(精)初中数学教案15篇
作为一名老师,通常会被要求编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。我们应该怎么写教案呢?以下是小编为大家收集的初中数学教案,仅供参考,大家一起来看看吧。
初中数学教案1
今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!
教学设计示例一——公式
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的'具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例二——公式
一、教学目标
(一)知识教学点
1.使学生能利用公式解决简单的实际问题.
2.使学生理解公式与代数式的关系.
(二)能力训练点
1.利用数学公式解决实际问题的能力.
2.利用已知的公式推导新公式的能力.
(三)德育渗透点
数学来源于生产实践,又反过来服务于生产实践.
(四)美育渗透点
数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.
二、学法引导
1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点
2.学生学法:观察分析推导计算
三、重点、难点、疑点及解决办法
1.重点:利用旧公式推导出新的图形的计算公式.
2.难点:同重点.
3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七、教学步骤
(一)创设情景,复习引入
师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.
在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.
板书:公式
师:小学里学过哪些面积公式?
板书:S=ah
(出示投影1)。解释三角形,梯形面积公式
【教法说明】让学生感知用割补法求图形的面积。
(二)探索求知,讲授新课
师:下面利用面积公式进行有关计算
(出示投影2)
例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?
2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)
学生口述解题过程,教师予以指正并指出,强调解题的规范性.
【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.
(出示投影3)
例2如图是一个环形,外圆半径,内圆半径求这个环形的面积
学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.
评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.
2.本题实际上是由圆的面积公式推导出环形面积公式.
3.进一步强调解题的规范性
教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.
测试反馈,巩固练习
(出示投影4)
1.计算底,高的三角形面积
2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t
3.已知圆的半径,,求圆的周长C和面积S
4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
(1)求A地到B地所用的时间公式。
(2)若千米/时,千米/时,求从A地到B地所用的时间。
学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.
【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.
师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.
八、随堂练习
(一)填空
1.圆的半径为R,它的面积________,周长_____________
2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________
3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________
(二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?
九、布置作业
(一)必做题课本第xx页x、x、x第xx页x组x
(二)选做题课本第xx页xx组x
初中数学教案2
教学目标
1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。
2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。
3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。
教学重点
度、分、秒间单位互化及角的和、差、倍、分计算。
知识难点
度、分、秒间单位互化及角的和、差、倍、分计算。
教学准备
量角器、三角尺。
教学过程
(师生活动)设计理念
复习
任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。
探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的`方位。
让学生回忆学过的描述方法,师生共同探讨解决问题的办法。
不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。
方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。
初中数学教案3
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的`解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?
同学们动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
这正是我们本章要解决的问题。
三、巩固练习
1、教科书第3页练习1、2。
2、补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x(x=3,x=-4)
(2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6。1第1、3题。
解一元一次方程
1、方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1、重点:方程的两种变形。
2、难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
初中数学教案4
【学习目标】
1.了解圆周角的概念.
2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.
4.熟练掌握圆周角的定理及其推理的灵活运用.
设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题
【学习过程】
一、 温故知新:
(学生活动)同学们口答下面两个问题.
1.什么叫圆心角?
2.圆心角、弦、弧之间有什么内在联系呢?
二、 自主学习:
自学教材P90---P93,思考下列问题:
1、 什么叫圆周角?圆周角的两个特征: 。
2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.
(1)一个弧上所对的圆周角的个数有多少个?
(2).同弧所对的圆周角的度数是否发生变化?
(3).同弧上的圆周角与圆心角有什么关系?
3、默写圆周角定理及推论并证明。
4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?
5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?
三、 典型例题:
例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,ACB的平分线交⊙O于D,求BC、AD、BD的.长。
例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
四、 巩固练习:
1、(教材P93练习1)
解:
2、(教材P93练习2)
3、(教材P93练习3)
证明:
4、(教材P95习题24.1第9题)
五、 总结反思:
【达标检测】
1.如图1,A、B、C三点在⊙O上,AOC=100,则ABC等于( ).
A.140 B.110 C.120 D.130
(1) (2) (3)
2.如图2,1、2、3、4的大小关系是( )
A.3 B.32
C.2 D.2
3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则BCD等于( )
A.100 B.110 C.120 D.130
4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.
