小学数学六年级教案

时间:2024-05-31 07:16:43 小学数学教案 我要投稿

小学数学六年级教案精品(15篇)

  作为一位杰出的教职工,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?以下是小编为大家整理的小学数学六年级教案,欢迎阅读与收藏。

小学数学六年级教案精品(15篇)

小学数学六年级教案1

  一、教学内容:

  课本第75页的例5及相应的“试一试”“练一练”、练习十四的第1~4题。

  二、教学重难点、生长点:

  1.重点:教学按比例分配的实际问题。

  2.难点:理解三个数量连比的意义,正确计算按比例分配的实际问题。

  3.生长点:学习了比的意义、理解部分与整体的比及分数乘法的意义基础上教学本课时。

  三、教材地位分析:

  本课教学,重在引导学生应用比的意义解答有关按比例分配的实际问题。学生在学习的过程中,进一步体会数学知识间的内在联系,建立合理的认知结构。

  四、教学目标:

  1.让学生认识按比例分配的实际问题,探索并掌握这类实际问题的解答方法,认识连比。

  2.让学生进一步体会数学知识之间的内在联系,培养思维的灵活性,增强分析问题、解决问题的能力。

  3.让学生进一步体会数学与现实生活的联系,增强数学应用意识,增强学好数学的信心。

  五、教学过程:

  (一)复习

  六(3)班男、女生人数的比是13:7。

  ()人数是()人数的`()/()。

  让学生填出不同的答案。

  (二)教学例5

  1.出示例5:给30个方格分别涂上红色和黄色,使红色与黄色方格数的比是3:2。

  问:你是如何理解3:2的?(估计学生能说出红色与黄色的比是3:2,黄色与红色的比是2:3;红色与格子总数的比是3:5,黄色与格子总数的比是2:5)

  当学生说到红色(黄色)与格子总数的比时,问:格子总数是多少?那你能算出红色的有多少格、黄色的有多少格吗?

  学生做题,交流解答方法。

  说明:在实际生活中,很多情况下并不只是把一个数量平均分,使每部分都一样多,而是在平均分的基础上按一定的比进行分配。这道题就是把30个方格按3:2进行分配。

  2.验证。你做出的结果是不是正确呢?我们可以把得数放到题目中去检验一下。与同桌说说你的检验方法。

  板书检验方法:18+12=30(格)18:12=3:2

  3.教学“试一试”。

  学生读题后,说说是如何理解1:2:3的?(引导学生说出是把30格按照红色1份、黄色2份、绿色3份来涂色)

  谈话:三个数或更多个数组成的比叫连比,它只表示三个量或更多个量各占几份,而不能理解为连除,这与两个数的比是不同的。根据红、黄、绿的比是1:2:3,你能想到格子总数被平均分成几份了吗?每种颜色的格子数各有几格?

  学生做题,交流算法。

  引导学生认识:都是把总数按照一定的比分成几部分,求每部分是多少,解答时都可以把比看成各占多少份,先求出每份是多少,再分别求几份是多少,也可以把比转化成分数,即各部分占总数的几分之几,再用分数乘法计算。

  4,做“练一练”。

  做第1小题。本题较为简单,让学生独立解答。

  做第2小题。

  本题稍有难度,先让学生读题。

  问:你觉得怎样分配这些巧克力比较公平?(估计大部分学生会说按人数平均分;可能会有极少数人说按班级平均分)

  问:“按班级人数”平均分,也就是按怎样的比进行分配?再让学生算一下每个班各分到多少巧克力。

  问:如果按班级平均分,又该怎样分?口算出结果。能不能把平均分也看作按比分?按什么样的比分?(1:1:1)可见平均分是按比分的一种特殊情况。

  (三)巩固、拓展练习

  1.做练习十三第2题。

小学数学六年级教案2

  设计说明

  1.利用圆内知识间的内在联系,解决实际问题。

  学生在掌握了圆的面积计算公式的推导过程之后,能够利用公式解决实际问题。教材中根据圆的周长求圆的面积,对学生来说,有一定的难度,学生要在已有的圆的周长知识的基础上,求出圆的半径,再利用公式求出圆的面积。让学生体会到了知识间是环环相扣的,提高了学生利用所学知识解决实际问题的能力。

  2.重视图示的作用。

  结合图示来理解圆中量与量之间的关系,使抽象的条件直观化,既降低了学习难度,又利于学生找到计算圆的面积所需要的条件,进而求出圆的面积。

  课前准备

  教师准备 PPT课件

  学生准备 圆片 剪刀

  教学过程

  一、创设情境,激发兴趣

  师:南湖公园的草坪上安装了许多自动喷水头,喷射的距离为3米,喷水头转动一周形成的是什么图形?(圆)

  师:喷水头转动一周可以浇灌多大的面积呢?这个面积就是谁的面积?(圆的面积)

  师:同学们,上节课我们学习了圆的面积计算公式的推导过程,今天这节课,我们继续研究圆的面积。利用圆的面积计算公式来解决生活中的实际问题。[板书:圆的面积(二)]

  设计意图:创设问题情境,让学生在生活中发现问题,激发学生探究新知的兴趣,为新知的学习做好铺垫。

  二、探究新知,建构模型

  1.课件演示自动旋转喷灌装置在灌溉农田的生活情境,并引导学生讨论“喷水头转动一周形成什么图形?喷水头转动一周能浇灌多大面积的农田?圆的面积是指哪一部分?”,结合提出的几个问题,引导学生区分圆的周长和面积。

  师:怎么求出浇灌的面积呢?(生汇报:根据S=πr2得出3.14×32=3.14×9=28.26m2,强调要先算“平方”)

  教师小结:已知圆的半径求圆的面积时,可以直接利用圆的面积计算公式进行计算。

  2.课件出示教材16页例题,认真读题,想一想题中给出的已知条件有哪些。(羊圈的形状是圆、羊圈的周长是125.6m)

  (1)想一想,要求羊圈的面积,首先要知道圆的哪一部分?(半径)

  (2)该如何求出圆的半径呢?同桌说一说。(出示课堂活动卡) (学生反馈:根据圆的周长计算公式可知周长除以圆周率再除以2就可以求出圆的半径)

  (3)根据这个解题思路让学生独立完成。[全班反馈:半径:125.6÷3.14÷2=20(m) 面积:3.14×202=1256(m2)]

  3.探究推导圆的面积计算公式的其他方法。

  (1)引导学生观察所拼成的.图形,想一想拼成的三角形的底相当于圆的哪一部分,拼成的三角形的高相当于圆的哪一部分。(学生反馈:拼成的三角形的底相当于圆的周长,拼成的三角形的高相当于圆的半径)

