- 相关推荐
初二数学证明题
初二数学证明题1、如图,AB=AC,∠BAC=90°,BD⊥AE于D,CE⊥AE于E.且BD>CE
,证明BD=EC+ED
.解答:证明:∵∠BAC=90°,CE⊥AE,BD⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠DAC=90°,∠ADB=∠AEC=90°.
∴∠ABD=∠DAC.
又∵AB=AC,
∴△ABD≌△CAE(AAS).
∴BD=AE,EC=AD.
∵AE=AD+DE,
∴BD=EC+ED.
2、△ABC是等要直角三角形。∠ACB=90°,AD是BC边上的中线,过C做AD的垂线,交AB于点E,交AD于点F,求证∠ADC=∠BDE
解:作CH⊥AB于H交AD于P,
∵在Rt△ABC中AC=CB,∠ACB=90°,
∴∠CAB=∠CBA=45°.
∴∠HCB=90°-∠CBA=45°=∠CBA.
又∵中点D,
∴CD=BD.
又∵CH⊥AB,
∴CH=AH=BH.
又∵∠PAH+∠APH=90°,∠PCF+∠CPF=90°,∠APH=∠CPF,
∴∠PAH=∠PCF.
又∵∠APH=∠CEH,
在△APH与△CEH中
∠PAH=∠ECH,AH=CH,∠PHA=∠EHC,
∴△APH≌△CEH(ASA).
∴PH=EH,
又∵PC=CH-PH,BE=BH-HE,
∴CP=EB.
在△PDC与△EDB中
PC=EB,∠PCD=∠EBD,DC=DB,
∴△PDC≌△EDB(SAS).
∴∠ADC=∠BDE.
2
证明:作OE⊥AB于E,OF⊥AC于F,
∵∠3=∠4,
∴OE=OF. (问题在这里。理由是什么埃我有点不懂)
∵∠1=∠2,
∴OB=OC.
∴Rt△OBE≌Rt△OCF(HL).
∴∠5=∠6.
∴∠1+∠5=∠2+∠6.
即∠ABC=∠ACB.
∴AB=AC.
∴△ABC是等腰三角形
过点O作OD⊥AB于D
过点O作OE⊥AC于E
再证Rt△AOD≌ Rt△AOE(AAS)
得出OD=OE
就可以再证Rt△DOB≌ Rt△EOC(HL)
得出∠ABO=∠ACO
再因为∠OBC=∠OCB
得出∠ABC=∠ABC
得出等腰△ABC
4
1.E是射线AB的一点,正方形ABCD、正方形DEFG有公共顶点D,问当E在移动时,∠FBH的大小是一个定值吗?并验证
(过F作FM⊥AH于M,△ADE全等于△MEF证好了)
2.三角形ABC,以AB、AC为边作正方形ABMN、正方形ACPQ
1)若DE⊥BC,求证:E是NQ的中点
2)若D是BC的中点,∠BAC=90°,求证:AE⊥NQ
3)若F是MP的中点,FG⊥BC于G,求证:2FG=BC
3.已知AD是BC边上的高,BE是∠ABC的平分线,EF⊥BC于F,AD与BE交于G
求证:1)AE=AG(这个证好了) 2)四边形AEFG是菱形
【初二数学证明题】相关文章:
高中数学证明题04-30
如何攻克考研数学证明题的诅咒04-28
攻克考研数学证明题思路总结04-28
考研数学证明题高手解决方案04-28
完胜考研数学证明题思路总结04-28
2012考研数学 攻克证明题思路总结04-28
几何证明题04-29
考研数学单选题和证明题经典解题技巧04-28
考研数学 单选题和证明题技巧手册05-01
2015考研数学单选题和证明题解题技巧04-28