5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则2=_______.
(4) (5)
6.(中考题)如图5, 于 ,若 ,则
7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.
【拓展创新】
1.如图,已知AB=AC,APC=60
(1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.
3、教材P95习题24.1第12、13题。
【布置作业】教材P95习题24.1第10、11题。
初中数学教案5
湖北省咸宁市咸安区实验中学 章福枝
一、内容与内容解析(一)内容
一元一次不等式组的概念及解法
(二)内容解析
上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的'教学重点:一元一次不等式组的解法.
二、目标及目标解析(一)目标
(1)理解一元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析
达到目标(1)的标志是:学生能说出一元一次不等式组的特征.
达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.
三、教学问题诊断分析 通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.
四、教学过程设计
(一)提出问题 形成概念
问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么? 设问(1):依据题意,你能得出几个不等关系? 设问(2):设抽完污水所用的时间还是范围?
小组讨论,交流意见,再独立设未知数,列出所用的不等关系. 教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围. 教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成. 教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评 教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.
设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义.
(二)解法探讨 步骤归纳 例1 解下列不等式组
学生尝试独立解不等式组,老师强调规范格式
设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?
学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集.
设计意图:初步感受解一元一次不等式组的方法和步骤.
(三)应用提高 深化认知
例2 x取那些整数值时,不等式5x+2>3(x-1)与
都成立?
设问1:不等式都成立表示什么意思? 小组讨论
设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?
学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.
(四)归纳总结 反思提高
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?(2)解一元一次不等式组的一般步骤?
(3)一元一次不等式组解集的一般规律是什么?
设计意图:通过问题归纳总结本节课所学的主要内容.
(五)布置作业 课外反馈 教科书习题9.3第1,2,3题
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
初中数学教案6
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思
师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。
方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。
师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。
学生先独立思考每个问题再分组讨论。
关注:
(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180的和是540。
方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。
方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。
师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考:
(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。
发现3:一个n边形从一个顶点引出的对角线分三角形的'个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260,它是几边形?
(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变
学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
初中数学教案7
【教学目标】
1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。
2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。
3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。
【教学重点与教学难点】
1、重点:多边形的内角和公式。
2、难点:多边形内角和的推导。
3、关键:。多边形"分割"为三角形。
【教具准备】
三角板、卡纸
【教学过程】
一、创设情景,揭示问题
1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的'所有角相加等于多少度?一个学生马上能回答,你们能吗?
2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?
你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力
二、探索研究学会新知
1、回顾旧知,引出问题:
(1)三角形的内角和等于_________。外角和等于____________
(2)长方形的内角和等于_____,正方形的内角和等于__________。
2、探索四边形的内角和:
(1)学生思考,同学讨论交流。
(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。
(3)引导学生用"分割法"探索四边形的内角和:
方法一:连接一条对角线,分成2个三角形:
180°+180°=360°
从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。
180°×4-360°=360°
3、探索多边形内角和的问题,提出阶梯式的问题:
你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)
你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:
n边形3456.。.n分成三角形的个数1234.。.n—2内角和。.。.
4、及时运用,掌握新知:
(1)一个八边形的内角和是_____________度
(2)一个多边形的内角和是720度,这个多边形是_____边形
(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________
通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。
三、点例透析
运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?
四、应用训练强化理解
4、第83页练习1和2多边形内角和定理的应用
五、知识回放
课堂小结提问方式:本节课我们学习了什么?
1、多边形内角和公式。
2、多边形内角和计算是通过转化为三角形。
六、作业练习
1、书面作业:
2、课外练习:
初中数学教案8
教学目标
(1)认知目标
理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,能解决一些与分式乘除有关的实际问题。
(2)技能目标
经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对从特殊到一般数学的思想认识。
(3)情感态度与价值观
教学中让学生在主动探究,合作交流中渗透类比转化的思想,使学生在学知识的同时感受探索的乐趣和成功的体验。
教学重难点
重点:运用分式的乘除法法则进行运算。
难点:分子、分母为多项式的分式乘除运算。
教学过程
(一)提出问题,引入课题
俗话说:“好的开端是成功的一半”同样,好的引入能激发学生兴趣和求知欲。因此我用实际出发提出现实生活中的问题:
问题1:求容积的高是,(引出分式乘法的学习需要)。
问题2:求大拖拉机的工作效率是小拖拉机的.工作效率的倍,(引出分式除法的学习需要)。
从实际出发,引出分式的乘除的实在存在意义,让学生感知学习分式的乘法和除法的实际需要,从而激发学生兴趣和求知欲。
(二)类比联想,探究新知
从学生熟悉的分数的乘除法出发,引发学生的学习兴趣。
解后总结概括:
(1)式是什么运算?依据是什么?
