小学数学比较图形的面积优秀教案

时间:2023-10-26 08:35:56 飞宇 小学数学教案 我要投稿
  • 相关推荐

小学数学比较图形的面积优秀教案(精选10篇)

  作为一名无私奉献的老师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?以下是小编为大家整理的小学数学比较图形的面积优秀教案,仅供参考,希望能够帮助到大家。

小学数学比较图形的面积优秀教案(精选10篇)

  小学数学比较图形的面积优秀教案 1

  一、课题:

  比较图形的面积

  1.指导思想与理论依据

  (1)我们需要什么样的数学教学?

  史宁中教授:中国未来小学数学教育将转入更加注重内涵的改革深化阶段。

  其一,注重思考力的培养;

  其二,注重过程性经验的积累;

  其三,注重真正意义上的“理解”。

  (2)“最近发展区”理论

  维果茨基认为学生有两种发展水平:一是其己经达到的发展水平,表现为学生能够独立解决问题的智力水平;二是他可能达到的发展水平,但要借成人的帮助或是集体活动,才能达到解决问题的水平这两个水平之间的差异称之为“最近发展区”。

  在教学中,教师应该按照学生的“最近发展区”来设计和实施,从而使教学不是跟随学生己有的发展成果,而是真正建立起教学与学生之间的桥梁,通过适当的支持帮助他们跨过这个“最近发展区”。

  (3)学生学习数学的重要方式

  《数学课程标准》指出,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课是关于图形面积的比较内容,为学生精心设计学习单、图形、格子图等学具,并提供了充分的自主探索与合作交流的机会。

  2.教学背景分析

  教材分析

  单元分析

  《多边形的面积》属于图形与几何范畴。本单元,学生将经历多种探索活动,在第一、二课时,比较图形的面积及认识底和高的基础上,进行平行四边形、三角形及梯形面积计算方法的探索,积累探索图形面积的经验、体会转化的思想,会计算这些图形的面积。以下是本单元框架:

  本课分析:

  《比较图形的面积》是本单元的第一课时,安排在探索平行四边形、三角形及梯形的面积计算之前。一是让学生进一步体会面积的含义;二是掌握一些比较图形面积大小的基本方法,积累探索图形面积的活动经验。

  比如:环节一,找到面积相等的图形——图1平移后与图3重合,两个图形面积相等;图2平移后与图6重合,两个图形面积相等,图5与图6翻转重合,或者从轴对称的角度,也可以说明二者面积相等。当然,也可以通过数格子的方法说明。环节二,笑笑的发现——将图5与图6拼接转化成图8,环节三,淘气的发现——将图9割补转化成图10,这两种转化的方式为学生带来了更深入的思考和提升。

  而学生所积累的经验及将图形进行转化的思想,会对后续内容的学习起到极为重要的作用。如本单元后面的三次探索:探索平行四边形的面积(你能把平行四边形转化成长方形吗?),探索三角形的面积(请你把三角形转化成学过的图形),探索梯形的面积(把梯形转化成学过的图形,并比较转化前后图形的面积);以及六年级上册将探索的圆的面积(能否将圆转化成以前学过的图形呢?做一做)

  基于以上分析,探索图形面积内容的核心本质为:积累研究图形面积的活动经验,体验几何图形中的转化思想。

  二、学情分析:

  (一)五年级的学生已学习和掌握了以下方面的相关知识:

  图形的认识——初步了解了一些基本图形的特征,认识了长方形、正方形、三角形、平行四边形和梯形;

  图形的运动——认识了平移、旋转、轴对称,有了在运动后能重合的图形中辨别出平移与旋转的经验。

  测量——认识了面积及面积单位,对数方格比较图形的面积有一定的认识和丰富的经验,但仅限于整格与半格构成的图;经历了长方形及正方形面积公式的推导过程,并掌握了长方形及正方形的面积等有关知识。

  (二)前测

  前测对象:

  海淀区第三实验小学五年级4班,共40人。

  前测目的:

  学生关于数格子、平移及割补的方法比较图形面积的知识基础

  2.学生在本课的后续相关内容的知识基础。(调研情况及数据分析)通过课前调研,不难看出,教材中提供的主题图,对于我所执教的班级而言比较简单。

  首先是格子图的提供,学生已经有了丰富的数格子经验,通过数格子能轻松地比较出图形面积的大小;其次是提供的形状,两个图形仅通过平移或是旋转、翻转便能重合;再加上现在家庭都更重视学前教育,使学生在课前已掌握了许多知识。如果我不去改变的话,显然会无法满足学生的需求,也是有悖于“最近发展区”理论的。就如赞可夫所说:“在实际教学中,如果我们还是根据教材按部就班地进行教学,如果我们忽视了学生的发展水平,忽视学生发展的潜力,就等于犯罪。”

