初中数学公开课教案

时间:2023-02-19 11:40:42 初中数学教案 我要投稿

初中数学公开课教案(7篇)

  作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?下面是小编精心整理的初中数学公开课教案,希望能够帮助到大家。

初中数学公开课教案(7篇)

初中数学公开课教案1

  教学目的

  1、通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2、使学生会列一元一次方程解决一些简单的应用题。

  3、会判断一个数是不是某个方程的解。

  重点、难点

  1、重点:会列一元一次方程解决一些简单的应用题。

  2、难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授

  问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得44x+64=328

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的'“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2。

  四、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业

  教科书第3页,习题6.1第1、3题。

初中数学公开课教案2

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的`讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:(1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:练习册第93页1、2、3

  八、教学反思:

  1、教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

  2、学的转变

  学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

  3、课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学公开课教案3

  问题描述:

  初中数学教学案例

  初中的,随便那个年级。20xx字。案例和反思

  1个回答 分类:数学 20xx-11-30

  问题解答:

  我来补答

  2.3 平行线的性质

  一、教材分析:

  本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

  二、教学目标:

  知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  解决问题:通过探究平行线的'性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。

  三、教学重、难点:

  重点:平行线的性质

  难点:“性质1”的探究过程

  四、教学方法:

  “引导发现法”与“动像探索法”

  五、教具、学具:

  教具:多媒体课件

  学具:三角板、量角器。

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思:

  1.播放一组幻灯片。内容:①火车行驶在铁轨上;②游泳池;③横格纸。

  2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  学生活动:

  思考回答。①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

  教师:首先肯定学生的回答,然后提出问题。

  问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

  引出课题——平行线的性质。

  (二)数形结合,探究性质

  1.画图探究,归纳猜想

  任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。

  问题一:指出图中的同位角,并度量这些角,把结果填入下表:

  第一组

  第二组

  第三组

  第四组

  同位角

  ∠1

  ∠5

  角的度数

  数量关系

  学生活动:画图——度量——填表——猜想

  结论:两直线平行,同位角相等。

  问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

  学生:探究、讨论,最后得出结论:仍然成立。

  2.教师用《几何画板》课件验证猜想

  3.性质1.两条直线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  (三)引申思考,培养创新

  问题三:请判断内错角、同旁内角各有什么关系?

  学生活动:独立探究——小组讨论——成果展示。

  教师活动:引导学生说理。

  因为a‖b 因为a‖b

  所以∠1=∠2 所以∠1=∠2

  又 ∠1=∠3 又 ∠1+∠4=180°

  所以∠2=∠3 所以∠2+∠4=180°

  语言叙述:

  性质2 两条直线被第三条直线所截,内错角相等。

  (两直线平行,内错角相等)

  性质3 两条直线被第三条直线所截,同旁内角互补。

  (两直线平行,同旁内角互补)

  (四)实际应用,优势互补

  1、(抢答)

  (1)如图,平行线AB、CD被直线AE所截

  ①若∠1 = 110°,则∠2 = °。理由:。

  ②若∠1 = 110°,则∠3 = °。理由:。

  ③若∠1 = 110°,则∠4 = °。理由:。

  (2)如图,由AB‖CD,可得( )

  (A)∠1=∠2 (B)∠2=∠3

  (C)∠1=∠4 (D)∠3=∠4

  (3)如图,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=( )

  (A) 180°(B)270° (C)360° (D)540°

  (4)谁问谁答:如图,直线a‖b,

  如:∠1=54°时,∠2= 。

  学生提问,并找出回答问题的同学。

  2、(讨论解答)

  如图是一块梯形铁片的残余部分,量得∠A=100°,

  ∠B=115°,求梯形另外两角分别是多少度?

  (五)概括存储(小结)

  1.平行线的性质1、2、3;

  2.用“运动”的观点观察数学问题;

  3.用数形结合的方法来解决问题。

  (六)作业 第69页 2、4、7.

