- 相关推荐
2013年考研数学答题策略
如今,到了2013年考研的攻坚阶段,一些答题技巧性的掌握能够使我们事半功倍。考生在拿到是试卷的时候,首先了解考研数学的基本内容、重点、难点和特点。第二个阶段是在第一阶段的基础上,做一定数量的题,重点解决解题思路的问题。这个阶段要注意归纳总结,即拿到题后要知道从什么角度,可以分几步去求解,每道题并不要求都要写出完整步骤,只要思路有了,运算过程会做了,考生可以视情况而灵活掌握,这样省出时间来看更多的题。
单选题的解题方法总结一下,也就下面这几种。代入法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。演算法:它适用于题干中给出的条件是解析式子。图形法:它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。反推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
同时考生也需要注意几点问题:这个时候如果大家还对数学中的基本概念、方法和原理不清楚,解题时肯定会碰到各种各样的问题,容易丢失一些基本分。所以大家务必在最后完全吃透基础理论知识,深入地理解基本概念、公式、定理、图表的理解,掌握知识点。这时候务必要利用最后一个月的时间来拓展解题方法,提高解题能力。把知识体系化,连贯化,并拓展做题方法及思路,熟悉考试出题方式。尤其是解综合性试题和应用题能力。大家要搞清有关知识的纵向、横向联系,形成一个有机的体系。同时,也要提高做题质量,每做完一题后,就要总结其所覆盖的知识面并且归纳其所属题型,做到举一反三。此时是研究真题总结命题规律的最佳时机,所以大家要特别重视历年真题。研究真题是各科复习过程中不可或缺的一个环节,数学自然也不例外。如果历年真题利用的好,将为你节省时间、保持清晰的复习思路。对历年真题的学习、研究是应该贯穿整个复习过程的。
研究真题要注意做到:要把握复习重点——对于在真题中重复出现的知识点要重点加强、全面细致的复习;对于真题涉及到的知识点和题型要重点复习;要感受出题思路——除了作自己计划的巩固提高题目之外,还要把最近五年出现的极限真题都做一下,感受一下这几年命题中心在这个知识点上是如何出题的,并尝试一下自己在这类题型上是否胸有成竹;要发现命题规律——在规定的考试时间内,把历年的真题分套练习。这样,可以整套把握真题的出题规律,从而让自己习惯这类题的出题方式。一般短期内,命题思路和规律不会有太大的改变,所以熟悉了之前几年的命题规律,有利于坦然面对考试。最后就是要寻找考试感觉,做题的同时感受真实考场上的氛围,熟悉考试感受。
接下来提供教研室老师们总结出的几个答题技巧给大家,希望大家认真领会其涌出,并做到活学活用。
最基本的技巧是踩点得分:对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“踩点给分”——踩上知识点就得分,踩得多就多得分。鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是最好的得分技巧。
有时候可以大题拿小分:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。
卡壳处先留白,以后推前:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
以退求进是最高境界:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。
【考研数学答题策略】相关文章:
2014考研数学应试答题技巧05-02
2012年考研数学复习策略04-28
考研数学高分策略 效率是关键04-28
考研数学答题顺序及时间分配04-28
2015考研数学 单项选择答题技巧04-29
考研数学 你的答题顺序正确吗04-30
2015考研数学冲刺 答题顺序及技巧04-29
从真题中看考研数学备考策略04-28
考研数学复习 解题策略及黄金原则04-29
2014考研数学复习指导:掌握答题技巧04-29