斜)弯组合一节,就水到渠成了。   对于能量方法和超静定,重在强调问题的主要分析方法以及与基本问题的联系,运用“化难为简”的方法,帮助学生克服畏难情绪,使学生掌握将工程中的复杂问题分解为简单问题的方法。   “化整为零、化难为简”也是解决复杂难题的基本思想,尤其对于综合了“动载荷、超静定、能量方法、压杆稳定”等几块知识的“大题目”,可从问题入手,围绕每一步的待求量,按照“提出基本问题—寻找基本方法—应用基本理论”的分析过程,层层递进逐级分析,最终可整理出清晰的解题思路。可见,所谓难题就是若干基本问题的综合,而“化整为零”的方法便可突破这类问题的瓶颈,达到“化难为简”的效果。   总之,材料力学决不能教学生记公式、套用解题模式,而是激发学生的探索欲望,提高工程素养,提升解决实际问题的能力。为此,材料力学老师应结合课程特点不断研究教学规律,进行教学创新,应用恰当的教学方法培养学生科学的思维方式,把科学方法论渗透在材料力学的教学中。   参考文献   [1] 刘桂荣,韩立新.“材料力学”教学方法探讨.中国电力教育,2011.25:114.   [2] 杨志军,赵学友.材料力学课程教学改革与创新.中国冶金教育,2011.3:25-26.   [3] 宋曦,杨静宁.工科专业材料力学教学创新的探索与实践.力学与实践,2010.2:142-143.   [4] 刘鸿文.材料力学Ⅰ,Ⅱ(第5版).北京:高等教育出版社,2011.

论材料力学教学中的三大关键问题

【论材料力学教学中的三大关键问题】相关文章:

谈合作学习型教学在《材料力学》中的应用04-26

论体育教学中的情感教育04-28

论大学英语教学中的文化教学04-29

论汉语教学中的语体习得04-29

论翻译教学中的和谐理念导入04-30

论英语教学中的文化导入04-26

论英语教学中的文化导入04-27

论回译在翻译教学中的应用05-02

论小诗在英语教学中的应用05-01

论美术教学中的创新教育04-29