(2)式又是什么运算?依据是什么?能说出具体内容吗?(如果有困难教师应给于引导,学生应该能说出依据的是:分数的乘法和除法法则)教师加以肯定,并指出与分数的乘除法法则类似,引导学生类比分数的乘除法则,猜想出分式的乘除法则。
(分式的乘除法法则)
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(三)例题分析,应用新知
师生活动:教师参与并指导,学生独立思考,并尝试完成例题。
P11的例1,在例题分析过程中,为了突出重点,应多次回顾分式的乘除法法则,使学生耳熟能详。P11例2是分子、分母为多单项式的分式乘除法则的运用,为了突破本节课的难点我采取板演的形式,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法。
(四)练习巩固,培养能力
P13练习第2题的(1)、(3)、(4)与第3题的(2)。
师生活动:教师出示问题,学生独立思考解答,并让学生板演或投影展示学生的解题过程。
通过这一环节,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步熟练解题的思路,也遵循了巩固与发展相结合的原则。让学生板演,一是为了暴露问题,二是为了规范解题格式和结果。
(五)课堂小结,回扣目标
引导学生自主进行课堂小结:
1、本节课我们学习了哪些知识?
2、在知识应用过程中需要注意什么?
3、你有什么收获呢?
师生活动:学生反思,提出疑问,集体交流。
(六)布置作业
教科书习题6.2第1、2(必做)练习册P(选做),我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。
板书设计
在本节课中我将采用提纲式的板书设计,因为提纲式—条理清楚、从属关系分明,给人以清晰完整的印象,便于学生对教材内容和知识体系的理解和记忆。
初中数学教案9
教学目标:
1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.
2.理解对顶角相等,并能运用它解决一些问题.
重点:
邻补角、对顶角的概念,对顶角的性质与应用.
难点:
理解对顶角相等的性质的探索.
教学过程:
一、创设情境,引入新课
引导语:
我们生活的世界中,蕴涵着大量的相交线和平行线.
本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.
二、尝试活动,探索新知
教师出示一块布片和一把剪刀,表演剪刀剪布的过程.
教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?
学生观察、思考、回答,得出:
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的.角也相应变大.
教师提问:我们可以把剪刀抽象成什么简单的图形?
学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.
教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)
学生根据观察和度量完成下表:
两条直线相交、所形成的角、分类、位置关系、数量关系
教师提问:
如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?
学生思考回答:
只会改变数量关系而不会改变位置关系.
师生共同定义邻补角、对顶角:
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.
教师提问:
你同意下列说法吗?如果错误,如何订正?
1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.
2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.
3.邻补角是互补的两个角,互补的两个角也是邻补角.
学生思考回答:1、2是对的,3是错的.
第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.
教师让学生说一说在学习对顶角的概念后,通过实际操作获得的直观体验.
教师把说理过程规范地板书:
在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角的性质:
对顶角相等.
强调对顶角的概念与对顶角的性质不能混淆:
对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
三、例题讲解
【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、巩固练习
1.判断下列图中是否存在对顶角.
2.按要求完成下列各题.
(1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.
eq o(sup7(,图(1)) ,图(2))
(2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?
【答案】
1.都不存在对顶角.
2.(1)对顶角,邻补角.
对顶角:∠AOC和∠BOD,∠AOD和∠BOC.
邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、课堂小结
教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.
教学反思
通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。
初中数学教案10
【教学目标】
1进一步认识方程及其解的概念。
2理解一元一次方程的概念,会根据简单数量关系列一元一次方程。 3体验用尝试、检验解一元一次方程的思想与方法。
【教学重点】
一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。
【教学难点】
用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。
【学习准备】
1.下面哪些式子是方程?
