- 相关推荐
社会关系网络匿名方法探究论文
【摘 要】近年来,随着互联网技术飞速发展,各色社交平台层出不穷,互联网让人们交流更加便利的同时,也带来了诸多用户隐私泄露的问题。如何在数据庞大结构复杂的社会关系网络中保护用户隐私信息,通过怎样的方法匿名发布信息,成为一个迫切需要解决的问题,并逐渐成为网络安全方面的热点问题之一。论文以保护用户敏感标签的社会关系网络匿名算法为研究对象,对其目标序列的产生、以目标序列为指导匿名化网络进行了探索与研究。
【关键词】社会关系网络;隐私保护;敏感标签
1 论文的研究背景和意义
1967 年, Milgram 发表了名为小世界实验的科研报告 [1],研究人员将一些信件随机交给 Omaha 和 Wichita 几个志愿者作为起点,以 Boston 等几个志愿者作为终点,每个拿到信的人,若认识目标,就把信直接交给目标;若不认识目标,则把信交给他认为认识目标的人。在实验里,分析所有到达的信件被转交的数据,发现平均转交次数为 6.这也就是著名的六度分隔理论,理论上,最多只要经过 6 个人就能联系到世界上的任何一个人。
社交平台和支付平台出于安全考虑,需要用户的个人信息,如姓名、身份证号码等,企业也为了自身的利益以及系统的完善性,不断地收集用户的隐私数据,并运用这些隐私数据研究用户的行为偏好,为系统的改善、企业的未来方向做指引。但是,有的企业管理不善,某些员工会将用户的这些数据出卖来获取利益,尽管这些信息在公开用户的隐私数据时抹去了密码等敏感信息,但是攻击者依然可以确定到相应的用户,这种行为给用户的隐私信息安全带来了极大隐患。
在这种情况下,有些用户担心自己的隐私信息被暴露,一方面留恋互联网带来的便利,另一方面担心自己的隐私被窃取,在这样矛盾的心理下,用户会选择性地使用虚假信息,而虚假信息反过来影响企业的正常判断,使得企业的数据不全、策略不当,如此下去,不利于互联网事业的发展。
2 保护隐私的方法
传统隐私保护方法有很多,大致可以分为以下几类:①加密方案。数据加密有多种方法,但是窥其本质,都是通过一定密码机制,在令数据无损失的同时,使用户原始数据变得不可见。②伪装方案。其基本思想是先把用户个人数据“伪装”.POLAT [2,3] 提出的伪装方案,即是采用随机扰动技术伪装用户的真实数据的方式。在数据隐藏方法中,随机扰动技术很常用,想要隐藏数据 n,就给 n 加上随机数 r,伪装后的数据为 n+r,即对用户的真实数据进行处理后再发送给服务器。③聚合模糊方案。数据聚合,是指把用户分组,并处理组内用户数据得到一个聚合数据。这个数据即为公共使用的数据,这样就避免了用户信息泄露。
但是,这些传统方法并不能很好地保护社会网络中用户的数据隐私。相对于传统表格式数据结构,社会网络结构比较复杂,不仅包括了用户个人的敏感数据、敏感属性,也包含了用户与用户之间的关系。社会网络这种空间结构,用数据结构中的图来抽象为模型最适合不过。图中节点代表用户,边代表用户与用户之间存在社交关系。将社会网络描述为图后,有关图的很多理论就可以应用在社交网络隐私保护的研究中。自Kun Liu,Evimaria Terzi 等人提出了图的 k-度匿名方法,社会网络数据隐私安全的研究一直是一个热点领域。
迄今为止,由于实际的人类社交网络的数据含量过于庞大、隐私保护算法过于复杂等原因,关于社交网络数据隐私的研究仍然处于较为初级的理论阶段,但是研究此领域的意义对于互联网,对于每个人来说,都是及其重要的。社交网络隐私算法具有重要的意义,它不仅具有较高的理论研究价值,也有很高的实际应用价值,未来发展具有很大潜力。
3 国内外研究现状
随着互联网现世,社交网络飞速发展,各领域研究者均从社交网络的大数据上得到了很多研究信息,比如用户行为、社交传播、传染病扩散等,社交网络给研究者带来便利的同时,社交网络公开数据的性质对个人隐私数据的威胁日益增长。为了保护社交网络中用户的隐私数据,近年来,国内外对于社会网络已经做了很多研究工作。
