(通用)小学数学教案5篇
作为一位优秀的人民教师,总不可避免地需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编精心整理的小学数学教案5篇,欢迎大家分享。
小学数学教案 篇1
设计理念:
创设情境,激发学学生参与探究的兴趣和,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题,在建构、运用过程中渗透数学思想和方法。
教学目标:
1、经历探索的过程,发现商不变的规律。
2、能运用商不变的规律,进行除法的简便计算。
3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,培养学生爱数学的情感。
教学重点:
理解并归纳出商不变的规律。
教学难点:
会初步运用商不变的规律进行一些简便计算。
教具学具:
小黑板、计算题卡。
教学过程:
一、创设情境,激发兴趣。
师:同学们注意了,我讲一个故事给你们听。你们看过《西游记》吗?里面的内容很精彩,老师知道同学们都很喜欢里面的孙悟空,今天老师就给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看他的孩儿们,它给孩儿们带来礼物——桃子,他对身边的两只猴子说:“把8个桃子平均分给你们2只猴子吧!”这两只猴子连连摇头:“太少了!太少了!”外面的猴子听说后又进来一些猴子。孙悟空就说:“那好吧,把80个桃子平均分给20只猴子,怎么样?”猴子们得寸进尺,挠挠头皮,试探地说:“大王,再多点行不行啊?”所有的猴子都听到分桃子了,一起跑到孙悟空身边。孙悟空一拍胸脯,显示出慷慨大度的样子:“那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。
[设计意思:通过学生喜爱的故事,引入新课,激发学生投入学习的兴趣,也给学生创设一个宽松的课堂氛围,并引导学生在故事情境中发现问题,提出问题,从而为解决问题做好铺垫。]
二、探究规律,发现规律。
㈠ 师:同学们,小猴子和孙悟空都笑了,谁的笑是聪明的一笑,为什么?
学生思考后回答。
( 预设) 生1:……猴王的笑是聪明的一笑,桃子的总数与猴子的总只数变了,但每只猴子分到的桃子个数没有变。
生2:……猴王的笑是聪明的.一笑,因为猴王把小猴子给骗了,每只小猴子还是分到4个桃子。
师:你(们)是怎样看出来的?从哪儿看出来的?
(预设) 生:……(计算的)
师:能列出算式吧吗?
引导学生列出算式,并结合板书把算式补充完整。
板书 ①8÷2=4 ②80÷20=4 ③800÷200=4
㈡ 1、这些都是什么运算的算式,第一竖的数叫什么?第二竖的数又叫什么?第三竖的数又叫什么
2、师:请同学们仔细观察这组算式,你发现了什么?
〔预设意图 :这样预设,给学生创设发挥的空间,要比直接引导学生从上往下或从下往上观察预留的思维空间要大,课堂上观察学生反应情况,学生发现不了,再逐步引导。〕
生独立观察思考。
师:你有重要发现吗?把你的重要发现说一说好吗?
小组交流,师巡视辅导。
全班交流汇报。
生:我发现它们的得数都是4,商不变。
师:她发现一个非常重要的数学现象,商不变。(板书:商不变)
师:这节课,我们就来研究“商不变的规律”。(板书课题)
师:商不变,谁发生了变化?怎样变的?
(预设) 生1:被除数和除数同时乘上了10(扩大10倍)。
师:这个同学说了一个很好的词,你们知道是什么词吗?“同时”是什么意思?你能说一说吗?
生:……
师:“同时”指被除数和除数都扩大了10倍。(而不是一个扩大,一个缩小,或一个扩大,一个不变。)
(预设) 生2:②式和①式比较……
师:他用一个非常好的方法发现规律,用两个算式进行比较,这是多好的学习方法呀!你能像他这样去发现其它算式的一些规律吗?
生:……
师:同学们发现那么多的规律,真聪明!能用一句话概括你发现的规律吗?
生:……
师:被除数和除数,同时乘10,100,1000,商不变。(板书)
师:同学们刚才是从上往下看,发现了这么重要的规律,那么从下往上看,有规律吗?
生汇报,师板书。
师:被除数和除数同时除以10、100、1000商不变
师:是不是只有被除数和除数同时乘或除以10,100,1000,商不变呢?那你能验证吗?请你多写几个商是4的除法算式,看看有没有这个规律。
生写算式,师出示
师:请同学们仔细观察这组算式,符合这个规律吗?
生观察,汇报。
师引导:看来这里扩大和缩小的不一定是整十整百,整千的位数,也可以是1倍、2倍、3倍、4倍等,那么我们就要把10倍、100倍……改成“相同的倍数”了。
师在板书上改写。
师:这里所有数都可以吗?
(预设)生:……(零除外)
师:为什么要零除外?
生:因为零乘任何数都得零,零不能当除数。
师:我们发现的就是重要的“商不变的规律”,这个规律在所有除法中都适用吗?