(1)3
(2)1;
(2)x31;
(3)3x5;
(4)2xy4;
(5)x31;
(6)3x14.
2.方程与等式有什么联系与区别?
方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。
【课本导学】
思考一阅读并解答课本第114页“合作学习”的三个问题,思考:
1.列方程就是根据问题中的相等关系,写出含有未知数的等式。
(1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?
(2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加
(3)张明投进x个,那么“小杰投进的`球的个数”可以怎样表示?“3人一共投进的球数”怎样表示?
你是怎么理解“三人平均每人投进14个球”这句话的?
思考二观察你所列的方程,这些方程之间有哪些共同的特点?请思考:
1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。
2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这个名称中“元”和“次”的含义吗?[练习]完成课本第115页课内练习
1.『归纳』判断一个方程是不是一元一次方程应抓住哪几个关键特点?
思考三阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:
1.(1)如果一个数是方程有什么关系?
(2)如果一个数是方程350应该是多少?
(3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?2.对方程2x12
14的解,这个数代入方程的左边计算得到的值与14 3 1
x500的解,这个数代入方程的左边计算得到的值10 2x12
14进行尝试求解时,你认为x必须是整数吗
x可以取21吗20呢?x可以取10或者比10还小的值吗?为什么?说说你的想法。
[练习]完成课本第115页课内练习
2.『归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?
2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些?【盘点收获】
【学习检测】
1.下列说法正确的是()
(a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程
2.下列式子中,属于一元一次方程的是()(a)5x 1
(b)ab8(c)1257(d)5x82x9 3
3.设某数为x,根据下列条件列出求该数的方程:
(1)某数加上1,再乘以2,得6.
(2)某数与7的和的2倍等于10.
(3)某数的5倍比某数小3.
4.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?
设还需租用x辆,则可列出方程44x+64=328.
(1)写出一个方程,使它的解是
2.【作业布置】略
【课后反思】
课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:
1.忽略课堂“火花”,错失追问良机
在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】
师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢?生8:还有黑板上的所有等式都是一元一次方程.
师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?
不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲什
初中数学教案11
教材分析
《垂线》选自义务教育课程标准实验教科书《数学》(华东师大版)七年级上册第四章相交线。垂线是平面几何所要研究的基本内容之一,是七年级上册第四章“图形的初步认识”的主要内容。垂线的概念、画法和性质是重要的基础知识,是进一步学习空间里的垂直关系、三角形的高、切线的性质和判定以及平面直角坐标系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用。垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一。它作为学习几何的基础内容,对以后学生利用准确合理的构造画出垂线来分析几何关系、解决几何综合问题及相关实际问题具有重要意义。
实验教材将本节内容分两课时,与九年义务教育教材相比,虽然缩短了一课时,但更注重对学生实际操作能力的培养,更注重渗透变换的思想。“做一做”这种探究性活动,为培养学生的参与意识和创新意识提供了机会。垂线的画法是学生学习本节内容的一个难点。结合学生所学的知识及生活实际,有效地引导学生认知和感受知识的发生发展过程;精心设计投影片和变式训练,并恰到好处地利用运动变化,体现画垂线的思维过程,在掌握垂线概念的基础上,使学生顺利自然地突破画垂线的难点。
学生分析
我校属农村城镇中学,学生全部享受九年义务教育,实行电脑随机分班,未进行筛选。学生智力水平参差不齐,基础和发展均不平衡。经过一学期的实践,学生基本上适应了以学习小组方式参与探究活动与班级学习方式相结合的学习方法,不同程度地享受到了数学知识来源于实践操作的成功体验,从而愿意在教师的指导下主动与同学探索、发现、归纳数学知识。
设计理念
针对教材内容和学生实际,组织学生实践、感悟出两直线互相垂直的概念,引导学生分析解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识发现抽象的概念,使学生成为探求知识的主体。同时利用问题探究式的方法让学生对新课加以巩固理解。在探究垂线的性质时,采取小组学习形式,可增强学生之间的合作互助,弥补教师在大班额教学中对弱势学生关注的不足。初步探索在农村中学中如何进行研究性学习。
教学自标
