- 相关推荐
数学解题的七种技巧
解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。以下是小编为大家收集的数学解题的七种技巧,仅供参考,希望能够帮助到大家。
数学解题的七种技巧
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、 熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。
(二)、全方位、多角度分析题意:
对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。
(三)恰当构造辅助元素:
数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种联系方式。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。
数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构造反例,构造数学模型等等。
二、简单化策略
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。
因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
1、寻求中间环节,挖掘隐含条件:
在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。
2、分类考察讨论:
在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。
3、简单化已知条件:
有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。
4、恰当分解结论:
有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
三、直观化策略:
所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。
(一)、图表直观:
有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。
对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。
(二)、图形直观:
有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。
(三)、图象直观:
不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。
四、特殊化策略
所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。
五、一般化策略
所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。
六、整体化策略
所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。
七、间接化策略
所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。
拓展:如何提高数学解题能力
美国著名数学家G·波利亚(George Polya,1887—1985)说过“问题是数学的心脏”,“掌握数学意味着什么?那就是善于解题。”但数学问题千变万化,无穷无尽,“题海”茫茫。要使学生身临题海而得心应手,身居考室而处之泰然,就必须培养他们的解题应变能力。有了较强的应变能力,在漫游“题海”时,才能随机应变。那么如何培养学生的解题应变能力呢?
一、解题思路的理解和来源
平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。那么我们认为“反应快、思路清楚、有主见”是聪明的前提。学习成绩好的同学,反应快、思路清楚、有主见就是他们的必备条件。
那么解题也如此,必须反应快、思路清楚、有主见。同一道题,不同的学生从不同的角度去理解,由不同的看法最终汇聚成正确的解题过程,这是解题的必然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。
那么,如果能教会给学生,在处理数学问题上,第一时间最短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。
解题思路的来源就是对题的看法,也就是第一出发点在哪。
二、如何在短期内训练解题能力
数学解题思想其实只要掌握一种即可,即必要性思维。这是解答数学试题的万用法门,也是最直接、最快捷的答题思想。什么是必要性思维?必要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。
纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能提升思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。最主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。
三.寻找解题途径的基本方法——从求解(证)入手
遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,必须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。
四.完成解题过程的关键——数学式子变形
解答高考数学试题遇到的第二障碍就是数学式子变形。一道数学综合题,要想完成从已知到结论的过程,必须经过大量的数学式子变形,而这些变形仅靠大量的做题过程是无法真正完全掌握的,很多考生都有这样的经历,在解一道复杂的考题时,做不下去了,而回过头来再看一看答案,才恍然大悟,解法这么简单,后悔莫及,埋怨自己怎么糊涂到没有把式子再这么变一下呢?
其实数学解题的每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向必定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还必须注意的是,一切转换必须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。
五.夯实基础----回归课本
1.揭示规律---- 掌握解题方法
高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,最终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。
例如:课本在讲绝对值和不等式时,根据|a-b|≤|a|+|b|推出|a-b|≤|a-c|+|b-c|,这里运用了插值法|a-b|=|(a-c)-(b-c)|≤|a-c|+|b-c|这一思维方法,我们要弄清之所以这样想,之所以得到这个解法的全部酝酿过程。
2.融会贯通---构建网络
在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,最后造成记忆不牢,考试时失分。
例如:若f(x+a)=f(b-x) , 则 f(x)关于(a+b)/2 对称。如何理解?我们令x1=a+x,x2=b-x,则f(x1)=f(x2) ,x1+x2=a+b=常数,即两自变量之和是定值,它们对应的函数值相等,这样就理解了对称的本质。结合解析几何中的中点坐标的横坐标为定值,或用特殊函数,二次函数的图像,记忆这个结论就很简单了,只要x1+x2=a+b=常数;f(x1)=f(x2),它可以写成许多形式:如 f(x)=f(a+b-x)。同样关于点对称,则f(x1)+f(x2)=b,x1+x2=a(中点坐标横纵坐标都为定值),关于(a/2,b/2)对称。再如,若f(x)=f( 2a-x),f(x)=(2b-x), 则f(x)的周期为 T=2|a-b|。如何理解记忆这个结论,我们类比三角函数f(x)=sinx,从正弦函数图形中我们可知x=π/2,x=π3/2为两个对称轴,2|3/2π-π/2|=2π, 而得周期为2π,这样我们就很容易记住这一结论,即使在考场上,思维断路,只要把图一画,就可写出这一结论。这就是抽象到具体与数形结合的思想的体现。
思想提炼总结在复习过程中起着关键作用。类似的结论 f(x)关于点A(a,0) 及B(b,0)对称,则 f(x)周期T=2|b-a|, 若f(x)关于 点 A(a,0)及x=b对称,则f(x)周期T=4|b-a|,
这样我们就在函数这章做到由厚到薄,无需死记什么内容了,同时我们还要学会这些结论的逆用。例:两对称轴 x=a,x=b当b=2a(b>a)则为偶函数.同样以对称点B(b,0), 对称轴x=a,b=2a是为奇函数.
3.加强理解----提升能力
复习要真正的回到 重视 基础的轨道 上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。
4.思维模式化----解题步骤固定化
解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:
(一)审题
审题的关键是,首先弄清要求(证)的是什么?已知条件是什么?结论是什么?条件的表达方式是否能转换(数形转换,符号与图形的转换,文字表达转为数学表达等),所给图形和式子有什么特点?能否用一个图形(几何的、函数的或示意的)或数学式子(对文字题)将问题表达出来?有什么隐含条件?由已知条件能推得哪些可知事项和条件?要求未知结论,必须做什么?需要知道哪些条件(需知)?
(二)明确解题目标
关注已知与所求的差距,进行数学式子变形(转化),在需知与可知间架桥(缺什么补什么)
1. 能否将题中复杂的式子化简?
2. 能否对条件进行划分,将大问题化为几个小问题?
3. 能否进行变量替换(换元)、恒等变换,将问题的形式变得较为明显一些?
4. 能否代数式子几何变换(数形结合)?利用几何方法来解代数问题?或利用代数(解析)方法来解几何问题?数学语言能否转换?(向量表达转为坐标表达等)
5. 最终目的:将未知转化为已知。
(三)求解
要求解答清楚,简洁,正确,推理严密,运算准确,不跳步骤;表达规范,步骤完整
以上步骤可归纳总结为:目标分析,条件分析,差异分析,结构分析,逆向思维,减元,直观,特殊转化,主元转化,换元转化。
高分数学解题方法
1:调理大脑思绪,提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
2:沉着应战,确保旗开得胜,以利振奋精神
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
3:“内紧外松”,集中注意,消除焦虑怯场
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
4:一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
5:“六先六后”,因人因卷制宜
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。
4.先小后大
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基础
5.先点后面
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面
6.先高后低
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
6:确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
7:讲求规范书写,力争既对又全
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
8:面对难题,讲究方法,争取得分
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1.缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2.跳步解答
解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
9:以退求进,立足特殊
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
10:应用性问题思路:面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
11:执果索因,逆向思考,正难则反
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
12:回避结论的肯定与否定,解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
【数学解题的七种技巧】相关文章:
中考数学大题的解题技巧有哪些06-21
共同的解题听力技巧08-06
关于数学解题技巧的三个口诀09-15
中考数学不可不知的十种解题技巧08-03
段落标题配对题解题技巧10-20
高一数学解题套路03-08
高一数学解题方法03-03
关于英译汉的复习方法与解题技巧06-19
立体几何大题的八大解题技巧05-27