- 工程训练D测量技术实训报告 推荐度:
- 相关推荐
维生素D
维生素D
维生素D(维生素D)
维生素D(vitamin D )为固醇类衍生物,具抗佝偻病作用,又称抗佝偻病维生素。目前认为维生素D也是一种类固醇激素,维生素D家族成员中最重要的成员是VD2(麦角钙化醇)和VD3(胆钙化醇)。维生素D均为不同的维生素D原经紫外照射后的衍生物。植物不含维生素D,但维生素D原在动、植物体内都存在。维生素D是一种脂溶性维生素,有五种化合物,对健康关系较密切的是维生素D2和维生素D3。它们有以下三点特性:它存在于部分天然食物中;人体皮下储存有从胆固醇生成的7-脱氢胆固醇,受紫外线的照射后,可转变为维生素D3。适当的日光浴足以满足人体对维生素D的需要。
目录 发现过程 化学结构 生理代谢 生理功用 收缩展开 发现过程血清碱性磷酸酶(布氏单位·ml ,国际单位umol·mm·l) 血清ca(mg%) 血清p(mg%) 正常婴儿 5~15 26~80 10 5 ~ 8 正常成人 3~5 16~26 10 3~4.5 佝偻病人 >20 >115 8~9 3 骨质软化病人 15 80 9 2~3 甲状旁腺素过多 4~20 20~120 12~16 2~8 骨质疏松 2 10 10~12 4~5 变形性骨炎(paget's) 50 268 10 4 成骨细胞瘤 30 160 10 4 维生素D的发现是人们与佝偻症抗争的结果。早在1824年,就有人发现鱼肝油可在治疗佝偻病中起重要作用。1918年,英国的梅兰比爵士证实佝偻病是一种营养缺乏症。但他误认为是缺乏维生素A所致。1930Gottingen大学的A.Windaus教授首先确定了维生素D的化学结构,1932年经过紫外线照射麦角固醇而得到的维生素D2的化学特性被阐明。维生素D3的化学特性直到1936年才被确定。 1913年,美国科学家Elmer McCollum和Marguerite Davis在鱼肝油里发现了一种物质,起名叫“维生素A”,后来,英国医生EdwardMellanby发现,喂了鱼肝油的狗不会得佝偻病,于是得出结论维生素A或者其协同因子可以预防佝偻病。1921年Elmer McCollum使用破坏掉鱼肝油中维生素A做同样的实验,结果相同,说明抗佝偻病并非维生素A所为。他将其命名为维生素D,即第四种维生素,但当时的人们还不知道,这种东西和其他维生素不同,因为只要有紫外线,人自己就可以合成(有悖于维生素的.定义)。 1923年,人们知道7-脱氢胆固醇经紫外线照射可以形成一种脂溶性维生素(即D3),Alfred Fabian Hess甚至指出”阳光即是维生素”。德国哥廷根大学教授AdolfWindaus与1928年荣获诺贝尔奖,以表彰其在研究固醇与维生素关系的工作。在20世纪30年代,他成功的研究出维生素D的化学结构。 1923年威斯康辛大学教授Harry Steenbock证明了用紫外线照射食物和其他有机物可以提高其中的维生素D含量,用紫外线照射过兔子的食物,可以治疗兔子的佝偻病。就用自己攒下的300美元为自己申请了专利,Steenbock用自己的技术对食品中的维生素D进行强化,到1945年他的专利权到期时,佝偻病已经在美国绝迹了。 由此,人类史上对维生素D的利用开始渐渐多了起来。
化学结构维生素d(Vd)是环戊烷多氢菲类化合物,可由维生素d原(provitamind)经紫外线270~300nm激活形成。动物皮下7-脱氢胆固醇,酵母细胞中的麦角固醇都是维生素d原,经紫外线激活分别转化为维生素d3及维生素d2量少,但人工照射者多为此型(图5-6)。维生素d的最大吸收峰为265nm,比较稳定,溶解于有机溶媒中,光与酸促进异构作用,应储存在氮气、无光与无酸的冷环境中,油溶液加抗氧化剂后稳定,水溶液由于有溶解的氧不稳定。双键系统还原也可损失其生物效用。