1.了解两条直线互相垂直的概念;知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
2.培养提高观察、理解能力,几何语言能力,画图能力,抽象思维能力和运用知识解决实际问题的能力。
3.培养辩证唯物主义思想及不断发现、探索新知识的精神。
4.通过创设情境,利用变式训练和多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的氛围。
教学重点:
两直线互相垂直的有关性质。
教学难点:
过直线上(外)一点作已知直线的垂线。
【学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要成和各种教学原则,以及本节的教材内容与学生的实际确定的。】
课前准备
课前准备教具:多媒体、投影仪、自制的可旋转的两根木条等。
生活经验准备:旗杆与旗台边线线的垂直关系;红十字会标志。
以往知识准备:两条直线相交,产生两对对顶角,且对顶角相等。
教学流程
一、创设问题情境。
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图哪一幅更漂亮、更匀称?这是什么原因?(教师用多媒体或投影仪展示。)
(学生众说纷纭,教师应给予充分的肯定。)
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。
生:……
师:让我们共同探索图甲这种特殊情况。
【借助于教具、模型、实物、图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认知方式。】
二、回顾再现。
对顶角相等两条直线相交只有一个交点。如图1,直线AB和CD相交,交点为点O,有四个小于平角的角,且。
三、提高。
教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转时的变化情况,并用数学语言进行描述。
【教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。】
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其他三个角有什么变化?可能产生四个相等的角吗?如图2,同时演示教具,将直线CD绕着点O旋转,当时,是多少度?
生:……
师:你们的依据是什么?
生:……
(学生的答案很丰富:用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励。)
【这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。】
四、提升。
教师引导学生归纳出:两条直线互相垂直,两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:(1)如图2,直线AB和CD相交,交点为O,,记为,垂足为点O。“ ”读作“AB垂直于CD”或“CD垂直于AB”。
(2)两条直线,垂足为点O,则。
【实现数学的三大语言??文字语言、符号语言和几何语言之间的切换,并板书,以突出其重要性。】
五、再探究。
师:请同学们举一些日常生活中互相垂直的直线的例子;
生:……
【希望实现将数学知识在实际生活中的运用,并为后继学习数学知识增加感性认知。】
师:请同学们用三角尺或量角器:
(1)经过直线 AB 外一点 P ,画直线与已知直线 AB 垂直,且讨论这样的直线有几条。
(2)设这一点在直线 AB 上,重作上述过程。
【学生分组或独立探索,教师巡视指导。】
教师引导学生归纳结论:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
【通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的.错误,训练学生以严谨的科学态度研究问题、解决问题。】
师:请同学们互相交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义。
(学生讨论交流,教师巡视)
教师引导归纳出:
(1)靠已知直线??找待过定点??画已知直线的垂线(一靠、二过、三垂直)。
(2)有一条并且只有一条,没有第二条。
师:如图5,请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
【探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。】
六、学生探索。
学生分小组测量,讨论,归纳。如图6所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?(抽小组代表发言。)
七、总结归纳。
教师总结归纳:只有线段AB最短,且当AB与DC垂直时,才最短。
教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,
提高:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。
【从生活实际.从学生感兴趣、熟悉的问题引导学生发现里线的第二个性质,提高学生学数学的兴趣,并适当体现学数学??用数学??发现教学的思想。】
八、较量(练习)。
1.第170页第1、2、3题。
2.应用。
【带有竞争性质的练习使学生在相互竞争中,在实践中应用本节课的知识,分享获取成功的喜悦,并促进学生形成积极向上的心理品质。】
(1)某村庄在如图7所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
(2)教材第170页“做一做”。
(3)体育课上怎样测量跳远成绩。
【学以致用,学生做个小小设计师.兴趣盎然,把这节课引入高潮。】
学生重温“两条直线互相垂直的概念”和“如何过已知直线上或已知直线外的一点作惟一的垂线”两个知识点。
3.第174页第1、2题。
4.学校的位置如图8所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