  (2)茶杯垫片剪开后,虽然形状变了,但剪开前后的面积并没有改变。根据三角形的面积计算公式,推导出圆的面积计算公式。

  圆的面积=三角形的面积=底×高÷2=2πr×r÷2=πr2

  设计意图:学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,激发研究圆的面积的兴趣。引导学生探究不同条件下求圆的面积的方法,发展学生的发散思维和积极探究的能力。用拼三角形的方法探究圆的面积计算公式,再一次体现了“化曲为直”的数学思想。

小学数学六年级教案3

  教学要求:使学生了解比在生活中的应用,能合理、灵活地解答按比例分配的问题。在解决实际问题的过程中,引导学生主动探索,勤于实践,勇于发现,合作交流。

  教学准备:课件。

  教学过程:

  一、导入

  1.情景导入

  老师这儿有一些图片,我们一起来看一看。(电脑出示:拉萨路小学学生学习计算机信息技术的图片)

  计算机教育是我们学校的特色,作为拉小的一员,你们想不想了解学校的电脑房是怎一步一步发展起来的呢?

  【评析:从生活中引入按比例分配,让学生感到数学就在自己身边。】

  2.复习铺垫

  我们学校1996年只有一个计算机室。

  提问:请你们猜猜看当时有多少台学生电脑和教师电脑?

  是不是这样的呢?我们一起来看一看。(电脑出示:1996年计算机房的条形统计图,48台学生电脑和3台教师电脑。 )

  提问:你们能不能用我们刚刚学过的知识来表示它们之间的关系呢?

  学生可能会回答:

  (学生电脑和教师电脑台数的比是16比1。 48:3=16:1

  教师电脑和学生电脑台数的比是1比16。 3:48=1:16

  学生电脑的台数占教师电脑台数的16倍。 48÷3=16

  教师电脑的台数占学生电脑台数的 。 3÷48=

  学生电脑的台数占总台数的 。 48÷(48+3)=

  教师电脑的台数占总台数的 。 3÷(48+3)=

  学生电脑和教师电脑台数的比是16:1。(电脑出示)

  学生电脑的台数占总台数的 。(16/16+1)

  教师电脑的台数占总台数的 。(1/16+1)

  这两种表示方法有什么共同点?(都是把总台数看作单位“1”。)

  小结:学生电脑和教师电脑台数的比是16:1,也就是说在电脑总台数中,学生电脑占16份,教师电脑占1份,一共是17份,学生电脑占总台数的 ,教师电脑占总台数的 。

  【评析:为后面学习按比例分配做铺垫。】

  二、新授

  1.教学例1(改编)

  1998年我们面对四~六年级全体学生,开设了信息技术普及课,这时学校为了满足学生的需求,又购进了一批电脑。

  (1)出示1998年的条形统计图。

  (电脑出示:学生电脑104台,教师电脑8台。)

  提问:一个计算机房能不能放下104台学生电脑?(生:放不下了)对!因此学校又建立了第二机房。

  你们说说看,每个机房可能有多少台电脑?你们是怎么分的?

  我们学校没有平均分,而是根据需要,把第一机房和第二机房学生电脑台数按照6:7来分配。(电脑出示:第一机房和第二机房学生电脑台数的比是6:7)。

  提问:你们能不能算算两个机房分别有多少台学生电脑?

  想不想自己先试试?

  学生尝试练习。

  根据学生回答,板书不同的算法。

  104÷(6+7)×6=48(台)

  104÷(6+7)×7=56(台)

  提问:你是怎么想的?

  突出板书:

  104× =104× =48(台)

  104× =104× =56(台)

  提问:你是怎么想的?

  提问:这两种解法之间有什么联系?

  小结:第一机房和第二机房学生电脑台数的比是6:7。第一机房电脑台数占学生电脑总台数的 ,第二机房电脑台数占学生电脑总台数的 。把学生电脑的总台数看作单位“1”,用学生的总电脑× =第一机房学生电脑的台数,用学生电脑的总台数× =第二机房学生电脑的台数。

  这题可以怎样检验?

  根据学生回答,板书:

  48+56=104(台)

  48:56=6:7

  通过检验,说明我们学校第一机房有学生电脑48台,第二机房有学生电脑56台。

  我们求出了两个机房的学生电脑台数后,可以用这样的统计图来表示。

  (电脑出示相应的条形)

  【评析:在现实情境中学习比的应用,让学生感受到数学的实用性。放手让学生尝试,通过对多种解法的比较,帮助学生进一步加深对按比例分配的理解。】

  (2)小结并揭题

  说明:我们刚刚解答的这个问题是把一个数量按照一定的比来进行分配,这种分配的方法通常叫做按比例分配。(出示课题:按比例分配)

  (指第二种解法)解答这类问题可以根据已知的比表示的份数关系,找出各种数量占总数的几分之几,也就是把这个比转化为分数关系。(在课题下板书:比——分数),可以根据求一个数的几分之几是多少进行解答。

  【评析:在学习例题的基础上揭示课题,自然、流畅。】

  2.教学例2(改编)

  随着信息技术的发展,20xx年我校开始让学生运用计算机网络进行学习,这时又对原有的计算机房进行了改造。

  (电脑出示:20xx年学校计算机台数情况的条形统计图。共有176台电脑。其中教师电脑20台。)

  提问:看到这些数据,你能知道些什么?(学生电脑有156台。)

  剩下来三个机房的学生电脑我们是这样分配的。(电脑出示:第一机房、第二机房、第三机房学生电脑台数的比是12:14:13。)

  看到这些信息,你想进一步知道什么呢?那么三个机房分别有多少台学生电脑呢?自己算算看。

  学生尝试练习。

  板书:

  176-20=156(台)

  156× ==156× =48(台)

  (指第一步)为什么这步求出的是第一机房的学生电脑?

  156× ==156× =56(台)

  156× ==156× =52(台)

  答:第一机房有学生电脑48台,第二机房有学生电脑56台,第三机房有学生电脑52台。

  (机动,如有学生提出其它解法,如第二机房:48× =56(台)等,要及时表扬,并进行讲解。)

  【评析:解答方法多样化,培养学生思维的多向性,以及灵活解决实际问题的能力。】

  (电脑出示:相应的条形。)

  提问:这道题要先把什么给求出来?