  通过学前调查还发现,约三分之一的同学除了学习过的长方形及正方形面积以外,还通过课外学习,知道平行四边形、三角形,甚至梯形及圆的面积公式。但当追问公式中的道理时,就答不出了。

  再深入思考,我有必要做这几件事:

  1、根据学生需要,适当改变主题图,以使学生更深入地探究。

  2、使学生经历比较图形的过程,获得比较的方法(割补、拼接),体会转化的思想,是本节课的关键,所以我要在课堂设计及教具学具上做好充分的准备;此外学生之前所经历的数格子,多是整格与半格的,而本节课的另一最近发展区,便是通过图形的转化来数格子了,但应该是在之前数整格、和半格基础上有所提升,如由长方形一半构成的三角形等,也是对转化思想的应用。

  3.教学目标(含重、难点)

  教学目标:

  1、知识与技能:在比较图形面积大小的活动中,进一步体会面积的含义;掌握一些比较图形面积的基本方法,如:数方格(包括较为简单的不规则图形)、重叠、拼接、割补等;体会转化的思想。

  2、过程与方法:经历比较图形面积大小的过程,体会转化的思想(包括将不规则图形转化为规则图形,以及由平行四边形转化为长方形,由三角形及梯形转化为平行四边形);为今后探索多种图形的面积积累活动经验。

  3、情感、态度、价值观:培养学生的问题意识、观察能力,及面对复杂问题积极探索、解决的能力,在图形形状变化及面积大小关系的体验中,发展空间观念,感受图形与几何。

  教学重点:

  掌握比较面积大小的方法,体会转化的思想。

  教学难点:

  体会图形转化的思想,并提高问题探究能力。

  4.教学过程与教学资源设计(可附教学流程图)

  一、自主提问、引入新知:

  (出示主题图)

  (1)师:看到这些图形,你想研究什么问题?

  生说出想研究的问题,摘录板书

  预设:

  a研究周长——追问怎么研究——先测量所有的边,再求和。

  b研究面积

  (2)聚焦问题:今天我们先来比一比它们面积的大小

  板书:比较图形的面积

  【设计意图:以学生为主体,培养学生的问题意识。在观察图形的基础上,由学生提出想去研究的问题。再将问题聚焦——比较图形的面积。】

  二、自主学习、探究新知:

  1、

  独立探究

  (1)师:请你仔细观察,这些图形的面积大小会有什么关系?

  (学生仔细观察)

  【设计意图:细致的观察是顺利完成主动学习不可缺少的心理品质。细致的观察是学生探索知识的开始,是学生有所发现的前提。我们要给学生提供细致观察的空间,让学生积极参与,以培养他们的观察能力。】

  (2)要想完成这个任务,可以用什么办法?

  预设:

  a:可以把它们重叠,完全重合说明相等,不能重合的再比一比多出的部分。

  b:可以用手中的格子图试试看。

  c:知道公式的,可以用公式算

  d:可以给它们变变形,再比较

  【设计意图:学生能力有差异,在独立探究前,请学生说一说自己的想法,一方面能让孩子们更加明确学习任务,另一方面也为有困难的同学提供思路。】

  (3)动手操作

  师:请你拿手中的'学习单试试看。

  (学生独立探究。有的直接通过画的方式在学习单上表示;有的将图案撕下来去比较(为了安全,也为了节省时间,还为了让孩子选用更多的方式,别一股脑儿就裁剪,我没有让学生带剪刀),但我会根据孩子的需要,提供给他们裁剪好的图形。)

  【设计意图:学生手中有印有8个形状主题图的学习单,有格子图纸、直尺等用具,为学生提供独立探究的机会,使每个同学都能参与思考和操作。】

  2、小组合作、交流

  师:小组交流一下自己研究中的发现,一会儿分组汇报。

  【设计意图:在独立探究的基础上,小组合作、交流、学习、补充。体现了探究的层次。】

  集体交流、汇报(利用实物投影及黑板贴图)

  师:哪个小组来两个代表,说一说你们的发现及采用的方法?