生理代谢从食物中得来的维生素d,与脂肪一起吸收,吸收部位主要在空肠与回肠。胆汁帮助其吸收。脂肪吸收受干扰时,如慢性胰腺炎、脂肪痢及胆道阻塞都会影响他的吸收。吸收的维生素d与乳糜微粒相结合,由淋巴系统运输,但也可与维生素d运输蛋白(α-球蛋白部分)相结合在血浆中运输。有些与β-脂蛋白相结合,口服维生素d与乳糜微粒结合,比从皮肤中来的与蛋白结合者易于分解。当维生素d运到肝脏中,在微粒体中经单氧酶系统作用,将其25位羟基化形成25(oh)d(25-hydroxy vitamin d3),肝外的其他组织也可吸取维生素d及25-(oh)d3,因此组织中维生素d及25(oh)d3及其总量比血浆中多,如果靶组织需要,可将其释放出来,他们在脂肪组织中最多,释放速度最慢,当体重减轻,脂肪减少时,他们也可释放出来。静脉注射维生素d,较快的由血浆进入到组织中。血浆中25(oh)d3在注射后1~3天达到高峰,其浓度可达到20~40ng·ml-1,最高可达80 ng·ml-1。浓度与摄入量有一定的关系,小于4 ng·ml-1,临床上可发生佝偻病及骨质软化。25(oh)d3在肾线粒体单氧酶作用下(酶系统包括细胞色素p450、铁硫蛋白及黄素蛋白),经羧基化,转变为1,25-(OH)2-VD3(1,25-dihydroxy vxtamin d),他是维生素d的生物作用形式,现将其作为激素。其作用方式与其他固醇类激素相似。在靶组织中都有其受体,1,25(oh)2d3与受体形成复合物内,与细胞核或染色体相结合,通过dna转录作用合成信使rna(mrna),并转译为蛋白质,1,25(oh)2d3在血浆中由分子量为52,00的蛋白质输送至靶组织(如小肠、骨、肾等),在这些组织中既有1,25(oh)2d3的受体,又有需要vd的钙结合蛋白(calcium binding protein,cabp),说明1,25(oh)2d3的影响。新闻报道胰脏内有1,25(oh)2d3及cabp,二者均存在于分泌胰岛素的β细胞内,在维生素d空竭情况下,可以阻止胰岛素的分泌,也有人证明1,25(oh)2d3对于干细胞的生长与分化有关。在肾中1位羧基化酶与24位羧基化酶相抑制,为血钙水平所控制。在正常血钙浓度下(9.5mg%)肾中1α羧基化酶与24位羧基化酶都有活力,所以既能合成1,25(oh)2d3也能合成24,25(oh)2d3,血清钙低时,刺激1位羧基化酶,钙多时抑制此酶。由此以调节1,25(oh)2d3合成之量。1,25(oh)2d3合成量多,24,25(oh)2d3合成量少,除血钙外,尚有其他因 素影响1,25(oh)2d3如甲状旁腺素(parthormone,pth)、降钙素(calcitonin,ct)、催乳激素都可使其增多。肾为2个羧基化的主要组织,但在体外试验已证明骨、胎盘、肠及蛋黄均有此功能。 1,25-(OH)2-VD3的分解代谢与1,24,25-(OH)2-VD3的途径相类似。24位羧基化后可进一步氧化成24位氧络物,然后23位羧基化,侧链分裂。26-c,27-c可氧化co2水溶性代谢物有维生素d3-23羧酸(calcitroic acid),也可产生内酯及酸酯,维生素d的分解代谢主要场所在肝内,并将其代谢物排入到胆汁中,口服维生素d比从皮肤中得来的易于分解。25(oh)2d3及1,25(oh)2d3也可以葡糖苷酸形式通过胆肝形成肝肠循环或从大便中排出。口服生理剂量48h后,30%的剂量从大便中排出,仅2-~4%从尿中排出。