  强调:当分配的总量没有直接告诉我们的时候,要先把分配的总量给求出来。

  3.补充题

  (1)今年暑假我们学校先把第一机房的.学生电脑捐给希望小学,然后又购进了一些学生电脑。并将机房的设施进行了更新。

  我们来看看具体情况。(电脑出示题目)

  出示:学校原有156台学生电脑,20xx年学校先捐给希望小学48台学生电脑,又购进了57台学生电脑。然后计算机信息中心将三个机房的学生电脑按照1: 1:1进行分配。每个机房各有多少台学生电脑?

  提问:这题可以怎样解答呢?

  根据学生回答,电脑出示算式:

  156-48+57=165(台)

  165× ==165× =55(台)

  答:三个机房各有55台学生电脑。

  提问:165× 实际上就是求什么?(165的 是多少?)

  提问:按照1:1:1进行分配就是相当于把学生电脑怎样分?

  (电脑出示三个机房的条形统计图)

  说明:平均分也是一种按比例分配。

  提问:这题是平均分还可以怎么求?(165÷3)

  【评析:对所学知识进行了拓展,让学生了解平均分也是一种按比例分配。】

  4.延伸

  提问:知道了三个机房分别有55台学生电脑,总共有165台后,你们还想知道什么?

  电脑出示: 学生电脑 教师电脑

  165 ?

  现在我们知道学生电脑和教师台数的比是33:7。你能不能求出学校有多少台教师电脑吗?

  电脑出示: 学生电脑 教师电脑

  165 ?

  33 : 7

  根据学生回答,板书算式:

  166× =35(台)

  答:学校有35台教师电脑。

  提问:这里我们已经知道了学生电脑的台数,所以要求教师电脑有多少台实际就是求什么?因此,要把谁看作单位“1”?

  【评析:这个延伸练习,是为了防止学生思维定势,引导学生学会选择合适的方法解决问题。】

  5.比较

  在刚才解决问题的过程中,同学们对1996年——20xx年间学校计算机房的情况也有了一定的了解,我们一起来看看这个汇总情况吧。

  (电脑出示:各年段学生电脑和教师电脑总台数的复式条形统计图。)

  提问:看了这张统计图,你有什么想法?

  对!从这张统计图中,我们也可以清楚地看到1996年—20xx年间学校电脑总台数在不断增加,呈上升趋势,说明学校对信息技术教育越来越重视。

  让我们一起来回首这几年学校计算机房的变化吧。

  (配音乐,电脑出示:各阶段的机房照片。)

  【评析:结合本节课的学习,让学生感受到信息技术的迅速发展,同时激发学生热爱学校的感情。】

  三、拓展

  1.调查学生家庭有电脑的情况。

  人类已经跨入21世纪,以计算机和网络技术为主的信息技术,已在社会各个领域中得到广泛应用,并逐步改变着我们的工作、学习和生活方式。

  那么随着信息社会的来临,我们的家庭对计算机教育是否也越来越关注的呢?下面我们一起做一个小调查,好不好?

  请五年前,也就是你们上一年级的时候,家里有电脑的同学站起来。(统计人数)

  那么,家庭里没电脑的有多少人?

  用我们学过的知识怎样表示这一情况?(我们班家庭里有电脑的人数和没电脑的人数的比是几比几。)

  它们的关系还可以用这样一个统计图来表示。

  (电脑出示:1996年统计情况的扇形统计图)

  请现在家里有电脑的同学站起来。(统计人数)

  那么,家庭里没电脑的有多少人?

  现在我们班家庭里有电脑的人数和每电脑的人数的比是几比几?

  (电脑出示:改成20xx年情况的扇形统计图)

  看到这些变化,你们有什么想法?

  【评析:让学生通过观察扇形统计图,强烈感受到信息技术教育在学校、家庭、社会中的不断发展。】

  2.补充练习

  老师这儿还有这么一个问题,你们会解决吗?

  (电脑出示:学校把122张软盘按照两个计算机兴趣小组的人数分配给各组。第一兴趣小组有30人,第二兴趣小组有31人。两个兴趣小组各应分得软盘多少张?)

  提问:用今天的知识能不能求出两个兴趣小组各应分得软盘多少张?

  学生练习,电脑出示算式。

  提问:这题的比没有直接告诉你们?你们是怎么想的?

  小结:两个计算机兴趣小组分别有30人和31人,两个组人数的比就是30:31。把122张软盘按照两个小组的人数分配给各班,就是把122按照30:31来分配。

  【评析:引导学生学会没有直接出示比的情况下,如何来解决比的应用的问题。】

  四、课后练习

  (设计方案)

  今天我们共同学习了按比例分配,生活中比的应用还是比较广泛的。那么你们能不能运用我们所学的知识来解决一些实际问题呢?

  我这儿有一个我们学校的计算机信息中心拟订的规划,准备将来再投资30万元,购进一批电脑。

  (电脑出示:投资30万元,购进一批电脑)

  感兴趣的同学课后可以自愿组成小组,去了解我们本部、分部、分校的电脑配置情况。再根据今天学习的知识,帮助学校设计一个分配方案,根据需要,分配一下每部分可能需要多少钱?大约能买多少台电脑?并简要地说明分配的理由,提出合理化的建议。

  【评析:数学来源于生活,又应用于生活。引导学生学以致用。】

  【总评】:

  本节课改变了原有的教材内容,结合学校特色,在学校电脑房电脑台数的变化这一素材中引发按比例分配的问题。让学生在解决实际问题的过程中探索了解决问题的策略,学习有价值的数学。解题方法多样化,让学生选择喜欢的、合适的方法,让每个学生都得到了发展。同时也改变了学习内容的呈现形式,以条形统计图的方式出示,激发学生的学习兴趣,同时也形象直观地展示了学校电脑房的发展情况。在解决问题的同时,让学生学会分析统计图,并做出一定的预测,了解信息技术教育的发展。

小学数学六年级教案4

  教学内容:

  成数(课本第9页例2)

  教学目标:

  1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

  2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

  教学重点:

  理解成数的意义。

  教学难点:

  解决解答有关成数的实际问题。

  教学过程:

  一、复习

  1、填空

  ①四折是十分之( ),改写成百分数是( )。

  ②六折是十分之( ),改写成百分数是( )。

  ③七五折是十分之( ),改写成百分数是( )。

  2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

  二、创设情境,导入新课

  同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的'桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

  三、探究体验

  (一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

  1、让学生尝试把二成及三成五改写成百分数。

  2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

  3、练习:将下列成数改写成百分数。

  二成=( )%; 四成五=( )%; 七成二=( )%。

  (二)教学例2

  1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

  2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

  3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

  4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

  350(1-25%)=262.5(万千瓦时)

  或者引导学生列出

  350-35025%=262.5(万千瓦时)

  四、巩固练习

  1、三成=( )%; 五成六=( )%; 八成三=( )%;

  2、第9页做一做

  3、解决问题

  (1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

  (2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

  (3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

  (4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

  五、课堂总结

  这节课你收获了什么?

