- 相关推荐
数学系毕业论文开题报告
随着个人的文明素养不断提升,报告的适用范围越来越广泛,我们在写报告的时候要注意涵盖报告的基本要素。那么大家知道标准正式的报告格式吗?下面是小编精心整理的数学系毕业论文开题报告,欢迎大家借鉴与参考,希望对大家有所帮助。
数学系毕业论文开题报告1
一、课题的来源及意义
通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。
积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的`意义。
二、国内外发展状况及研究背景
国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。
三、课题研究的目标和内容
通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。
(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。
(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。
(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。
四、本课题研究的方法
课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。
五、课题的进度安排:
第一阶段:搜集资料,确定选题范围,联系指导老师(20xx秋1--7周)
第二阶段:选定题目、填写开题报告,准备开题 (20xx秋8--12周)
第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20xx秋13周--20xx春6周)
第四阶段:撰写初稿、在指导老师的指导下修改论文 (20xx春7--14周)
第五阶段:提交论文,准备答辩,论文总结 (20xx春15--16周)
数学系毕业论文开题报告2
提高本科毕业生数学教育论文质量,首先在激发学生数学教育科研动机的基础上,发展数学教育的科研意识。
论文的选题要有创新性、实践性、可行性,在论文写作的过程中培养学生的数学教育科研能力。本科生数学教育论文的标准应是再创性、整体性和规范性。
[关键词]数学教育本科生毕业论文科研意识
[作者简介]李静(1966-),男,河北张北人,廊坊师范学院数信学院数学系讲师,硕士,主要从事数学教育研究。(河北廊坊065000)
[中图分类号]G642.477[文献标识码]A[文章编号]1004-3985(20xx)06-0174-02本科生毕业论文是培养大学生的创新能力、实践能力和创业精神的重要环节。
师范院校数学系本科生适应就业需要,选择数学教育专业毕业论文较多。毕业论文指导要以学生就业需要为动机,以提高学生的数学教育专业能力和创新意识为目标,以“模仿—反思—初步创新”模式为科研训练过程,合理安排毕业论文的各个环节。
一、明确毕业论文工作目的
1.间接性目的。随着数学教师专业化,数学教育理论已成为数学教师专业知识结构的主要成分之一。
无论是师范毕业生的就业面试,还是在职的中学数学教师的培训提高,数学教育理论的掌握越来越重要。论文指导教师发挥就业需要这一外在的、间接的动力作用,促使学生认真学习有关系统的数学教育理论知识,为做好毕业论文打好扎实的基础。
2.直接性目的。因为在校本科生缺乏中学数学教学的经历和经验,对于数学教育理论的学习只能了解记忆,很难进入思考阶段,以这样的知识储备状态,毕业论文的创新性水平不会太高。
学生掌握了一定的数学教育理论知识后,教师要指导学生走进中学数学课堂,熟悉教学的各个方面,并对照自己中学受教育的经历,思考现行的中学数学教学,哪怕是微小的触动,教师帮助其分析理论依据,诱导其深入思考教学实践,激发其对数学教育的真正兴趣,促进其较高水平地完成论文。选择数学教育毕业论文的学生,在内外动机的作用下,通过理论知识的学习和中学数学实践的感悟,有针对性地对某个课题整理、总结,探讨解决数学教育中的一些问题,有助于学生高质量地对研究心得总结、反思、加工和表达。
二、培养数学教育的科研意识
本科生的数学教育科研意识是指对数学教育问题的.感知和参与研究的自觉要求。良好的科研意识是研究型人才不断成长的基本要求,鼓励本科生不能只满足于将来当教书匠,应成为研究型的专业教师。
培养本科生的数学教育科研意识不妨从以下几方面着手:通过数学教育理论重要性的教育,逐步培养学生用数学教育的观点观察、发现和分析问题的自觉要求;督促学生走进中学数学教学实践,培养学生善于思考、提炼和分析当前数学教育的有关问题,形成自觉的心理倾向;在论文准备期间,理论学习和实践感悟后,在指导教师的启发引导下,培养学生善于总结数学教学的经验,能够有意识地运用有关数学、哲学、教育学、心理学的观点分析这些感悟经验,努力把经验上升为理论知识①。本科生要学习和容纳不同流派的学术观点,虚心向数学教育第一线的实际工作者请教,调查、分析数学教学实践问题。
本科生的科研意识的发展,绝不是靠一时一事可以实现的,应该贯穿于整个本科教育过程。作为毕业论文的应急之需,可以在毕业论文开始时以任务书形式提出课题要求;也可以在论文准备过程中,专题性地介绍相关领域进展,评价相关专家的研究特点;指导教师带领自己的学生参加教育见习和教育实习等,让学生在教学实践中学会发现问题、分析问题、解决问题,从而自觉地形成数学教育的科研意识;也可以通过论文评述、中期筛选等机制促进本科生的相互学习。
三、选定毕业论文课题
