推荐文档列表

三角教材与教法的新思考

时间:2021-10-02 14:34:55 数学论文 我要投稿

关于三角教材与教法的新思考

 1998年4月21日,国家教育(www.35d1.com-上网第一站35d1教育网)部专门调整了高中数学的部分教学内容,其中的调整意见第(7)条为:“对三角函数中的和差化积、积化和差的8个公式,不要求记忆。”再联想到1998年全国高考数学卷中,已尽可能减少了这8个公式的出现次数,

在仅有的一次应用中,还将公式印在试卷上,以供查阅,而当时调整意见尚未生效(应在1999年生效)。这不能不说对和积互化的8个公式(以下简称“8公式”)的要求是大大降低了。

  但是,这次调整的,难道仅仅是8个公式吗?如果认为仅仅是降低了对8公式的要求,那就太表面、太肤浅了。

  我们知道,和积互化历来是三角部分的重点内容之一。相当部分的三角题都是围绕它们而设计的,它们也确实在很大程度上体现了公式变形的技巧和魅力。现在,要求降低了,有关的题目已不再适合作为例(习)题选用了。这样一来,

三角部分还要我们教些什么?又该怎样教?立刻成了部分教师心头的一大困惑。

  有鉴于此,我认为很有必要重新审视这部分的知识体系,理清新的教学思路,以便真正落实这次调整的意见,实现“三个有利于”(有利于减轻学生过重的课业负担,有利于深化普通高中的课程改革,有利于稳定普通高中的教育(www.35d1.com-上网第一站35d1教育网)教学秩序)

的既定目标。

  一、是“三角”还是“函数”

  应当说,三角函数是由“三角”和“函数”两部分知识构成的。三角本是几何学的衍生物,肇始于古希腊的希帕克,经由托勒玫、利提克思等。至欧拉而终于成为一门形态完备、枝繁叶茂的古典数学学科。历史上的很长一段时期,只有《

三角学》盛行于世,却无“三角函数”之名。

  “三角函数”概念的出现,自然是在有了函数概念之后,从时间上看距今不过300余年。但是,此概念一经引入,立刻极大地改变了三角学的面貌。特别是经过罗巴切夫斯基的开拓性工作。致使三角函数可以完全独立于三角形之外,而成

为分析学的一个分支,其中的角也不限于正角,而是任意实数了。有的学者甚至认为可将它更名为角函数,这是有见地的。

  所以,作为一门学科的《三角学》已经不再独立存在。现行中学教材也取消了原来的《代数》、《三角》、《几何》的格局,将三角并入了代数内容。这本身即足以说明“函数”在“三角”中应占有的比重。

  再从《代数学》的历史演变来看,在相当长的历史时期内,“式与方程”一直是它的核心内容,那时的教材都是围绕着它们展开的。所以,书中的分式变形、根式变形、指数式变形和对数式变形可谓连篇累牍、所在皆是。这是由当时的数学认知水平决定的。而现在,函数已取代了式与方程成为代数的核心内容,比起运算技巧和变形套路来,人们更关注函数思想的认识价值和应用价值。1963年颁布的《数学教学大纲》提出数学三大能力时,首要强调的是“形式演算能力”,1990年的大纲突出强调的则是“逻辑思维能力”。现行高中《代数》课本中,充分阐发了幂函数、指数函数、对数函数的图象和性质及应用,对这三种代数式的变形却轻描淡写。

  所以,三角函数部分应重在“函数的图象和性质”是无疑的,这也是国际上普遍认可的观点(下文还将述及)。

  现行高中《代数》的三角函数部分,也单列了一章专讲“三角函数的图象和性质”,这是与数学发展的潮流相一致的。但若提起三角函数,大多数师生头脑中反映出来的,还是“众多的公式,纷繁的变换”,而三角函数的“图象和

[1] [2] [3]