小学数学六年级教案5

  知识能力

  引导学生用所学知识解决生活中的存款问题。

  过程方法

  自主探究法

  情感态度

  培养学生热爱数学,热爱生活的思想。

  教学重点:

  引导学生用所学知识解决生活中的存款问题。

  教学难点:

  能根据利率表找到存款的最优方案。

  教学准备:

  教师准备近期银行的利率表。

  学生准备近期银行的利率表。

  教学思路:

  1.出示存款利率表和妈妈有现金人民币2万元,要按定期存入银行,想年这一条件。学生以小组为单位设计有几种不同的存款方案,并把不同的方案表中。

  2.学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同案。

  3.选择其中一种方案,学生独立计算到期后的实得利息。

  4.以小组为单位计算其它存款方案到期后的实得利息。

  5.比较不同的存款方案到期后的实得利息,谈自己的想法。

  教学过程:

  一、了解利率表,小组合作完成设计方案。

  用计算器算

  方案一:现存三年,然后用本金加上利息200003.24%3=1944(元)。

  税后利息:1944(1-20%)=1555.2(元)。

  再存期一年后,税后利息:(20000+1555。2)2.25%(1-20%)=387.99(元)。

  4年期满时:1555.2+387.99=1943.19(元)。

  二、学生汇报不同的存款方案,教师引导学生用简单的数学符号有序地表示不同的'方案。

  方案一:3,1

  方案二:1,1,1,1

  方案三:1,1,2

  方案四:1,2,1

  方案五:1,3

  方案六2,2

  方案七:2,1,1

  三、选择其中一种方案,学生独立计算到期后的实得利息。

  用计算器算

  方案一:现存三年,然后用本金加上利息

  分层作业:

  完成70页的连一连

  板书设计:

  存款方案

  方案一:3,1

  方案二:1,1,1,1

  方案三:1,1,2

  方案四:1,2,1

  方案五:1,3

  方案六2,2方案

  方案七:2,1,1

  课后反思:

  得:学生能积极参与到课堂教学中来,课堂气氛活跃。

  失:学生的策略不够全面。

  设想:应注重学生方法的训练,让学生使用计算器计算。加强学生实践活动能力养,适当设计相关题目的训练。

小学数学六年级教案6

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面的;

  生:我选择高是的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:

  一是圆柱与圆锥等底不等高;

  二是圆柱与圆锥等高不等底;

  三是圆柱与圆锥不等底不等高;

  四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?

  生:大约是圆柱的'一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。()

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是()

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。()

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25、12 h=2、5

  r=4,h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh

  (3)、准备把这堆沙填在一个长3米,宽1.5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

小学数学六年级教案7

  课标要求:

  本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。

  单元/章节内容分析:

  本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。

  本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。

  教学目标:

  1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。

  2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。

  3、使学生理解求圆柱、圆锥体积的`计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。

  教学重点:

  掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。

  教学难点:

  圆柱、圆锥体积的计算公式的推导

  教学用具:

  圆柱体和圆锥体模型

  总课时数:

  7课时

小学数学六年级教案8

  设计说明

  1.立足于学生已有的知识经验,借助旧知展开教学。

  本设计充分利用“黄豆营养成分”这一情境,对教材内容略做调整,通过让学生自己提出问题并解决问题的活动方式,自然引出“求一个数的百分之几是多少,用乘法计算”这一新知,调动学生已有的知识储备,与分数乘法应用题作比较,体会两种问题的共同特征,以实现新旧知识的自然过渡。

  2.渗透数学思想,促进学生对数学本质的探究。

  在对一个数乘百分数的算法的探究中,当学生发现可以将百分数转化成分数和小数来计算时,我向学生提出了“将新知识转化成学过的知识来解决问题”是学习数学的好方法这一理念,这既能对学生的学习方法进行指导,也能对学生进行数学思想的渗透。一节好的数学课,不仅要求教师完美地将数学知识呈现给学生,更重要的是让学生从数学学习中获得有价值的思想方法,这些在学生的后续学习中会用到,数学课的魅力应该体现在对学生思想的启迪上。

  课前准备

  教师准备,PPT课件

  学生准备,收集有关食物营养含量的信息

  教学过程

  ⊙创设情境,激趣导入

  1.创设情境。

  师:(手里拿一把黄豆)请同学们估一估,这些黄豆大约有多少克?(约250g)

  师:你们知道黄豆中含有哪些营养成分吗?(蛋白质、脂肪、碳水化合物等)

  师:你们的想法和营养学家检测出来的结果是一样的`,营养专家还检测出了有关数据,让我们一起来看一看吧!

  课件出示:黄豆中的蛋白质含量约占36%,脂肪含量约占18%,碳水化合物含量约占25%。

  师:你能从中发现哪些数学信息?

  2.引入新课。

  师:你们知道我手中的这些黄豆含有多少克蛋白质吗?这节课我们就来解决有关蛋白质含量的问题。(板书课题:营养含量)

  设计意图:教师通过手拿黄豆的情境,结合课件,让学生了解到原来黄豆含有这么多有营养的物质。教学从生活实际出发,激发学生的学习兴趣,让学生在现实情境中体会和理解数学,发现生活中的数学问题。

  ⊙自主合作,探究新知

  1.解决蛋白质含量的问题,应该如何列式?

  (1)师:我们已经收集到了很多关于黄豆营养含量的问题,你们能利用收集到的信息,设计一个求蛋白质含量的问题吗?