1.打好学科基础,开阔选题视野。
师范院校数学系全日制的本科生有关数学教育的课程有数学基础、教育学和心理学基础、数学教学论基础。
在选题前,指导教师应要求学生认真复习数学教育自身专业课程并且适当地布置一些复习思考题,帮助学生充分地理解有关数学教育的理论知识,为他们发现课题开拓宽阔空间,教师也要注意帮助学生领会新课程的理念,促进未来的中学教师更好地全面实施新课程。
2.参加中学数学教学实践,获得选题灵感。
实践是产生科研课题的土壤。让学生有机会到中学数学教育第一线去进行实践,在实践中了解中学教育现状,发现有关问题,取得选题灵感。
经过本科阶段的学习后,学生的数学知识和修养达到了中学数学教师专业要求,但将理论形态知识转化成实践形态知识还需在教师的导引下逐渐地对中学数学教学活动感悟、理解和把握。学生参与中学数学教学活动的兴趣是浓厚的,都想体验当真正老师的感受。
要想让学生体验到真正的实践形态的数学教育知识,指导教师无论在见习、试讲或实习中,一定要帮助学生在观察活动中发现问题,在理论讲解中分析问题,在感悟思考中解决问题。作为指导老师,保护、引导这种闪光的火花很重要,它是优秀课题的雏形。
这种数学教育的科研训练,对学生今后的发展意义重大。
3.提出选题原则,掌握选题分寸。
本科生论文的选题原则主要是:创新性、实践性、可行性。
数学系毕业论文开题报告3
一、选题的依据及课题的意义
1、选题的依据:
数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解。在课余时间对矩阵理论与矩阵分析等相关书籍的阅读,了解到矩阵对于分析问题解决问题有很大的帮助。矩阵理论也在很多领域里有所应用,可以说矩阵对于现代科学具有不可替代的作用。为此我们需要深入了解矩阵的一些性质及其关系。矩阵的等价、相似、合同是矩阵很重要的性质,这些性质对于解决问题有很大的帮助。
2、课题的意义:
通过对矩阵等价、相似、合同的探讨加深对矩阵的了解。也通过本次研究更深入的理解并运用矩阵理论的性质特别是矩阵的等价、相似、合同这三大性质来解决社会活动的所会遇到的问题。通过对矩阵等价、相似、合同这三大关系的探讨,能够了解它们的标准形的应用有助于提高学生利用矩阵等价、相似、合同这三大关系来分析问题和解决问题的能力。
二、研究动态及创新点
1、研究动态:
目前已经有许多国内外的知名学者对矩阵进行研究,矩阵理论对于问题的解决有着很重要的作用。就我阅读一些参考文献:《矩阵分析与应用》张贤达著、《矩阵理论及其应用》将正新,施国梁著、《矩阵论》戴华著等了解到现在已经有很多学者对矩阵有了一定的.研究。这些文献对矩阵的一些理论及其性质都做了较深入的阐述,对于矩阵的等价、相似、合同一些相关的理论证明和应用都有了相关说明。
2、创新点:
通过对矩阵论及矩阵分析的学习,熟练掌握矩阵的等价、相似、合同的相关性质和判别。并且对这三者的区别与联系做了相关阐述。同时通过对矩阵的这些理论研究,总结了矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。同时还运用对矩阵的等价、相似、合同的性质对一些相关问题的简化及解决。
三、研究内容及实验方案
研究内容:
1、 矩阵的概念及其一般特性。
2、 矩阵等价、相似、合同三大关系的性质、判别。
3、 矩阵等价、相似、合同三大关系的区别与联系。
4、 矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。
5、通过运用相关理论研究解决一些简单问题的例子。
实验方案:
1、通过图书馆查找阅读相关文献并运用所学知识对其进行分析和总结。
2、通过网上查找相关信息并对其分析总结。
3、与老师和同学一同探讨矩阵的运用。
四、毕业论文工作进度
1、论文开题和选题 20xx.1.15—20xx.2.1
2、阅读参考文献 20xx.3.12—20xx.3.18
3、撰写毕业论文开题报告 20xx.3.19—20xx.3.25
4、撰写毕业论文初稿 20xx.3.26—20xx.4.29
5、毕业论文中期检查 20xx.4.30—20xx.5.6
6、完成毕业论文 20xx.5.7—20xx.5.20
7、准备毕业论文答辩20xx.5.21—20xx.5.27
8、毕业论文答辩 20xx年六月中旬
五、主要参考文献
[1] 高等代数(第二版) [M].北京大学数学系几何与代数教研室代数小组.高等教育出版社.20xx.
[2] 矩阵论 [M]. 方保镕,周继东,李医民. 清华大学出版社.20xx.
[3] 线性代数 [M]. 刘先忠, 杨明. 高等教育出版社.20xx.
[4]矩阵分析与应用[M].张贤达.清华大学出版社.20xx.
[5]矩阵论[M].张凯院,徐仲.西北工业大学出版社.20xx.
[6]Advanced Linear Algebra[M].Steven Roman.世界图书出版社.20xx.
[7]矩阵分解的应用[J].王岩,王爱青.青岛建筑工程学院学报. 20xx(2).
[8]关于矩阵的分解形式[J].屈立新.邵学院学报(自然科学版).20xx(3).
[9]正交矩阵的正交分解[J].曲茹,王淑华.高师理科学刊.20xx(2).
【数学系毕业论文开题报告】相关文章:
毕业论文开题报告09-19
毕业论文的开题报告12-29
毕业论文开题报告07-10
毕业论文开题报告范文02-08
教育毕业论文开题报告05-26
毕业论文开题报告模板12-29
毕业论文开题报告范例12-29
音乐毕业论文开题报告11-03
法学毕业论文开题报告07-28