目前对于社会网络中隐私安全的研究,可以按阶段分为四类:第一, P2P模式。以社会网络中常见的推荐系统为例,P2P模式要使每个用户的计算机既是客户端又是服务器,即用户的个人数据位于自己的计算机中。这样的话,用户完全自己操纵个人数据,如TVEIT[4],但是这个系统在移动端间的泛洪通信方式导致通信费用比较昂贵。由于TVEIT还是采取通过网络传输个人数据的传统方式,所以依然具有隐私暴露的潜在危机。而在CANNY提到的系统 [5,6] 中,同样是基于P2P模式的系统,使用了聚合数据和加密,以确保用户数据不被暴露。所谓数据聚合,是指把用户分组,并处理组内用户数据得到一个聚合数据。这个数据即为公共使用的数据。这一方法的优秀之处在于,用户对个人数据可以完全控制。Franchi [6] 等人提出了一种基于密钥的身份系统,并将它应用在微博等社交平台中,搭建了一个保护用户隐私的匿名社交网络。 P2P模式理论上最为简单直观,对于数据规模较小的系统有着较好的隐私保护效果,但是对于庞大的社会网络而言,把用户信息只存在用户的客户端内是不现实的:第一,手机、智能手表等移动端内存较小,不适合存储所有数据;第二,频繁的通信使得传输强度过大,导致效率低下、传输设备损耗快等问题。第二, 信息混淆模式。信息混淆是指将所有用户隐私信息进行混淆,南丽丽等人 [7] 首次提出基于信息混淆机制的社会网络隐私数据保护方案,将混淆后的用户信息在网络中环状扩散。吴涛 [8] 使用火狐浏览器的扩展功能完成信息混淆,实现了人人网平台的用户信息混淆。AGRAWAL[9]沿用这种混淆技术,在数据挖掘过程中保护隐私,并取得了较好的效果。另外一种混淆用户个人数据的方法是模糊化处理。简单地说,模糊化处理是把一部分用户个人数据用其他数据掩盖,在研究 [10]中,BERKOVSKY完成了一个模糊化处理的系统,该系统为保护用户隐私,采用模糊化的用户描述文件进行推荐,实验显示系统推荐的结果仍比较精确。信息混淆模式既考虑到了保护用户隐私数据的问题,又顾及了广告商与第三方应用部门的利益。但是信息混淆模式适用的数据库、系统规模较小,对全部用户隐私数据的混淆、模糊,很大程度上破坏了信息的原始性,大大改变了社会网络的图结构,造成了数据冗余、计算量太大等问题。
4 结语
本文主要介绍了本文中用到的相关理论和技术,首先介绍了有关社会关系网络的定义和重要理论,接着介绍了对于图结构的几种攻击方法,针对以上提出的攻击方法,介绍了图的 k-匿名方案以及保护用户敏感标签的图的 k-l-匿名方案。对现有的社会关系网络匿名方法进行了分类总结,讨论其优劣。然后,介绍了一些评价社会关系网络匿名方法的标准。
【参考文献】
【1】Jeffrey, Stanley Milgram. An Experimental Study of the Small World Problem[J].Sociometry, 1969,32(4 ):425+443.
【2】POLAT H, DU Wen-liang. Privacy-preserving collaborative filtering using randomized perturbationtechniques[A]. Proceedings of the 3rd Internation Conference on Data Mining[C]. WashingtonDC:IEEE Computer Society,2003.
【3】POLAT H, DU Wen-liang. SVD-based collaborative fitering with privacy[A]. Proceedings of ACMSymposium on Applied Computing[C]. New York:ACM Press,2004.
【社会关系网络匿名方法探究论文】相关文章:
中专数学教育的意义与方法探究教育论文05-02
小学体育分层教学实施方法探究论文05-02
高职院校税法实践教学的方法探究的论文04-27
粮油质量检验的方法探究论文04-30
公路软土地基处理方法探究论文05-01
基于信息交互的网络教学模式探究论文05-03
浅谈网络环境下的专题探究学习论文05-02
隐喻方法探究05-02
实验探究是创新教育的有效方法论文05-02