  (学生提取有用信息,编写题目:黄豆中的蛋白质含量约占36%,在250g黄豆中,蛋白质约有多少克)

  (2)师:下面请同学们独立列出算式解决这个问题,要注意解释清楚为什么要这样列式。

  学生独立思考,列式并汇报交流。

  ①你能试着用画图法来理解吗?学生试着画图。

  通过画图我们知道,求蛋白质约有多少克,就是求250g的36%是多少。

  ②学生试着列式:250×36%。

  ③列式依据:“求一个数的几分之几是多少,用乘法计算”,这道题是求250的36%是多少,所以也要用乘法计算。(36%化成分数是,这道题也可以理解为“求250的是多少”,所以用乘法计算)

  2.计算蛋白质含量,学习百分数化成小数、分数的方法。

  (1)师:你们有办法解决吗?请同学们以250×36%为研究对象,4人一组展开交流,共同商量解决的办法,并将计算过程写在练习本上。

  (2)学生交流并展示学习成果。

  方法一:把百分数化成分数计算。

  36%==250×36%=250×=90(g)

  方法二:把百分数化成小数计算。

  36%=0.36 250×36%=250×0.36=90(g)

  (3)方法总结:将新知识与旧知识联系起来,将新知识转化成我们已经学过的数学知识来解答,这是我们解决数学问题的好方法。

小学数学六年级教案9

教学内容:p27倒数的认识,练习六全部习题。

  教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  1、师指出:我国汉字结构优美,有上下、左右结构,如果把杏字上下一颠倒成了什么字?呆把吴字一颠倒呢?(吞)一个数也可以倒过来变为另一个数,比如3/4倒过来呢?(4/3)1/7倒过来呢?(7/1也就是7)这叫做倒数,随即板书课题。

  2、提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标研究倒数的意义、方法和用处。

  二、新知探索:

  1、研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  2、学生自主举例,推敲方法:

  (1)师:下面,请大家各自举例加以说明。

  (2)学生先独立思考,再交流。

  (a、以真分数为例;如:5/8的倒数是8/5真分数的`倒数是假分数。)

  (b、以假分数为例;8/5的倒数是5/8假分数的倒数是真分数。)

  (c、以带分数为例;带分数的倒数是真分数。)

  (d、以小数为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以整数为例;整数相当于分母是1的假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  3、讨论0、1的情况:

  1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  1、完成练一练。

  学生独立完成后,集体订正。重点问:8的倒数是几?

  2、练习六5(判断)

  3、补充判断:

  a、a是自然数,a的倒数是1/a。

小学数学六年级教案10

  教学目标:

  1、体会引入百分数的必要性,理解百分数的意义,会正确读百分数。在具体情境中,解释百分数的意义,体会百分数与日常生活的密切联系。

  2、经历从实际问题中抽象出百分数的过程,培养学生探究归纳能力。

  3、让学生在操作和探索过程中体会成功的快乐。

  教学重难点:

  理解百分数的意义

  教学过程:

  一、联系实际,激趣引入

  1、师:同学们,你们喜欢旅游吗?

  生:喜欢!

  师:老师也非常喜欢旅游,并且去过好多地方。 (出示老师外出旅游的照片,并加以介绍)

  设计意图:以自己为例,展示旅游照片,抓住学生的注意力,激发学生的学习兴趣师:谁来说说,你们都去过哪些名胜古迹?师:今天老师要带领大家一起到山东的风景区去游览一下,好吗? (出示信息窗1)

  2、师:谁知道,这几幅图分别是山东的哪些城市的什么景区?

  生:……

  师:读一读下面的几句话和统计表,你知道了什么?你能提出什么问题?

  设计意图:从旅游景区有关数据的统计导入新课,能发现百分数在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

  二、体验合作,自主探究

  (一)教学百分数的读法

  师:16%、9%、9.3%怎么来读?

  生:16%读作:百分之十六9%读作:百分之九9.3%读作:百分之九点三(全班齐读,另举例指名读)

  设计意图:学生对百分数的读法有了一定的了解。在指导读出百分数的基础上让学生自己任意举出几个百分数让学生读,便于加深对百分数读法的印象。

  (二)教学百分数的意义

  1、师:它们各表示什么意思?

  (以16%为例,小组讨论,指明解释9%、9.3%)

  得出结论:表示一个数是另一个数百分之几的数叫做百分数。

  师:百分数也叫做百分比或百分率。

  (板书:百分数)

  师:百分数通常不写成分数形式,而是在原来的分子后面加上%来表示。

  2、想一想,你在生活中那些地方见到过百分数?

  设计理念:从学生身边的'生活中寻找百分数的信息,提高学生学习百分数的兴趣。渗透百分数的实际运用的普遍性。让学生感知生活中处处有数学。

  (三)练习巩固,知识延伸

  自主练习

  1、使学生体会小数、分数、百分数之间的联系与区别。特别注意分数与百分数的区别:分数既可以表示一个具体的数,也可以表示两个数之间的关系;百分数只能表示两个数之间的关系。

  2、课后练习第二题,仔细阅读题中的相关信息,说一说每个百分数表示的意义。

  设计意图:在语言叙述的过程中,加深学生对百分数意义的理解,更好地对知识进行巩固。

  3、课后练习第3、4题,尤其注意100%意义的理解。

  设计意图:练习设计走进生活、课后延伸,研究我们身边的数学,在进行计算巩固练习的同时,渗透“生活中处处有数学”,培养学生的问题意识,自主解决生活中的数学问题。

  4、课后第5题,联系已学过的分数的意义,把全国人口数看作单位“1”(100%),汉族人口占总数的92%,少数人口则占1-92%=8%

小学数学六年级教案11

  活动内容

  人教版数学教材第十一册第129页实践活动调查利率,计算利息。

  活动目的:

  1、结合百分数的知识,通过运用调查、实验、观察、估算、讨论等方式,培养学生综合运用所学的数学知识、技能和思想法来解决实际问题的能力,增强数学应用意识。

  2、通过多种途径查找相关资料,经历走进生活、材料收集、整理交流和表达,培养了学生搜集处理信息的能力。

  3、使学生进一步了解有关储蓄知识,认识储蓄的重要意义。

  活动准备:

  1、分小组调查银行存款利率、国债利率。

  2、了解银行的各种储蓄方式及服务特色。

  3、结合自已所调查的,总结收获、提出质疑。

  4、每小组准备一个计算器。

  活动过程:

  一、通过预习,交流收获

  1、让学生交流课前调查

  师:课前同学们都进行了充分的调查,说一说你们有什么收获?你是通过什么途径获得的?

  2、出示整存整取,国债年利率。(结合学生回答出示)

  二、小组合作,汇报交流

  1、出示例题:

  小东的爸爸有5000元人民币,请大家帮他算一算购买三年期国债和整存整取三年存款的收益哪个大?相差多少元?

  (1) 估算

  师:先请同学们猜一猜,买哪一种收益大呢?为什么?

  (2) 论证

  师:请同学们动笔算一算,究竟是哪种收益大?

  (3)交流

  师:请同学们说一说,你是怎么做的?哪种收益大?大多少?