  预设:

  a通过割补,可以把不规则图8转化为图1;

  b通过割补,可以把图5转化为图1;

  c两个图2可以通过拼接,转化成图5;两个图6可以通过拼接,转化成图5,因此,图5是两个图2的大小,也是两个图6的大小。

  【设计意图:在学生解释方法之后,利用黑板磁贴贴图,进行操作,以让同学们更清楚地观察和了解比较图形面积大小的方法。还要将面积相等的图形进行有序摆放,以使图形的面积关系更加清晰地展示在黑板上。此外,“割补”、“拼接”是比较图形面积的方法,在学生解释时,可能不会提到,教师可以追问,并做出解释,使学生在操作中了解;同时渗透转化的思想。】

  d图8有两个图7的大小,图3的面积与图7相等

  【设计意图:对于图3、图4和图7,这三幅图仅通过观察,是无法比较的,也是难度所在,旨在为学生提供更丰富的转化体验——三角形转化为长方形。而这三幅图,我也是对着格子图画的,尤其对于图3这个不规则图形,是否会有学生借助手中的格子图去探究,不做硬性目标,算是一个弹性设计。】

  感悟转化、在启发中提升

  1、师:经过一系列操作,我们在那么错乱的图形中,发现了面积大小的关系。通过割补,我们把不规则图形转化成了规则图形;还通过拼接,实现了由三角形、梯形到平行四边形的转化;通过割补实现了由平行四边形到长方形的转化,转化是我们在认识图形中极为重要的思想。

  你能从中得到什么启发吗?

  预设:求平行四边形的面积,可以转化为长方形去求——底x高

  三角形及梯形的面积都可以由平行四边形的面积除以2得到。

  2、师:是不是所有的三角形和梯形都可以拼接成平行四边形?动手拼一拼。

  任何两个完全一样的三角形或平行四边形都可以拼成一个平行四边形。

  【设计意图:转化是多边形面积内容的重要数学思想,学生在探究面积大小的过程中,经历过多次转化,在此,由学生说说自己所受的启发,将思维提升了新的高度。多种三角形及梯形的学具准备,让学生在拼一拼中对“转化”思想的认识更加具体、深刻,积累的活动经验及转化思想为后续学习起到极为重要的作用。】

  四、总结提升、埋下伏笔

  在我们的探索中,这节课已接近尾声,你有什么想说的吗?可以谈谈收获,也可以说说疑惑,还可以谈谈还想再研究的问题。

  【设计意图:以学生为本,不只“收获”是收获,实际上孩子们的疑问以及想再研究的问题都是收获,这样的结束,能帮助老师了解学生还存在的问题,及思维和新的知识基础。】

  5.学习效果评价设计

  集体汇报环节,体现了孩子主动学习的成果,达到了预期的效果,孩子们均在原有的水平上有所提高。原本凌乱的图形,经过学生们的拼接、割补等方法,进行了转化,发现了他们面积之间的关系。

  “你能从中得到什么启发?”这个问题把学生的思考与交流带向高潮。小客同学说两个一样的三角形一定能拼成平行四边形,两个不一样的有时候也能拼,小张同学突然反驳说不能,令我没有想到的是,孩子们在反驳中对“是不是只有一模一样的两个三角形”才能拼成平行四边形的问题进行了自主探究。这样的探究,让学生通过想象去画图,对图形有了更深入的了解,发展了空间观念。

  此外,同学们在对3号图形的探索中,有了对图形转化与数格子经验的提升。

  课后,孩子们又围住了我,说一些他们想继续研究的问题和自己的收获,看得出,这样的课堂,为他们积累了丰富的活动经验,提升了他们对图形研究的兴趣。

  6.教学设计特色说明与教学反思

  教学设计特色说明:

  (1)基于教材内容及学情分析的基础上,定位本节课的目标,对主题图进行了大胆改进,并不是简单的操作就能解决的,同时为学生提供丰富的学具,让浓浓的探究氛围得以实现:

  a、隐去格子图,但学生可以借助手中的格子图纸或者自己创作格子图;

  b、减少仅通过平移、旋转、翻转而直接得到重合的图形,1、2、3、5、6,保留和改进不规则图形如图8,以及图8通过割补转化成为的长方形图1,还加上平行四边形、三角形及梯形;以让学生获得丰富的探究经验,体会转化的思想。

  c、“数方格”法的提升设计

  (2)培养学生的问题意识:

  在出示主题图之后——问:看到这些图形,你想研究什么问题?由学生提出想要探究的问题后、再聚焦问题、解决问题。

  探究有层次:

  个人独立探究——小组合作探究——集体交流汇报

  探究中提升,在转化中得到启发:

  可以通过转化去探究图形的面积。

  教学反思:

  反思中,我考虑最多的就是对主题图的改进,虽然冒险,但是基于学情及教学内容分析基础上的,所以达到了预期的效果。让我更深刻地体会到了那句话——要真正建立起教学与学生之间的桥梁。

  图7如果不设计成等腰三角形,或许会更好。

  因为图形难度的加大,还有课堂上没有预料到的“小张反驳小客”后引起的新探究,使得整节课上了45分钟,学生的热情,使我没有下课。今后还要注意这个问题。

  小学数学比较图形的面积优秀教案 2

  一、教材分析

  《组合图形面积》是人教版九年义务数学教科书第十一册的重要内容。学生在三年级已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册的第二单元学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。

  二、创新点

  (1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。

  (2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。

  三、教学目标以及重难点

  有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:

  1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  过程与方法:能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。

  情感态度与价值观:能运用所学的知识,初步解决生活中组合图形的实际问题。

  教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

  教学难点:根据组合图形的条件,有效地选择计算方法。

  教学准备:七巧板 ppt课件 简单图形学具 少先队中队旗实物

  1、七巧板拼图游戏,初步感知组合图形。

  用 准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?

  选取几个有创意的图案在实物投影仪上展示和让学生汇报。

  2、自主探究,汇报交流。

  让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。

  设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。

  出示例题:老师家新买了住房,计划在客厅铺地板,请你估计他家至少要买多大面积的地板?

  让学生先估一估,然后汇报估算的方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的方法求一求它的面积?看谁的方法多。

  为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。

  汇报时先汇报分的方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。

  接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。

  习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的'培养。

  我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。为什么没有人喜欢分割成3个图形的方法呢?我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。

  这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。

  最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。

  3、综合应用,巩固提高。

  练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题

  采取学生独立解决与合作交流的形式

  A、可以任意分割

  B、分割为最少的学过的图形

  C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。

  4、回顾反思,自我评价。

  通过本节课的学习,你有什么收获? 借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。

  小学数学比较图形的面积优秀教案 3

  教学内容:

  教材第68—69页含有圆的组合图形的面积。

  教学目标:

  1、让学生结合具体情境认识组合图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

  2、通过自主合作,培养学生独立思考、合作探究的意识。

  3、让学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的举和学习好数学的自信心。

  教学重难点:组合图形的认识及面积计算、图形分析。

  教具学具准备:多媒体课件、各种基本图形纸片。

  教学设计:

  ⊙创设情境,认识圆环

  1.师:我们来欣赏一组美丽的图片。

  课件出示圆形花坛、圆形水池外的圆形甬路、奥运五环标志、光盘……

  2.同学们,你们从图中发现了什么?(它们都是环形的)

  3.教师拿出环形光盘说明:像这样的图形,我们称它为圆环或环形。

  你还知道生活中有哪些环形的物体?它们给我们的生活带来了怎样的变化?

  (学生结合生活实际谈谈已经知道的环形物体以及它给我们的生活带来的乐趣)

  4.导入新课:这节课我们一起来探讨环形的知识。(板书课题:圆环的面积)

  设计意图:从学生掌握的常识和熟悉的事物入手,使其感受到数学就在我们身边,学生从直观上也感受到了环形的特点,为后面学习环形的面积奠定基础。

  ⊙探索交流,解决问题

  1.画一画,剪一剪,发现环形特点。

  (1)画一画。

  让学生在硬纸板上用同一个圆心分别画一个半径为10厘米和5厘米的圆。

  (学生按照要求画圆)

  (2)剪一剪。

  指导学生先剪下所画的大圆,再剪下所画的小圆。

  问:剩下的部分是什么图形?(环形)

  师:我们也称它为圆环。

  (3)教师手拿学生剪的圆环提问:这个圆环是怎样得到的?

  生明确:圆环是从外圆中去掉一个内圆得到的。

  (4)借助图示认识圆环的各部分名称。

  你知道圆环各部分的名称吗?(出示图示引导学生明确相关内容并板书)

  ①外圆:又名大圆,它的半径用R表示。

  ②内圆:又名小圆,它的半径用r表示。

  ③环宽:指外圆半径和内圆半径相差的宽度。

  2.探究圆环面积的计算方法。

  (1)小组讨论,怎样求圆环的面积?