  八、教学反思:

  ①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣。

  ②学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境。

  ③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学公开课教案4

  教学目标:

  1、会用待定系数法求反比例函数的解析式。

  2、通过实例进一步加深对反比例函数的认识,能结合具体情境,体会反比例函数的意义,理解比例系数的具体的意义。

  3、会通过已知自变量的值求相应的反比例函数的值。运用已知反比例函数的值求相应自变量的值解决一些简单的问题。

  重点:用待定系数法求反比例函数的解析式。

  难点:例3要用科学知识,又要用不等式的知识,学生不易理解。

  教学过程:

  一。复习

  1、反比例函数的定义:

  判断下列说法是否正确(对‖√‖,错‖3‖)

  (1)一矩形的面积为20cm2,相邻的两条边长分别为x(cm)和y(cm),变量y是变量x的反比例函数。(2)圆的面积公式s??r2中,s与r成正比例。(3)矩形的长为a,宽为b,周长为C,当C为常量时,a是b的反比例函数。方形的边长为x,高为y,当其体积V为常量时,y是x的反比例函数。(4)一个正四棱柱的底面正

  定时,商和除数成反比例。(5)当被除数(不为零)一

  (6)计划修建铁路1200km,则铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数。

  2、思考:如何确定反比例函数的解析式?

  (1)已知y是x的反比例函数,比例系数是3,则函数解析式是_______

  (2)当m为何值时,函数4是反比例函数,并求出其函数解析式.y?2m?2关键是确定比例系数!x

  二。新课

  1、例2:已知变量y与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式和自变量的取值范围。小结:要确定一个反比例函数y?k的解析式,只需求出比例系数k。如果已知一对自变量与函数的对应值,x

  3时,y=2,求这个函数的解析式和自变量的取值范围。4就可以先求出比例系数,然后写出所要求的反比例函数。2.练习:已知y是关于x的反比例函数,当x=?

  3、说一说它们的求法:

  (1)已知变量y与x-5成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

  (2)已知变量y-1与x成反比例,且当x=2时y=9,写出y与x之间的函数解析式。

  4、例3、设汽车前灯电路上的电压保持不变,选用灯泡的电阻为R(Ω),通过电流的强度为I(A)。

  (1)已知一个汽车前灯的电阻为30Ω,通过的电流为0.40A,求I关于R的函数解析式,并说明比例系数的.实际意义。

  (2)如果接上新灯泡的电阻大于30Ω,那么与原来的相比,汽车前灯的亮度将发生什么变化?

  在例3的教学中可作如下启发:

  (1)电流、电阻、电压之间有何关系?

  (2)在电压U保持不变的前提下,电流强度I与电阻R成哪种函数关系?

  (3)前灯的亮度取决于哪个变量的大小?如何决定?

  先让学生尝试练习,后师生一起点评。

  三。巩固练习:

  1、当质量一定时,二氧化碳的体积V与密度p成反比例。且V=5m3时,p=1.98kg/m3

  (1)求p与V的函数关系式,并指出自变量的取值范围。

  (2)求V=9m3时,二氧化碳的密度。

  四。拓展:

  1、已知y与z成正比例,z与x成反比例,当x=-4时,z=3,y=-4.求:

  (1)Y关于x的函数解析式;

  (2)当z=-1时,x,y的值。

  2、已知y?y1?y2,y1与x成正例,y2与x成反比例,并且x?2与x?3时,y的

  值都等于10,求y与x之间的函数关系。

  五。交流反思

  求反比例函数的解析式一般有两种情形:一种是在已知条件中明确告知变量之间成反比例函数关系,如例2;另一种是变量之间的关系由已学的数量关系直接给出,如例3中的I?

  六。布置作业:P4B组

初中数学公开课教案5

  教学目标:

  会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

  重点难点:

  重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

  难点:会运用二次函数知识解决有关综合问题。

  教学过程:

  一、例题精析,强化练习,剖析知识点

  用待定系数法确定二次函数解析式.