  整存整取 50002.54%380%=302.4(元)

  国债 50002.54%3=2348(元)

  348-302.4=45.6(元)

  (4)讨论

  师:相对来说,国债的利益比较大,请同学们说说国债和整存整取各自有什么优点?

  2、出示情境题

  王刚的爸爸说:我在国外辛辛苦苦地挣到了20000元,现在这笔钱该用在什么地方呢?请你们四人一组帮五刚的爸爸设计一个方案。

  (1) 小组合作,讨论方案

  (2) 小组交流,共同探讨

  师:小组内选一个代表,说一说,你们帮王刚的爸爸设计了什么方案?

  (3) 选择方案,说明理由

  师:如果你作为王刚的爸爸,你会选择哪个方案?为什么?

  三、联系实际,拓展延伸

  1、议一议

  (1) 联系实际,说出想法

  师:如果作为你自已有1000元,根据你及你家的实际情况,你打算怎样投资呢?你是怎么想的呢?

  (2) 小结:我们实际存钱时,不一定看收益,哪一种适合就选哪种,即标准不同,选择也不同。

  2、问一问

  (1) 联系实际,提出质疑。

  师:在生活中,存钱取钱时,会遇到很多特殊情况?你家遇到过什么特殊情况?或者,你有什么新问题?

  (2) 师生共同解决问题。

  师:对于这样的特殊情况,你知道怎么办吗?你是怎么知道的?

  四、总结本课

  师:那通过今天的学习,你学到了什么呢?

  总结:通过今天的'学习,同学们学到了许多新知识,希望同学们在今后的生活中,注意发现问题,并学会用所学的知识解决问题,做生活中的有心人。

  教学设想:

  本次活动从学生已有的数学经验和生活经历出发,关注学生的潜能,着眼于学生的终身发展。体现了数学来源于生活,服务于生活的大众数学思想。

  为了体现活动的实用性、实践性、综合性、趣味性,教师引导学生围绕调查利率,计算利息这个主题,做了大量的准备工作:

小学数学六年级教案12

  本单元在分数四则计算和简单应用的基础上,主要教学分数四则混合运算和稍复杂的求一个数的几分之几是多少的实际问题。这部分内容是五年级教学的分数知识的综合、提高和总结,对掌握和应用分数知识有很大的影响。在内容的编排上有以下几个特点。

  第一,教学计算,例题的内容容量很大。例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算。在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用。把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力。

  第二,教学解决实际问题,例题的编排细致。本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算。提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力。更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托。

  教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点。为此,编排了两道例题。例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少。例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少。两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力。

  第三,不教学稍复杂的分数除法问题。传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排。本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系。因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去。

  一、 一题两解既含运算顺序,又含运算律的内容。

  例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法。教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序。算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法。算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的。所以,计算有括号的算式,要先算括号里面的。类似上面的那些体会,在教学整数四则混合运算时曾经有过。教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要。而且,获得这些体会并不困难。第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景。

  在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识。

  比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算。需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交叉约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律。教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述。然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律。如1/41/39/10,交叉约分时应用了乘法结合律,只是没有写出1/4(1/39/10);又如2/31/53/4,约分时应用了乘法交换律,只是2/33/41/5这个过程没有写出来。最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便。

  应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握。和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6/57/6-1/56/7。这是一道两数之积减两数之商的题,似乎与运算律对不上号。如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件。二是易混,如44/5+4/54。粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区。只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律。本单元教材设计简便运算的练习题,注意了这两个特点。另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题。让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练。

  二、 数形结合教学较复杂问题的数量关系。

  例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系。说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法。就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式45-455/9;也可以根据女运动员人数占运动员总人数的(1-5/9)列出算式45(1-5/9)。再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4)。教学这两道例题,教材里只出现前一种解法。因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找。而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的'教学直至初中数学里经常应用。至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率。如果学生能够独立想到,并且喜欢这样列式,应该是允许的。教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担。

  两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路。例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路。例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班。教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验。以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考。为此,要加强画线段图的教学。首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数。这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路。其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上。而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们。最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具。

  练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路。第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数。比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数。第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同。第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4。因此,算式5/81/4在两道题里的意义不同。虽然两题都是求钢条还剩下的米数,解法不同的道理是很清楚的。第13题里设计了两个意义不同的1/8,其中一个1/8表示的是实际用煤节约的吨数相当于计划用煤吨数的份额,另一个1/8是实际用煤节约的吨数。由于两小题里实际用煤节约的吨数直接已知或不直接已知,求实际用煤吨数的方法自然就不同了。

小学数学六年级教案13

  [教材简析]

  这部分内容是在学生掌握了比的相关知识,特别是学习了如何求比值之后安排的一个实践活动测量树、旗杆、楼房的高度。这些物体都比较高,它们的高度很难用尺子直接度量,要通过在同一地点,同时测得的竿长和影长的比值相等的规律,间接获得。因此发现和应用这个规律是本次实践活动的重点。

  量量比比 发现规律

  通过在太阳光下,把几根同样长的竹竿直立在地面上,使学生懂得什么叫影长、如何测量影长并体会和发现在同一时间、同样长的竹竿的影长相等。在此基础上再把几根长度不同的竹竿直立在地面上,按照表格的要求,分别测出每根竹竿的长度及影长,算出竿长与影长的比值,发现竹竿有长、有短,影长有长、有短,但各根竹竿的竿长和影长的比值是相等的。

  议议做做 应用规律

  这一部分,教材没有把怎样应用规律测量树高、楼房高的方法直接告诉学生,而是引导学生体会方法。通过交流,整理出思路:测出1根竹竿的长度和影长,求出竿长与影长的比值;再测出树的影长,求它的高。并用此方法,实际测量校园里的一棵大树的高和楼房、旗杆的高。当然,如果没有同时测量竹竿的影长和大树的影长,用上面的方法计算树的高,是不会得到准确结果。因此必须突出同一时间测量影长。

  [教学目标]

  1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系。

  2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

  3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

  [教学过程]

  一、创设情境,激起兴趣

  1.播放动画片《聪明的阿凡提卖树荫》片段

  (故事简介:一个炎热的下午,长工们正和阿凡提在巴依大老爷家门外的一棵大树下乘凉。这时,巴依大老爷出现了,非常蛮横地要大家出100个钱买下树荫。聪明的阿凡提一下就看穿了巴依贪婪的用心,决定将计就计,教训他一下。于是大伙凑够了100个钱给了巴依,巴依心满意足地走了。到了晚上,圆圆的月亮升上了天空,皎洁的月光照在大树上,大树长长的影子正好落在巴依大老爷的院子里和屋顶上。长工们在阿凡提的带领下,涌进巴依的家里,有的还爬上了房顶。巴依吓坏了,急忙赶大伙出去。这时,阿凡提说:树荫是我们花钱买下来的。树荫移到哪里,我们就跟到哪里。你要想让我们出去,就得给钱。巴依大老爷只好认输求饶,不仅退还了100个钱,还答应再也不阻挠大伙在树荫下乘凉了。)

  师:故事看完了,你们觉得阿凡提怎么样?