  (2)汇报讨论结果。

  (3)小结:环形的面积=外圆面积-内圆面积。

  设计意图:以学生的亲身实践贯穿始终,同时在这一过程中渗透一些方法,如动手操作、合作交流、观察、分析等,使学生在学习中运用、在运用中掌握,学生通过自己动手操作,把环形从一般图形中分离出来,快速地抓住了环形的本质特征,形成环形的概念,并顺利推导出圆环面积的计算公式,发展了学生的空间观念。

  3.课件出示例2。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。圆环的面积是多少?

  (1)学生读题。

  观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的'面积?

  (2)学生试做,指生板演。

  (3)交流算法,学生将列式板书:

  解法一

  外圆的面积:πR2=3.14×62

  =3.14×36

  =113.04(cm2)

  内圆的面积:πr2=3.14×22

  =3.14×4

  =12.56(cm2)

  圆环的面积:πR2-πr2=113.04-12.56

  =100.48(cm2)

  解法二

  π×(R2-r2)=3.14×(62-22)=100.48(cm2)

  答:圆环的面积是100.48cm2。

  (4)比较两种算法的不同。

  (5)小结:圆环的面积计算公式:S=πR2-πr2或

  S=π×(R2-r2)(板书公式)

  (6)讨论。

  知道什么条件可以计算圆环的面积?怎样计算?(给学生充分的思考时间,引导学生结合图示多角度解答)

  ①知道内、外圆的面积,可以计算圆环的面积。

  S环=S外圆-S内圆

  ②知道内、外圆的半径,可以计算圆环的面积。

  S环=πR2-πr2或S环=π×(R2-r2)

  ③知道内、外圆的直径,可以计算圆环的面积。

  ④知道内、外圆的周长,也可以计算圆环的面积。

  S环=π×(C外÷π÷2)2-π×(C内÷π÷2)2

  或S环=π×[(C外÷π÷2)2-(C内÷π÷2)2]

  ⑤知道内、外圆的直径或半径及环宽,也可以计算圆环的面积。

  S环=π×[(r+环宽)2-r2]

  或S环=π×[R2-(R-环宽)2]

  ……

  设计意图:联系生活,进一步认识圆环;结合图示理解圆环面积的计算公式。例题主要由学生自己完成,最后老师引导学生列出综合算式,使学生领会两种方法间的区别,好中选优,展现学生的创新精神。在合作讨论中进一步弄清求圆环面积所需要的条件,培养学生多角度思考的习惯。

  ⊙巩固练习,拓展提高

  1.完成教材68页1题。

  学生独立完成,然后在班内说一说解题思路。

  2.一个环形铁片,外圆直径是20dm,内圆半径是7dm,这个环形铁片的面积是多少?

  3.已知阴影部分的面积是75cm2,求圆环的面积。

  [引导学生理解阴影部分的面积为R2-r2=75(cm2),圆环的面积=π(R2-r2)=3.14×75=235.5(cm2)]

  设计意图:练习设计突出重点,由浅入深,由易到难。通过练习不仅巩固了所学知识,又让学生把获得的知识应用于实际生活,提高了学生应用知识解决实际问题的能力,增强了学生的数学应用意识。

  ⊙反思体验,总结提高

  这节课我们学习了什么?你有哪些收获?还有什么问题?

  ⊙布置作业,巩固应用

  1.完成教材72页8题。

  2.找一些关于环形的资料读一读。

  板书设计

  圆环的面积

  圆环面积=外圆面积-内圆面积

  S环=πR2-πr2或S环=π×(R2-r2)

  小学数学比较图形的面积优秀教案 4

  教学内容:

  比较图形的面积

  目标预设:

  借助方格纸,能直接判断图形面积的大小。

  通过交流,知道比较图形面积大小的基本方法。

  体验图形形状的变化与面积大小变化的关系。

  教学重点:

  面积大小比较的方法。

  教学难点:

  图形的等积变换。

  教学过程:

  一、新课教学

  比较图形面积大小的'方法

  让学生观察方格中各种形状的平面图:

  提问:下面各图形的面积有什么关系?

  你是怎样知道的?

  同学进行交流。

  二、归纳比较的方法:

  (1)平移

  (2)分割

  (3)数方格

  你还有什么发现?与同学进行交流

  三、练习

  1.用分割和平移法来判断

  2.根据自己的理解画图形,只要面积是12平方厘米都可以。

  3.让学生讨论观察补哪块图形好。

  四、作业

  课堂作业:17页第4题。

  课外作业:在方格纸上画出面积为24平方厘米的图形。

  小学数学比较图形的面积优秀教案 5

  教学内容:

  北师大版教科书第九册第75~76页的内容

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  重点、难点

  重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

  难点:如何选择有效的计算方法解决问题。

  教具准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、引出概念,揭示主题。

  1、你能看出以下图形是由那些基本图形组成的吗?