  例:根据下列条件,求出二次函数的解析式。

  (1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

  (2)抛物线顶点P(-1,-8),且过点A(0,-6)。

  (3)已知二次函数y=ax2+bx+c的.图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

  (4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

  学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

  教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

  (2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

  当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

  当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

  当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

  强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

  (1)若m为定值,求此二次函数的解析式;

  (2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

  二、知识点串联,综合应用

  例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交

初中数学公开课教案6

  公开课教案

  授课时间: 20xx.11.17早上第二节 授课班级:初三、1班 授课教师:

  教学内容: 7.7 直线和圆的位置关系

  教学目标:

  知识与技能目标:1、理解直线和圆相交、相切、相离的概念。

  2. 初步掌握直线和圆的位置关系的`性质和判定及其灵活的应用。

  过程与方法目标:1.通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思

  想,培养学生观察、分析、概括、知识迁移的能力;

  2. 通过例题教学,培养学生灵活运用知识的解决能力。

  情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

  [1][2][3][4][5][6][7][8][9][10] ... 下一页 >>

初中数学公开课教案7

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:20xx年河南中考选择题16题.20xx年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“20xx一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的`考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

  一、教材分析

  A、教材的地位与作用:①本节教材是初三代数第十四章统计初步第二节,它是上节平均数的延续。平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。本节教学使学生进一步体会用样本估计总体的统计思想方法,形成运用数学知识解决简单应用问题的能力。学好本节课,也将为本章后继内容的学习打下良好的基础。②本节内容在中考命题中也占有重要地位,如:20xx年河南中考选择题16题.20xx年河南中考选择题19题,1997年河南中考选择题3题,1996年河南中考填空题9题。“20xx一高英才杯” 选择题3题。

  B.教学目标

  1、知识目标:

  ①使学生理解众数与中位数的意义。

  ②会求一组数据的众数和中位数。

  2、能力目标:培养学生的观察能力、计算能力。

  3、德育目标:

  ①培养学生认真、耐心、细致的学习态度和学习习惯。

  ②渗透数学知识来源于生活,反过来又服务于生活的思想。

  C、重点·难点·疑点

  1.教学重点:定义的理解及求一组数据的众数与中位数。

  2.教学难点:

  ①平均数、众数、中位数这三数之间的区别与联系。

  ②偶数个数据的中位数的求法。

  3.教学疑点:学生容易把一组数据中出现次数最多的数据的次数当做众数。

  二、教法设计

  问题情景教学法

  三、教学过程

  【引导回顾 搭建桥梁】

  ①怎样求一组数据的平均数?

  ②平均数与一组数据中的每个数据均有关系吗?

  这节课,我们将进一步学习另两个反映一组数据的集中趋势的特征数——众数和中位数。

  14.2众数与中位数(课件)

  【创设情境 探究新知】

  问题情景一:一家童鞋店在一段时间内销售了某种童鞋30双,其中各种尺码的鞋的销售量如下表所示:

  鞋的尺码(单位:厘米)

  18

  19

  20

  21

  21.5

  22

  22.5

  销售量(单位:双)

  1

  2

  5

  11

  7

  3

  1

  在这个问题里,如果你是鞋店老板,你最关心的是什么?

  问题情景二:某面包房,在一天内销售面包100个,各类面包销售量如下表:

  面包种类

  奶油

  巧克力

  豆沙

  香稻

  三色

  椰茸

  销售量(单位:个)

  10

  15

  25

  5

  15

  30

  在这个问题中,如果你是店主,你最关心的是什么?

  定义:在一组数据中,出现次数最多的数据叫做这组数据的众数。

  同时要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势”。

  注意:①.众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。例如:问题一中众数是(21厘米),不要把21厘米的鞋的销售量11当作所求的众数。

  ②一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数。

  例1、在一次英语口试中,20名学生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求这次英语口试中学生得分的众数.

