盘点考研数学线性代数历年真题考点分布

时间:2024-09-20 10:20:35 赛赛 考研数学 我要投稿
  • 相关推荐

盘点考研数学线性代数历年真题考点分布

  考研备考已经正式开始,作为三大部分之一,线性代数相对来说是比较容易拿分的部分,因此针对考研数学线性代数复习的重点,以下是小编整理的盘点考研数学线性代数历年真题考点分布,欢迎阅读。

盘点考研数学线性代数历年真题考点分布

  盘点考研数学线性代数历年真题考点分布

  考研冲刺阶段,把真题吃透,通过对历年真题题型、机构、安排,可以熟悉各位出题老师的出题意向、重点,融汇贯通对于后期大幅提高复习效果明显。中国教育在线考研频道结合近六年真题,为同学们总结了线性代数各章节易考点,可以帮助大家在复习中查漏补缺。

  第一章行列式,这一块唯一的重点是行列式的计算,主要有数值型和抽象型两类行列式的计算,06、08、10、12年的真题中均有抽象行列式的计算问题,而且均是以填空题的形式出现的,个别的还出现在了大题的第一问中。

  第二章矩阵,重点在矩阵的秩、逆、伴随、初等变换以及初等矩阵、分块矩阵。这一章概念和运算较多,考点也较多,而且考点以填空和选择为主,当然也会结合其他章节的知识考大题。06、09、11、12年均考了一个小题是有关初等变换与矩阵乘法之间的关系,10年考了一个小题关于矩阵的秩,08年考了一道抽象矩阵求逆的问题。

  第三章向量,可以分为三个重点,第一个是向量组的线性表示,第二个是向量组的线性相关性,第三个是向量组的秩及极大线性无关组。这一章无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。

  第四章线性方程组,有三个重点。第一个是线性方程组解的判定问题,第二个是解的性质问题,第三个是解的结构问题。06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。

  第五章矩阵的特征值与特征向量,也是分三个重点。第一个是特征值与特征向量的定义、性质以及求法。第二个为矩阵的相似对角化问题,第三是实对称矩阵的性质以及正交相似对角化的问题。实对称矩阵的性质与正交相似对角化问题可以说每年必考,12年、11年、10年09年都考了。

  第六章二次型有两个重点。第一个是化二次型为标准形,同学们必须掌握两种方法,第一个是配方法,第二个是正交变换法。第二个重点是正定二次型的判定。11 年考的一个小题,用通过正交变换法将二次型化为标准形,12年、11年、10年均以大题的形式出现,但主要用的是正交变换化二次型为标准形。

  考研数学线性代数历年考点及知识点整理

  矩阵的秩

  矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

  通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求大家深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

  矩阵的特征值与特征向量

  矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

  线性方程组求解

  对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的结构及有解的条件须熟悉。例如2010年第20题(数学二为22题),已知三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在"AX=b存在2个不同的解"这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了。

  二次型标准化与正定判断

  二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间。正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

  历年考研数学真题解析线性代数命题特点解析

  考研数学是研究生招生入学考试中通过笔试的形式对考生数学功底的考查,从近几年的考研数学历年真题分析结果来看,可以得出一个结论:线性代数的难度在高数和概率统计之间,且大多数的同学认为线性代数试题难度不大,就是计算量稍微偏大点,线代代数的考查是对基本方法的考查,但是往往在做题过程中需要利用一些性质进行辅助解决。

  线性代数的学科特点是知识点之间的综合性比较强,这也是它本身的一个难点。这就需要同学们在复习过程中,注意对于知识点间的关联性进行对比着学习,有助于巩固知识点且不易混淆。

  总体来说,线性代数主要包括六部分的内容,行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。

  一、行列式部分,熟练掌握行列式的计算。

  行列式实质上是一个数或含有字母的式子,如何把这个数算出来,一般情况下很少用行列式的定义进行求解,而往往采用行列式的性质将其化成上或下三角行列式进行计算,或是采用降阶法(按行或按列展开定理),甚至有时两种方法同时用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等等。同学们只要掌握了基本方法即可。