  2、像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

  二、新授。

  这是我家的客厅平面图!(课件出示客厅的平面图。)

  1、估计地板的面积

  师:请同学们先估一估这个地板的面积有多大呢?

  2、探索不同方法。

  师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

  生动手画图。

  教师有选择的展示方法。

  3、师总结分割法和添补法。

  其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

  4、计算:

  现在你会计算这个组合图形的面积吗?

  要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

  生独立计算。

  5、汇报计算方法及结果。

  6、辨析及总结。

  (1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

  分成的'图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

  (2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三.巩固练习。

  1、根据条件算一算引入中两个图形的面积。

  2、动手做。根据你的方法测量你需要的数据进行计算。

  四、小结:谈谈你的收获!

  五、板书:

  组合图形面积

  图11.转化

  图22.找条件

  图33.计算图

  小学数学比较图形的面积优秀教案 6

  教学内容:

  地毯上的图形面积

  目标预设:

  能直接在方格图上,数出相关图形的面积。

  能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

  在解决问题的过程中,体会策略、方法的多样性。

  教学过程:

  一、出示图形,让学生观察讨论:

  1.地毯上的图形面积是多少?

  2.图形有什么特点?

  3.求地毯上蓝色部分的面积有哪些方法?

  小组讨论求积的方法:

  (1)数格

  (2)大面积减小面积

  (3)分割数格

  二、练一练

  1.求下列图形的面积:你是用什么方法知道每个图形的面积?(讨论)

  2.下列点图上的.面积是多少?

  请学生说如何分割?

  为什么这样分割?

  3.总结:求这类图形的面积有哪些方法?应注意什么?

  三、作业

  课堂作业

  19页第3题第二部分。

  课外作业

  在方格纸上设计一个自己喜欢的图形,并求出它的面积。

  小学数学比较图形的面积优秀教案 7

  教学内容:

  教材P100例五及练习二十二第7~11题。

  教学目标:

  知识与技能:

  初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。

  过程与方法:

  用数格子方法和近似图形求积法估测不规则图形的面积。

  情感、态度与价值观:

  培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。

  教学重点:

  将规则的简单图形和形似的不规则图形建立联系。

  教学难点:

  掌握估算的习惯和方法的选择。

  教学方法:

  迁移式、尝试、扶放式教学法。

  教学准备:

  师:多媒体、树叶、透明方格纸。生:树叶若干片、方格纸一张。

  教学过程

  一、情境导入

  出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来

  研究,我们可以研究它的什么呢?

  学生回答,并根据学生的回答板书课题:树叶的面积。

  出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。

  引导学生思考:它是一个不规则的图形,那么面积如何计算呢?

  学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。

  二、互动新授

  1.出示教材第100页情境图中的树叶。

  引导思考:这片叶子的形状不规则,怎么计算面积呢?

  让学生思考,并在小组内交流。

  学生可能会想到:可以将树叶放在透明方格纸上来计数。

  对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。

  演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。

  引导学生观察情境图,说一说发现了一些什么情况?

  学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。

  2.自主探索树叶的面积。

  明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。

  先让学生估一估,这片叶子的面积大约是多少平方厘米。

  让学生自主猜测。

  再让学生数一下整格的:一共有18格。

  引导思考:余下方格的怎么办?

  小组交流讨论,汇报。

  通过讨论,学生可能会想到:可以把少的与多的拼在一起算一格;也可以把大于等于半格的算一格,小于半格的

  可以舍去不算。

  提示:如果把不满一格的都按半格计算,这片叶子的面积大约是多少平方厘米?

  学生通过数方格可以得出:这片叶子的面积大约是27cm2。

  质疑:为什么这里要说树叶的面积是“大约”?

  学生自主回答:因为有的多算,有的不算,算出的面积不是准确数。

  3.让学生拿出树叶及小方格纸,以小组为单位研究树叶面积的计算。

  小组合作进行测量、计算,并汇报本组测量的树叶的面积大约是多少。

  4.引导:你还能用其他方法来计算叶子的面积吗?

  小组讨论、交流。学生有了前面学习的经验后,会想到可以把叶子的图形转化成学过的平面图形来估算。

  让学生观察叶子的形状近似于我们学过的哪种图形。(平行四边形)

  思考:你能将叶子的图形近似转化成平行四边形吗?