师:请请同们列一组算式验证一下。
生验证,指名汇报。
师小结:看来这个规律对所有除法都适用。
[设计意图:这一环节通过学生自主探索,小组合作,全班交流三个层次,引导学生逐步构建“商不变的规律”这一数学知识的模型,让学生经历“发现----探索----构建”的学习过程,培养学生学数学的方法。]
三、应用规律,拓展延伸。
师:同学们对这一规律理解了吗?智慧老爷爷想考考你到底掌握的怎么样?可以吗?
1、 请你计算。
8000÷20xx=
80……0÷20……0= 在板书下补充
100个0 100个0
生做过后师:你们是一部高级电脑,比普通电脑快多了,看来这个规律的作用太大了,这么大的数同学们都能计算出来。
2、 P75 T1 板书到小黑板。
3、从上到下,先算出每组题中第一题的商,然后很快地写出下面两组的商。
72÷9= 36÷3= 80÷4= 720÷90= 360÷30= 800÷40= 7200÷900= 3600÷300= 8000÷400=
4、判断,下面的计算对吗?为什么不对?
14÷2=715÷3=5
(14×2)÷(2÷2)=7( )150÷30=5( )
(14×5)÷(2×3)=7( )150÷30=50( )
(14×0)÷(2×0)=7( )1500÷300=500( ) 5、比赛。
比一比,在1分钟内看谁写出相等的除法算式最多。 赛后,让第1名同学说说取胜秘诀。
6、P75页,观察与思考
感受规律的作用真大(可以使计算简便)。
[设计意图:设计不同层次的变式练习,突破难点,让学生进一步能理解运用所探索的规律,以达到灵活运用知识解决问题,培养学生应用意识和能力。]
四、总结全课,概括梳理。
师:这节课,你学会了什么,有什么新发现?数学有趣吗?
师总结:通过同学们的探索,发出了那么重要“商不变规律”,并且那么有用,同学们真了不起!下节课,你们的老师将带着你们把它运用到竖式计算中,还可以使竖式计算简便呢!
五、作业
列举出几组数学算式,说一说商不变的规律。
板书设计:
商不变的规律
①8÷2=4 6÷3=2
②80÷20=4 24÷12=2
③800÷200=4 48÷24=2
8000÷20xx=4 120÷60=2
80……0÷20……0=4
100个0 100个0 被除数和除数同时扩大或缩小相同的倍数,商不变。
小学数学教案 篇2
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:
如何确定每一条跑道的起跑点。
教学难点:
确定每一条跑道的起跑点。
教具准备:
多媒体课件
教学过程:
一、提出研究问题。(出示运动场运动员图片)
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)
2、各条跑道的起跑线应该向差多少米?
二、收集数据
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)
三、分析数据
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论
1、看书P76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的'直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)
五、课外延伸
200m跑道如何确定起跑线?
设计意图
此节知识虽不是很重要,但我独列出来进行教学,主要原因有;
1、此节知识的综合性很强。
2、密切联系生活,能提高学生的应用能力。
3、培养学生收集数据的良好习惯,重视科学性。
小学数学教案 篇3
教学内容
用7、8、9的乘法口诀求商的练习课.(练习十一第7~12题)
教学要求
1.进一步巩固用乘法口诀求商的口算.
2.正确、熟练地用乘法口诀求商的方法解决简单的.问题.
教学重点
练习用乘法口诀求商.
教学难点
正确熟练地用乘法口诀求商的方法解决简单的问题.
教学用具
电脑、口算卡片.
教学过程
一、基本练习,导入新课
1.口算.
老师拿着许多口算卡片,由学生抽签答题.
2.听算.
老师说题,学生直接说得数.
3.一支钢笔6元钱,田老师拿了54元钱,可以买几支钢笔?
学生独立列式计算,指名汇报.
二、课堂练习,巩固旧知
1.练习十一第8题.
学生独立作业,将得数直接填写在课本的表格里.做后小组评比,谁做得又对又快.
2.练习十一第10题.
练习前,先让学生看一看题,想一想题目中的已知条件:这道题是商一定,而被除数变了,当被除数变了,要使商不变,则除数也应相应地变化.让学生在此基础上再去独立完成,将得数直接填在课本上.
三、深化练习,拓展思维
1.练习十一第7题.
(1)电脑显示第7题情境图,让学生观察画面.
(2)让学生根据图中已有的信息数据提出问题.
问题一:二年级电脑小组共有24人,如果3人用一台电脑,需要几台?
怎样解决这个问题?(学生独立练习,小组讨论)
问题二:如果现在有6台,你打算怎样安排?
第二个问题中的总人数没有变,仍然是24人,有6台电脑,问题是几人合用一台电脑?
怎样解决这个问题?小组讨论,合作学习.
你还能提出什么问题?同桌讨论,互相学习.
2.练习十一第11题.
(1)电脑显示第11题情境图,让学生看图,说说图意.
(2)根据已知信息提出问题.
(3)引导学生分析题中的数量关系.