课后反思
1.本节课主要采用了“问题探究式”的教学方法,鼓励学生去发现、分析并解决问题,使学生在自己动手的基础上,发现垂线的性质,又借助于教具、实物、图形、幻灯等,从直观的感性认识中发现抽象的概念,使他们成为探求知识的主体,同时还利用学生较量形式让他们对学习内容加以巩固理解。并设计了变式训练习题和开放性习题,来帮助学生逐步树立转化的思想和发展性思维,这对提高学生的能力是非常重要的。学生是课堂的主人,教师从引导学生设疑??感知??概括??应用的每一个环节,注意学生的积极参与、积极思维,使学生从被动的学习到主动探索和发现的转化中感受到学习与探索的乐趣,适合七年级学生的认知心理。
2.本节课采用不同的反馈手段和反馈练习。(1)设计变式习题、图形、开放性习题。每次较量主要解决一个重点问题,同时使教师及时了解学生对数学知识的掌握情况,及时发现问题并及时矫正,扫清后续学习的障碍。(2)较量方法。如:笔答、口答、板演、快速抢答等,以增加反馈层面。通过练习较量使大多数学生的学习情况都能及时反馈给教师,使教师心中有数。(3)及时矫正。对每次较量情况进行小组评定和教师点评,对学生中的创新解答及时给予肯定。创造了轻松、愉悦的学习环境。
3.但笔者根据上述设计进行教学后,认为“点到直线的距离”放在这里,值得商榷。这是因为:(1)此部分内容与小学距离过大。在小学学习中,对于“点到直线的距离”,学生仅通过一些特殊图形有了一点感性认识,并未上升到点到线的距离的高度。(2)在本节内容教学中,让学生参与实践、体验,其难度较大。其理由是:本节教学内容量大;设计了较多的动手实践活动;作为学生课后实践探索的习题,如能充分利用学生资源(如与家长、同伴),在实际生活中交流、感悟,收效会更好。
摘自海南出版社《新课标优秀教学设计与案例》
初中数学教案12
教学目标
1.使学生正确理解的意义,掌握的三要素;
2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3.使学生初步理解数形结合的思想方法.
教学重点和难点
重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.
难点:正确理解有理数与上点的对应关系.
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生回答后,教师指出,这就是我们本节课所要学习的内容——.
二、讲授新课
让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的`长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.
进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.
三、运用举例 变式练习
例1 画一个,并在上画出表示下列各数的点:
例2 指出上A,B,C,D,E各点分别表示什么数.
课堂练习
示出来.
2.说出下面上A,B,C,D,O,M各点表示什么数?
最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.
四、小结
指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.
本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.
五、作业
1.在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点.
(2)A,H,D,E,O各点分别表示什么数?
2.在下面上,A,B,C,D各点分别表示什么数?
3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中数学教案13
一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:
一、在备课方面
在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。
二、在教学过程方面
在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的.去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。
三、工作中存在的问题
1)、教材挖掘不深入。
2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导
4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。
四、今后努力的方向
1)、加强学习,学习新教学模式下新的教学思想。
2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。
3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。
4)、加强转差培优力度。
5)、加强教学反思,加大教学投入。
一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。
初中数学教案14
一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。但每个班都有个别的学生上课不注意听讲,我行我素。
对于他们数学知识和能力掌握情况的分析:
1、对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,新生二十以内的数数非常流利和连贯,可以正数倒数。学生在这方面具有良好的知识准备的原因之一是学生受过这方面的训练,在幼儿园中大部分学生学习过十以内的加减法,同时在一些家长在家中也进行过辅导,另一方面,数数和十以内数的分解组合学生在生活中有机会使用,因此这方面的准备比较好。
2、在数的计算中,学生对于十以内数的计算较为熟练,这和学生的生活需要、学习需要有关。