  学生回答,师根据学生的回答多媒体出示将叶子转化成平行四边形的过程(即教材第100页第三幅情境图)。

  再让学生数一数这个平行四边形的'底与高分别是多少,再尝试计算。

  (平行四边形的底是5厘米,高6厘米。)

  学生自主解答,并汇报。

  根据学生汇报板书计算过程:

  S=ah

  =5×6

  =30(cm2)

  5.让学生再说一说,你是怎样估算树叶的面积?

  学生可能会回答:先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。

  三、巩固拓展

  1.完成教材第102页“练习二十二”第8题。先让学生数一数阴影部分的面积大约是多少。汇报时让学生说一说是

  怎么数的。

  学生可能数的是阴影部分;也有的把阴影部分填补成学过的图形,算出图形的面积再减去填补的图形的面积。让

  学生对这两种方法进行比较,从中选出较简单的方法计算。

  提示:第一幅图还可以把图形添上一个三角形填补成一个梯形,算出梯形的面积再减去三角形的面积,从而求出

  准确值。

  2.完成教材第102页“练习二十二”第9题。通过上一题对计算方法的选择,师引导学生先把这个图形转化成学过

  的近似图形,再估算。

  3.完成教材第102页“练习二十二”第10题。

  先让学生运用自己喜欢的方法估计一下图上手掌的面积,再估一估自己手掌的面积大约是多少。

  四、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:

  1.求不规则图形的面积时,先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。

  2.不规则图形的面积都不是准确值,而是一个近似数。

  作业:教材第102页练习二十二第7、11题。

  板书设计:

  方格图中不规则图形的面积计算

  先通过数方格确定面积的范围,

  再把不规则图形转化为学过的图形来估算。

  小学数学比较图形的面积优秀教案 8

  课堂引导:

  问题:大家的小学生活马上就要结束了,在小学中我们学习过哪些几何图形呢?

  知识点回顾:

  正方形的面积= 长方形的面积= 梯形的面积= 三角形的面积= 圆的面积=

  大家想一想,我们还有哪些面积公式没有想到?扇形的面积=?

  平行四边形的面积=?

  互动环节:

  我画大家猜,怎样计算下列阴影部分的面积目的:引导学生初步掌握阴影部分面积的计算方法。

  涂色面积=长方形面积+三角形面积

  涂色部分面积=长方形面积+半圆面积×2 涂色部分面积=长方形面积+圆形面积

  涂色面积=正方形面积+半圆面积

  涂色面积=外圆面积—圆面积

  涂色面积=正方形面积—圆形面积

  涂色面积=半圆面积—三角形面积

  涂色面积=外半圆面积—半圆面积

  问题:

  一、序号为1、2、3、6的图形,它们的阴影部分面积是怎样计算?大家有没有发现什么规律!

  引导学生回答出来:涂色部分面积是几个简单图形面积的差

  二、那么序号为4、5、7的图形,它们的.阴影部分的面积又是怎样计算?

  根据题意引导学生回答:涂色部分面积是几个简单图形面积的和

  经典题型

  【例题1】:图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。

  【试一试】:

  1、边长分别为3厘米与5厘米的两个正方形拼在一起(如图)。求阴影部分的面积。

  2、求图形阴影部分面积(单位:厘米)

  【例题2】:求组合图形的面积。(单位:厘米)

  【分析与解答】:上图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。

  4÷2=2(米)

  4×4+2×2×3.14÷2=22.28(平方厘米)

  【试一试】:长方形长6厘米,宽4厘米,求阴影部分的面积。

  小学数学比较图形的面积优秀教案 9

  教学目标:

  1.在自主探索的活动中,理解计算组合图形面积的多种方法。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

  教学难点:

  理解分解图形时简单图形的差。

  教具学具:

  多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

  教学方法:

  先学后教,当堂训练

  教学过程:

  教师指导与教学过程学生学习活动过程设计意图

  一、在拼图活动中认识组合图

  1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

  2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

  1、教师出示图形

  学生拿出课前准备的图形,进行拼图操作活动。

  学生拼出各种各样的.图形,选出贴在黑板上。

  指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

  学生观察老师出示的图形,这幅图形象一张客厅的平面图。

  学生讨论怎样算买多少平方米的地板?

  通过这一操作活动,使学生从中体会到组合图形的组成特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

  请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

  2、提出问题

  你们知道应该买多少平方米的地板吗?