  生:聪明机智,敢于同巴依大老爷作斗争,为穷人谋幸福

  师:可是,故事并没有结束。巴依大老爷不甘心就此认输,一直在寻找着报复的机会。过了几天,阿凡提有急事出了门,巴依便带着几个打手来到了树下,把乘凉的长工们撵到一边,然后命令打手们把大树砍倒。附近只有这么一棵大树,枝叶茂密,正是长工们避暑的唯一去处。长工们纷纷恳求巴依大老爷不要砍树,这下正中了他的诡计。只见巴依眼珠一转,奸笑了两声说:不砍树也行。只要你们哪个人能说出这棵大树有多高,条件是不准爬上树去量。不然的话,你们还是凑足100个钱再来这儿乘凉吧!长工们一下愣住了,你看看我,我看看你,心里很着急,大家多么希望此时阿凡提能出现在这儿呀!

  [评:用《聪明的阿凡提卖树荫》故事引出课题,大大激发了学生学习的兴趣,调动了学生学习的积极性和主动性,增强了数学实践活动课的趣味性。笔者认为只有调动起学生的学习兴趣,才能变苦学为乐学,变难学为易学,变死学为活学。]

  二、找寻规律,巧解难题

  师:聪明的同学们,你们愿不愿意开动脑筋,给大伙出个点子,帮助长工们粉碎巴依大老爷的诡计呢?

  1、积极思考,各抒己见。

  ①学生分组讨论,指名发言。

  生:可以趁巴依大老爷不注意时偷偷爬上树,放下一根和大树一样高的绳子,量量绳子有多长,大树就有多高;

  生:可以把几根竹竿绑成一根长竹竿,竖在大树旁,如果和大树一般高,只要量一量竹竿长度就行了;

  生:利用影子。在太阳照射时,当我们的影子与我们的身高相同,说明大树的影子也与大树的高度相同,马上测量大树的影子。

  生:赶快派人去找阿凡提

  生:利用媒介物。先拍一张大树和一样东西的照片,看看大树的高度相当于这样东西的几倍,然后量出这样东西的高度,大树的高度就是它的几倍。

  生:在氢气球下扎一根很长的塑料绳,把氢气球放上天,当它与大树同样高度时,量出塑料绳的长度。

  [评:这一环节中虽然有的.同学出的点子并不符合巴依老爷的要求,有的点子操作起来比较麻烦,结果也不甚精确,但却进一步激发了学生积极大胆地动脑、动口、动手的欲望,不但维持了学生对这个活动的兴趣,更是较好地渗透和培养了学生的创新意识。]

  2、仔细观察,找寻规律。

  ①刚才老师听到有一个同学提到了利用影子。是啊,整个事件其实就是因树荫(也就是树的影子)而起,我们看看,能不能想个办法,还从它的影子入手,算出大树的高度呢?

  ②(课件出示)一幅画面:父子俩迎着夕阳,走在人行道上,身后投下一长一短两条影子。

  师:观察一下,你发现什么?

  生:父亲个子高,影子就长;儿子个子矮,影子就短

  ③课前老师也让同学们测量了长木棒、短木棒和自己身高的影子长度,并将测量的结果填在了这张表格(P78表格)上。请你讲一下自己是在什么时间什么地点测量的,测量的结果是多少。(各组汇报本组的测量数据,可能各不相同。)

  师:为什么同样长的木棒大家量得的影长却不同呢?

  说明:因为各组测量的时间(比如说有的同学是上午量的,有的则是下午或中午量的)、地点可能不同,所以同样高度的直立木棒的影长也在发生变化。

  ④观察。请大家仔细观察你测得的三组数据,哪个同学能说一说影子长度与实际高度之间到底有什么关系呢?

  ⑤学生分组观察,讨论,得到:在同一时间,物体实际高度越高,它的影子就越长。并通过尝试计算,发现竹竿有长、有短,影长有长、有短,但各根竹竿的竿长和影长的比值是相等的

  [评:在学生己有学习和生活经验中体验数学、理解数学和学习数学,真正体现了现代素质教育的思想。]

  3.利用规律,巧解难题。

  ①师:同学们已经发现了影长与物体高度之间的关系,怎样利用这个关系帮助长工们解决难题呢?

  ②学生讨论,根据学生回答,教师逐步演示下面过程:

  在大树旁垂直竖一根1米长的竹竿,同时量得竹竿的影长为0。5米,大树的影长为2。8米。根据以上数据,请学生分组算出大树的高度是多少米。看看哪组同学用的方法最多?

  ③各组同学汇报本组的解题方法与思路。

  方法一:因为竹竿长度是其影长的2倍,所以大树高度也是其影长的2倍。

  列式为:2。8(10。5)

  方法二:因为竹竿影长是其高度的1/2,所以大树影长也是其高度的1/2。

  列式为:2。8(0。5l)

  方法三:因为大树影长是竹竿影长的5。6倍,所以大树高度也是竹竿高度的5。6倍。

  列式为:1(2。80。5)

  方法四:因为竹竿影长是大树影长的5/28,所以竹竿高度也是大树高度的5/28。

  列式为:l(0。52。8)

  方法五:

  [评:本节课充分体现了学生为主体,教师是教学活动的组织者、指导者和参与者。在整个教学过程中,教师给学生提供了自主探索的机会,让学生在观察、合作、讨论、交流、归纳、分析的过程中学习。这样的教学活动,可以逐步培养学生的创新意识和实践能力。]

  三、继续探索,深入实践

  1.师:同学们真的动了脑筋,连阿凡提都表扬我们了,看:

  (课件出示)阿凡提冲着大家一竖大拇指说:六(*)班的同学,亚克西!。

  师:看到巴依耷拉着脑袋,灰溜溜地走了,同学们高兴们?

  是啊,我们用智慧帮助长工们再一次粉碎了巴依的阴谋,的确值得的高兴。

  2.下面,我们就用今天掌握的方法,到操场上任选一个目标物,如旗杆、篮球架等,测量出它的影长,算出它的实际高度来。

  准备工作:

  ①小组为单位,开始分工

  ②在实际测算过程中思考:有没有更巧妙的测量方法?