3、新生在数感方面的发展是不平衡的数感——学生对数的意义理解有一定困难。通过个别访谈,了解到学生对于蕴涵在实际生活中的数的意义的理解较为准确,例如对于“你的小组中有几个小朋友,从前往后数,你是第几个,从后往前数,你是第几个,第几个小朋友是谁”这样的问题,学生的解答没有问题,都能根据实际情况作出正确的回答,但是对于图形,学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。
4、概括能力和推理能力——普遍学生关注的范围比较小,角度单一。全册教材分析
本册教材一共分为八个单元,本册教材主要是通过各种各样的活动对学生进行数感及观察能力、思维能力、口头表达能力、学习习惯、合作与交流的能力等方面的培养,让学生对数学产生浓厚的学习兴趣,同时鼓励学生用自己喜欢的方式去学习自己有用的知识,对学生进行有效地思想品德教育,初步了解一定的学习方法、思考方式。
全册教学目标
1、熟练地数出数量在20以内的物体的`个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0――20各数。
2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、认识符号“=”“<”“>”,会使用这些符号表示数的大小。
5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
6、初步了解分类的方法,会进行简单的分类。
7、初步了解钟表,会认识整时和半时。
8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9、认真作业、书写整洁的良好习惯。
10、通过实践活动体验数学与日常生活的密切联系。
全册重、难点:
教材重点:在具体的情境中能熟练的认读、写、20以内的数,能用数表示物体的个数或事物的位置与顺序;建立初步的空间观念;能按照给定的标准或选择某个标准对物体进行比较和分类。
教材难点:体会20以内加减法的意义,能熟练的口算20以内的数的加减法;初步形成空间观念;经历简单的数据收集过程,形成初步的统计观念。教学准备
画有田字格的小黑板挂图小棒圆片
多媒体课件视频展示台部分实物模型
智能培养
1、培养学生应用数学知识解决问题的能力。
2、培养学生独立思考与合作交流的能力。
3、培养学生学习数学的良好情感。
4、培养学生学习数学的兴趣和良好的学习习惯。
教学思路及措施
1.一年级学生的计算学习要和意义理解与思维训练相结合。在小学数学课堂教学中要重视计算策略的优化和算理的渗透,同时在计算教学过程中要渗透思维的训练。
2.数学教学中加强学生的生活经验的积累和对学习对象的直接感知。学生的生活经验和已有的知识能力对学生解决问题有着很大的帮助,甚至很多学生都是建立在生活经验的基础上进行学习的。因此,一年级的数学教学应该加强学生的实际感知,丰富学生的生活经验,让学生在现实情景中把握数的意义和运算的意义,发展数感和符号感。扩大学生的信息贮备,提供有利于学生理解数学、探究数学的生活情景,给学生机会在实际情景中感知、操作、认识数学知识,理解数学,学习数学。
3.空间观念的培养要把握好度,在具体和抽象的空间观念的建立,在低段
要紧密和学生的动手操作相联系,可以通过观察、接触(摸、折、剪、拼等)等各种手段来让学生认识几何形体,建立空间观念。同时,要将生活材料数学化,在具体、半抽象、抽象之间建立一座桥梁,发展学生的空间想象能力。
4.在教学中要逐步渗透重要的数学概念和数学思想方法。数学思想方法已经作为数学知识的一部分,教师在教学中要逐步随着数学知识的学习进行渗透。例如一年级教材中有很多地方可以渗透一一对应思想、函数思想、符号化思想的,要在平时的教学中加以落实。
初中数学教案15
一、课题
27.3 过三点的圆
二、教学目标
1.经历过一点、两点和不在同一直线上的三点作圆的过程.
2.. 知道过不在同一条直线上的三个点画圆的方法
3.了解三角形的外接圆和外心.
三、教学重点和难点
重点:经历过一点、两点和不在同一直线上的三点作圆的过程.
难点:知道过不在同一条直线上的三个点画圆的方法.
四、教学手段
现代课堂教学手段
五、教学方法
学生自己探索
六、教学过程设计
(一)、新授
1.过已知一个点A画圆,并考虑这样的圆有多少个?
2.过已知两个点A、B画圆,并考虑这样的圆有多少个?
3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?
让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.
得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的.圆只有一个.
不在同一直线上的三个点确定一个圆.
给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.
例:画已知三角形的外接圆.
让学生探索课本第15页习题1.
一起探究
八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?
分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.
(二)、小结
七、练习设计
P15习题2、3
八、教学后记
后备练习:
1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .
2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()
A.在AC,BC两边高线的交点处
B.在AC,BC两边中线的交点处
C.在AC,BC两边垂直平分线的交点处
D.在A,B两内角平分线的交点处
【初中数学教案】相关文章:
初中数学教案02-21
初中数学教案08-12
初中数学教案[经典]02-21
角初中数学教案12-30
初中数学教案模板11-02
人教版初中数学教案07-17
初中数学教案【推荐】11-22
【荐】初中数学教案11-26
初中数学教案【精】11-19
初中数学教案【热】11-17