生理功用(1)维持血清钙磷浓度的稳定 血钙浓度低时,诱导甲状旁腺素分泌,将其释放至肾及骨细胞。在肾中pth除刺激1位羧化酶与抑制24位羧基化酶外,还促使磷从尿中排出,钙在肾小管中再吸收。在骨中pth与1,25-(OH)2-VD3协同作用,将钙从骨中动员出来。在小肠中1,25-(OH)2-VD3促进钙的吸收。从这三条途径使血钙恢复到正常水平,又反馈控制pth的分泌及1,25-(OH)2-VD3的合成。在血钙高时刺激甲状腺c细胞,产生降钙素,阻止钙从骨中动员出来,并促使钙及磷从尿中排出。小肠吸收磷为主动吸收,需要能量,钠、葡萄糖、1,25-(OH)2-VD3及血清磷低时(8mg%以下),刺激1,25-(OH)2-VD3的 合成,促进小肠对钙、磷的吸收。由于pth不参加反应,所以钙从尿中排出而磷不排出,从而使血钙略有上升,而磷上升较多,使血磷恢复正常值。(2)促进怀孕及哺乳期输送钙到子体 1位羧基化酶除受血清中钙磷浓度及膳食中钙磷供给量的影响外,还受激 素的影响,停经后的妇女1,25-(OH)2-VD3浓度减低,易有骨质软化等症状。 在怀孕期间1,25-(OH)2-VD3血浆浓度上升,哺乳期继续上升,断乳后母体逐渐恢复到正常水平。1,24,25(OH)2-VD3之水平与之相反,怀孕期下降,断乳后恢复到正常。胎盘也有1位羧基化酶,在怀孕期间无肾动物也能合成1,25-(OH)2-VD3。乳腺也是1,25-(OH)2-VD3的靶组织,对乳中钙的水平直接关系,怀孕及哺乳期间母亲可从自身的骨中将钙输出以维持胎儿婴儿正常生长,维生素d供应充足者,在断乳后,又可重新获得钙,维生素d缺乏者,这种恢复能力较差。(3)1,25-(OH)2-VD3作用机理 :1,25(oh)2d3对小肠作用为诱导合成cabp. 1,25-(OH)2-VD3与小肠细胞的受体形成复合体进入细胞核染色体上,促使cabp的信使rna(mrna)的合成,此mrna在胞浆内转录为cabp。这种蛋白促使钙离子通过微绒毛刷状缘(microvillus brush border),积累于肠细胞的线粒体或其他部位。通过Na+将Ca2+挤出基底-外侧膜外(basal-lataaral mebrace)。1,25-(OH)2-VD3对肾小管Ca2+的再吸收作用与在小肠中是一样的。1,25-(OH)2-VD3也可以在低血浆钙及膳食中钙缺乏时,将钙从骨中动员出来,但在骨中未发现有cabp, 1,25-(OH)2-VD3可以促进小肠吸收钙,但不能从骨中将钙动员出来,所以1,25-(OH)2-VD3对骨的作用机理与对小肠者是不同的,但还不清楚。 骨的矿物化作用的机理尚未阐明,补充1,25-(OH)2-VD3给缺乏维生素D的动物及人体,都不能有助于骨中矿物质的沉积。动物体内虽然分离出许多维生素D代谢产物但迄今尚未找出对骨的矿物化有明显作用者。在现阶段中只了解到维生素D促进钙磷的吸收,又可将钙磷从骨中动员出来,使血浆钙、磷达到正常值,促使骨的矿物化,并不断更新。
【维生素D】相关文章:
维生素D有什么功能?如何补充维生素D?01-18
学习「维生素D」的收获作文07-17
学习「维生素D」的收获作文08-15
晒太阳补充维生素d的吗?01-10
多吃蘑菇可补维生素D08-23
孩子到底需要多少维生素D?07-28
学习「维生素D」的收获200字作文07-15
儿童过量补维生素D导致发烧05-02
维生素D受体基因与骨量的关系07-08