  3.实地测量、记录、计算

  4.情况反馈活动总结

  各小组汇报测量及计算结果允许有小小的误差,若出入较大,帮助查找错误原因并现场纠正。

  [评:新课标指出,要结合学生的年龄特征和所学的知识,使学生感受到数学与现实生活的密切联系。培养学生的实践活动能力,拓展学生的知识视野。本节课在此思想的指导下进行了有益的尝试。 将激发学生的学习兴趣,丰富学生的生活,培养学生的合作精神,提高学生的整体素质融为一体。]

  四、激励评价,问题延伸

  通过这节课的活动和学习,你都知道了什么?你是怎样知识的?你学得开心吗?

  回家后,选择你喜欢的、个头巨大的物体,测量并计算出它的高度。

  [评:课堂总结不但关注了学生知识与技能的掌握,而且关注了学生的学习过程,关注了学生的情感,还把课堂中学到的知识延伸到生活中,体现了生活中处处有数学的理念。什么是有价值的数学?只要是学生感兴趣的、对学生的一生发展有奠基意义的数学才是有价值的。]

小学数学六年级教案14

  说教学目标:

  1、知识目标:使学生理解并掌握百分数和小数、百分数和分数互化的方法,能正确地进行百分数与小数、百分数与分数之间的互化。

  2、能力目标:培养学生的观察、归纳和概括能力。

  3、情感目标:渗透"事物之间互相联系、互相转化"的辩证唯物主义思想。

  教学重点、难点:

  1、教学重点:掌握百分数与小数、百分数与分数互化的简便方法及运用方法解决实际问题。

  2、 教学难点:掌握百分数与分数、百分数与小数互化的简便方法。

  教学方法:

  1、讲授法;2、练习法。

  教学过程:

  (一)设疑激趣,引入课题。

  同学们,从前有个美丽的公主,他在城堡外面玩耍的时候发现了一个山洞,山洞有一道门,但是必须回答几道题这个门才可以打开,我们一起来帮这个美丽的.公主想想办法吧。比较2/5、42%、0.45三个数的大小,要想解题呢,我们就必须学习今天的知识。(引入课题)

  (二)大胆探索,学习新知。

  1、学习小数与百分数的互化。

  A、准备题。

  把下面的小数化成分数,分数化成小数,并说说你是怎样想的?

  0.45 1.2 0.367 3/25 15/8 63/100

  通过以上的练习,为学生学习小数与百分数的互化打下了基础。

  B、学习百分数化成小数,教学例1

  (1)出示例1:把46%、128%化成小数。

  (2)引导学生思考:要把百分数化成小数,可以先把百分数改写分母是100的分数,然后再用分子除以分母,把分数转化成小数。

  46%= 46100=0.46 128%=128100=1.28

  (3)请大家观察一个,如果不看先化成分数的这个过程,小数可以怎样直接化成百分数的?(把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位)

  (4)说明:当小数点向左移动两位时,原数就缩小100倍,再去掉百分号,又使它扩大100倍。所以原数大小是不变的。

  C、学习小数化成百分数。

  (1)出示例2:怎样把0.78、1.32化成百分数?

  (2)引导学生思考:要把百分数化成小数,要先把百分数化成分母是100的分数,然后再把这个分数改写成小数。

  (3)启发学生口述每题的转化过程,板书;

  0.78=78100=78% 1.32=132100=132%

  (4)引导学生观察、归纳,百分数怎样很快地直接化成小数?(引导学生归纳出百分数化成小数的方法:把百分数化成小数,只要把小数点向左移动两位,同时在后面去掉百分号。)

  (5)使学生明白:当把百分数的百分号去掉时,原数就扩大了100倍;然后再把它的小数点向左移动两位,又使它缩小100倍,所以原数的大小不变。

  3、引导学生进一步综合归纳百分数和小数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  三、巩固练习

  1、把下列小数化成百分数。

  0.76 0.4 1.32 0.125

  2、把下列百分数化成小数。

  29% 60% 25% 37.5%

  四、课堂小结

  师:通过本节课的学习,你学到了什么?进行百分数和小数互化时要注意什么?

  五、作业布置

  练习二第1、2、3题。

  板书设计:

  百分数和小数的互化

  小数化成百分数:把小数点向右移动两位,同时在后面添上百分号;

  百分数化成小数:只要把百分号去掉,同时把小数点向左移动两位。

小学数学六年级教案15

  教学内容

  教科书第80~81页,练习十六的习题.

  教学目的

  1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

  2.使学生在理解的基础上掌握分数、小数的基本性质.

  教学过程

  一、数的整除

  1.整除的意义.

  教师:想一想,什么叫做整除?指名回答.

  教师进一步强调:整除中说的数是什么数?(整数.)

  商是什么数?(整数.)有没有余数?(没有余数.)

  教师:什么叫做除尽?(两数相除,余数是0.)

  整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

  被除数 除数 商 余数

  整除 整数 不等于O的整数 整数 O

  除尽 数 不等于O的数 数 O

  教师:可以看出整除是除尽的一种特殊情况.

  2.能被2、5、3整除的数的特征.

  教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

  能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

  能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

  教师:什么叫做奇数?什么叫做偶数?

  根据什么来判断一个数是奇数还是偶数?

  3.约数和倍数.

  教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的`约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

  能说6是约数,15是倍数吗?应该怎么说?

  教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

  教师:一个数的约数的个数是怎样的?(有限的.)

  其中最小的约数是什么数?最大的约数是什么数?(1,这个数本身.)

  一个数的倍数的个数是怎样的?(无限的.)

  其中最小的倍数是什么数?(这个数本身.)

  做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

  4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

  教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

  让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

  5.分解质因数.

  指名说一说质因数、分解质因数的含义.

  做练习十六的第5题.学生独立解答,教师巡视,集体订正.

  6.公约数、最大公约数和公倍数、最小公倍数.

  (1)复习概念.

  教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

  什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

  教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

  质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

  两个不同的质数一定互质吗?(两个不同的质数一定互质.)

  互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

  (2)课堂练习.

  做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

  做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

【小学数学六年级教案】相关文章:

小学数学六年级教案11-11

小学数学六年级教案11-13

小学六年级教案数学教案01-05

小学数学六年级数学教案04-04

小学六年级数学经典教案05-11

小学数学六年级上册教案05-29

小学六年级数学比教案12-06

认识比小学数学六年级教案01-18

小学数学六年级上册教案01-12

六年级小学数学教案01-04