  二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用。

  通过考研数学历年真题分类统计与考点分布,矩阵部分的考点集中在逆矩阵、伴随矩阵、矩阵的秩及矩阵方程的考查。此外,含随矩阵的矩阵方程,矩阵与行列式的关系、逆矩阵的求法也是考生需要掌握的知识点。涉及秩的应用,包含秩与矩阵可逆的关系,矩阵及其伴随矩阵秩之间的关系,矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价的区别与联系,系数矩阵的秩与方程组的解之间关系的分析。

  三、向量部分,理解相关无关概念,灵活进行判定。

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。要求考生掌握线性相关、线性表出、线性无关的定义。以及如何判断向量组线性相关及线性无关的方法。 向量组的秩和极大无关组以及向量组等价这些重要的知识点要求同学们一定一定掌握到位。

  这是线性代数前三个内容的命题特点,而行列式的矩阵是整个线性代数的基础,对于行列式的计算及矩阵的运算与一些重要的性质与结论请考生朋友们一定要务必掌握,否则的话,对于后面四部分的学习会越学越难,希望同学们在复习过程中一定注意前面内容的复习,为后面的考研数学复习打好基础。

  前面我们已经分析过,考研数学线性代数这门学科整体的特点是知识点之间的综合性比较强,有些概念较为抽象,这也是大部分考生认为考研数学线性代数不好学,根本找不到复习的头绪,做题时也是一头雾水,不知道怎么分析考虑。

  这里,老师要求大家在学习过程中一定要注意知识间之间的关联性,理解概率的实质。如:矩阵的秩与向量组的秩之间的关联,矩阵等价与向量组等价的区别,矩阵等价、相似、合同三者之间的区别与联系、矩阵相似对角化与实对称矩阵正交变换对角化二者之间的区别与联系等等。若是同学们对于上面的问题根本分不清楚,则说明大家对于基本概念、基本方法还没有完全理解透彻。不过,大家也不要太焦急,希望同学们在后期的复习过程中对于基本概念、基本方法要多加理解和体会,学习一定要有心得。

  下面我们分析一下后面三部分的内容,线性方程组、特征值与特征向量、二次型的命题特点。

  线性方程组,会求两类方程组的解。线性方程组是线性代数这么学科的核心和枢纽,很多问题的解决都离不开解方程组。因而线性方程组解的问题是每年必考的知识点。对于齐次线性方程组,我们需要掌握基础解系的概念,以及如何求一个方程组的基础解系。清楚明了基础解系所含线性无关解向量的个数和系数矩阵的秩之间的关系。会判断非齐次线性方程组的解的情况,掌握其求解的方法。此外,考生还需要掌握非齐次线性方程组与其对应的齐次线性方程组的解结构之间的关系。

  特征值与特征向量,掌握矩阵对角化的方法。这一部分是理论性较强的,理解特征值与特征向量的定义及性质,矩阵相似的定义,矩阵对角化的定义。同学们还需掌握求矩阵特征值与特征向量的基本方法。会判断一个矩阵是否可以对角化,若可以的话,需要把相应的可逆矩阵P求出来。还需要注意矩阵及其关联矩阵(转置、逆、伴随、相似)的特征值与特征向量的关系。反问题也是喜欢考查的一类题型,已知矩阵的特征值与特征向量,反求矩阵A。

  二次型,理解二次型标准化的过程,掌握实对称矩阵的对角化。二次型几乎是每年必考的一道大题,一般考查的是采用正交变换法将二次型标准化。掌握二次型的标准形与规范型之间的区别与联系。会判断二次型是否正定的一般方法。讨论矩阵等价、相似、合同的关系。

  虽然线性代数在考研数学考试试卷中仅有5题,占有34分的分值,但是这34分也不是很轻松就能拿下的。同学们在复习过程中需要对于基础知识点理解透彻,做考研数学题过程中多分析总结。

【盘点考研数学线性代数历年真题考点分布】相关文章:

2014考研数学 从历年真题看线性考点04-29

真题盘点:2013年考研数学考点回顾05-02

考研数学如何有效利用历年考研真题04-28

2015考研数学:历年线性规划题考点04-29

如何有效利用考研数学的历年真题04-28

2014考研数学 历年真题怎么用05-02

2014考研数学复习:如何利用历年真题05-02

考研数学后期备考 重点放在历年真题05-02

2015考研数学:如何有效利用历年真题04-29