  请用观察法找出这组数据中哪些数据出现的频数较多,从而进一步找出它的众数;也可仿照问题一画表格找出众数。强调一下这个结论反映了得80分的学生最多。

  问题情景三:在初三数学竞赛中,我班其中5名学生的成绩从低分到高分排列名次是: 55 57 61 62 98,其中哪一个数据能用来描述这组数据的集中趋势?

  观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大。这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响。

  中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  注意:1.求中位数要将一组数据按大小顺序,而不必计算,顾名思义,中位数就是位置处于最中间的一个数(或最中间的两个数的平均数),排序时,从小到大或从大到小都可以。

  2.在数据个数为奇数的情况下,中位数是这组数据中的一个数据;如情景三的中位数是61。但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等。

  例2 10名工人某天生产同一零件,生产的件数是:

  15 17 14 10 15 19 17 16 14 12

  求这一天10名工人生产的零件的中位数.

  请观察分析后,自解.

  【诱向深入 拓展思维】

  例3在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:

  成绩(单位:米)

  1.50

  1.60

  1.65

  1.70

  1.75

  1.80

  1.85

  1.90

  人数

  2

  3

  2

  3

  4

  1

  1

  1

  分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位)。

  观察表格,分析回答下列问题:①表中国共产党有多少个数据?其中哪个数据出现的次数最多?这组数据的众数是什么?说明什么?

  ②表里的17个数据可看成是按什么顺序排列的?其中第几个数是最中间的数据?这组数据的中位数是多少?说明什么?

  ③可选用哪个公式求这组数据的平均数?所求得的平均数能说明什么?这样分析例题,可使学生加深理解平均数、众数、中位数的概念之间的联系与区别,体会到这三个数在描述一组数据集中趋势时的不同角度。

  【展示应用 评价自我】

  补充练习1、已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数。

  解:∵10,10,x,8的中位数与平均数相等

  ∴ (10+x)= (10+10+x+8)

  ∴x=8, (10+x)=9

  ∴这组数据中的中位数是9。

  补充练习2、当5个整数从小到大排列,其中位数是4,如果这个数集的唯一众数是6,则这5个整数可能的最大的和是( )

  A.21 B.22 C.23 D.24

  分析:设这5个整数按从小到大排列为a1,a2,a3,a4,a5,由于中位数是4,所以a3=4,又6是唯一众数,所以a4=a5=6,此时,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:选(A)

  3、教材P159中1、2、3

  【链接知识 归纳小结】

  1.知识小结:这节课我们学习了众数、中位数的概念,了解了它们在描述一组数据集中趋势时的不同角度和适用范围。

  2.方法小结:①众数由所给数据可直接求出,(一组数据中的众数可能不止一个,众数是一组数据中出现的次数最多的数据,而不是该数据出现的次数.如果有两个数据出现的次数相同,并且比其他数据出现次数都多,那么这两个数据都是这组数据的众数)。②求中位数时,首先要先排序(从小到大或从大到小),然后计算中位数的序号,分数据为奇数个与偶数个两种来求.(既找出最中间的一个数据或最中间两个数并算出它们的平均数)。

  3.知识网络:平均数、众数及中位数都是描述一组数据的集中趋势的特征数,但描述的角度和适用范围有所不同。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关。当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响。当一组数据中的个别数据变动较大时,可用它来描述其集中趋势。

  【布置作业】教材P163A组1、2、3,B组。

  【板书设计】

  14.2 众数与中位数

  1.定义 例1 例2 例3

  众数: 练习1 练习2

  中位数

【初中数学公开课教案】相关文章:

初中数学公开课教案02-17

初中数学公开课教案7篇02-18

初中数学公开课教案(精选10篇)11-07

初中数学公开课教案(集合7篇)02-20

数学公开课教案01-09

公开课数学教案02-01

数学公开课大班教案11-01

小学数学公开课教案01-11

初中地理公开课教案02-24