(4)讨论解决问题的方法.
四、课后作业,辅助消化
练习十一第9、12题.
教练创新
课后作业指导
练习十一第9题:先让学生看懂图意,寻找信息数据,然后分析数量关系,再解决问题.第12题:可以让学生将得数直接填在书上,要求学生在1.5~2分钟的时间完成.
补充习题及解答
被除数36 63 1614
除数96 38 9
商 898 25
(1)如果只买帽子,可以买几顶?
(2)如果只买鞋,可以买几双?
[解答:3.36÷4=9(个) 4.45÷9=5(排) 5.(1)36÷6=6(顶) (2)36÷9=4(双)]
小学数学教案 篇4
一、创设问题情境,复习旧知识,激发学生兴趣,引出本节要研究的内容.
活动1 纸币问题
小明手头有12张面额分别是1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?
学生活动设计:
设1元2元分别为x张、y张,如何列方程组?用什么消元法比较好呢?
只设一个未知数,用一元一次方程能否求解?(能,但不方便。对未知量较多的问题,所设的未知数越少,方程往往越难列。其实题中有三个未知量我们就设三个未知数来解决。)
自然想法是,设1元、2元、5元的纸币分别是x张、y张、z张,根据题意可以得到下列三个方程:
x+y+z=12,
x+2y+5z=22,
x=4y.
这个问题的解必须同时满足上面三个条件,因此可以把三个方程合在一起写成
教师活动设计:
在学生活动的基础上,适时给出三元一次方程组的概念,并激发学生探究其解法的热情.
板书:三元一次方程组:含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的'方程组叫做三元一次方程组.
活动2 讨论如何解三元一次方程组
我们知道二元一次方程组可以利用代入法或加减法消去一个未知数,化成一元一次方程求解.那么能否用同样的思路,用代入法或加减法消去三元一次方程组的一个或两个未知数,把它转化成二元一次方程组或一元一次方程呢?观察方程组:
①
②
③
仿照前面学过的代入法,可以把③分别代入①②,得到两个只含y,z的方程:
4y+y+z=12
4y+2y+5z=22
即
得到二元一次方程组后就不难求出y和z的值,进而可以求出x了.(问题:同学们还有不同的消元法吗?比较一下哪种方法较好。)
总结:
解三元一次方程组的基本思路是:通过“代入”或“加减”进行消元,把“三元”转化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.即
板书:
三元一次方程组
二元一次方程组
一元一次方程
消元(代入、加减) 消元
三元变二元最佳方法:
①
②
③
1、有表达式的用代入法;2、缺某元,消某元;3、相同未知数的系数相同或相反或整数倍的用加减消元法。例分析:p114习题1
二、主体探究,培养学生解决问题的能力.
例题分析:解三元一次方程组
①
②
③
分析:方程①只含x,z,因此可以由②③消去y,得到一个只含x,z的方程,与方程①组成一个二元一次方程组.
解:②×3+③,得
11x+10z=35 ④
①与④组成方程组
解这个方程组,得
把x=5,z=-2代入②得
因此三元一次方程组的解为
板书:(可略)解三元一次方程步骤、格式:1)、三元变二元(有的可直接变一元),利用代入消元法或加减消元法或其他简便的方法,把三元变二元的方程组;2)、解这个二元一次方程组,求得两个未知数的值;3)、将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的值;4)、把这三个数写在一起就是所求的三元一次方程组的解。
小学数学教案 篇5
教学目的:
1. 使学生进一步理解乘数是两位数的连续进位乘法的'算理,掌握两位数的进位乘法的计算方法。
2. 培养学生的分析推理能力。
教学重点:理解乘数是两位数的连续进位乘法的算理。
教学难点:掌握两位数的进位乘法的计算方法。
教学过程:
一、自主探索,领悟知识
1. 创设情景,提出问题。
一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。
(1)学生根据以上情景提出数学问题。
(2)教师根据学生提出的问题有选择性地解答。如:7名同学参观展览,门票一共多少元?学生列式:48×7,并说出怎样计算?
2.改变情景,引出新课。
改变条件:一共进72人。学生根据新情景提出问题。
(1)教师根据学生提出的问题有选择性地解答并板书:48×72
(2)小组研究计算方法。
(3)小组汇报
(4)教师根据情况,重点指出以下两个方面:
计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。
(5)练习: 6 8 3 7 4 5
×3 4 ×8 2 ×4 6
2. 学习例4
出示例题
(1)让学生读题理解题意,再口头列出算式。
(2)让学生独立试做。
(3)请一名学生展示计算过程,并说一说算理。
(4)其他学生补充完整,必要时教师给予指导。
【小学数学教案】相关文章:
(精选)小学数学教案07-05
小学数学教案07-06
小学数学教案07-07
小学数学教案07-07
小学数学教案07-07
小学数学教案07-07
小学数学教案07-07
小学数学教案07-07
小学数学教案07-07
小学数学教案07-06