  只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

  3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

  学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

  学生介绍自己探索中采用的分割方法。

  学生分别按照黑板上的方法计算主客厅的地板的面积。

  学生发独立观察图并且解决问题,然后,集体汇报、订正。

  面积的基本方法。从中体会到组合图形的特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

  从中体会到组合图形的特点。

  板书设计:

  五、图形的面积

  1.组合图形面积

  2.成长的脚印

  小学数学比较图形的面积优秀教案 10

  我说课的内容是《组合图形面积》。下面我和大家汇报一下我的设想,我从教材、教法学法、教学流程、板书设计、学习评价这几个方面来谈一谈。

  一、说教材

  1、教材分析

  《组合图形面积》是义务教育课程标准实验教科书北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。学情分析:

  根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探究、合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:

  2、教学目标

  (1)在自主探索的活动中,理解计算组合图形的多种方法。

  (2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。

  3、教学重、难点

  针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。教学难点则是:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  二、说教法、学法

  1、说教法(1)多媒体教学法

  在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是分割图形的几种方法通过课件的演示,学生一目了然,直观形象,印象深刻,从而使计算方法水到渠成,更好的突出了教学重点、突破了教学难点。

  (2)自主探究和合作交流教学法

  动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

  2、说学法

  (1)自主观察思考

  学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。(2)小组合作学习

  小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。(3)学习归纳

  改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。

  三、教学流程

  为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:

  (一)、创设情境、复习导入

  (二)、自主探索、合作交流

  (三)、综合实践、学以致用

  (四)、总结收获、小结全课

  (一)创设情境,复习导入 1、猜一猜:

  让学生猜测老师给大家带来的是哪些平面图形。根据已有的知识经验,学生会很快回答出来。(以前学过的正方形、长方形、平行四边形、三角形、梯形)2、说一说:

  说出上面各种图形的'面积计算方法(并适时出示多媒体)

  3、拼一拼

  同桌合作利用事先准备好的七巧板,任用其中的若干个,拼成一个你们喜欢的图案,最先完成的还可以把你们的作品拿到前面来向同学们展示。(实物投影展示或是贴在黑板上)

  4、看一看

  请同学说说看你拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的(这一环节设计的目的是 让学生在猜一猜,说一说,拼一拼,看一看,的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关.由此揭示课题:组合图形面积(板书)

  (二)自主探究、合作交流

  1、学生独立与小组合作交流解决组合图形面积计算问题。

  由两幅新房图片提取出来的组合图形印成练习题单下发到各个小组,设计让学生合作交流解决 “小华家要买多少平方米的地板”这一生活问题.在这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验.)

  2、小组汇报学习情况

  汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:

  (1)将组合图形分割成两个长方形

  (2)将组合图形分割成两个梯形

  (3)将组合图形分割成两个长方形和一个正方形

  (4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。(学生边汇报,教师利用多媒体演示后随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。)

  3、师生总结分割法填补法。

  接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法.让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。)

  (三)综合实践、学以致用

  为了巩固新知,我设计了不同层次的练习,使不同层次的学生都有提高。前面情景导入时几个生活中的数学问题解决了一个,剩下的我放在练习里。(这一环节的教学,我注重对学生自信心的培养,让不同的学生都有不同层次的提高,让他们充分体验到成功的快乐,从而信心百倍,勇于向困难发出挑战。同时我还注重对学生学习兴趣的培养和思维能力的培养。)

  数学与人类的生活息息相关,它来源于生活,又应用于生活。因此在这一环节中我又设计了课内延伸环节.

  (四)总结收获、小结全课

  学习这节数学课,你有什么收获,或者有什么心得?

  (学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。)

  四、板书设计

  组合图形面积及计算

  1、组合图形

  2、分割法

  3、添补法

  (板书设计简洁,重点难点突出,一目了然。)

  五、学习评价

  把师评、互评、自评相结合。注重对学生动手能力、语言表达能力,学习热情的评价,充分发挥了评价的激励作用。

【小学数学比较图形的面积优秀教案】相关文章:

小学数学《组合图形面积》优秀教案08-26

小学数学《组合图形面积》优秀教案2篇01-19

数学组合图形的面积教案02-11

大班数学比较面积教案04-01

大班数学教案比较面积04-01

《比较面积》大班数学教案01-23

樊翠萍 《比较图形的面积》教学反思11-26

《组合图形的面积》教案01-26

组合图形的面积(教案)12-17

数学组合图形的面积教案(精选20篇)09-18