初中数学《变量与函数》教案

时间:2023-12-13 18:55:10 博耿 初中数学教案 我要投稿
  • 相关推荐

初中数学《变量与函数》教案

  作为一名默默奉献的教育工作者,时常需要用到教案,教案有利于教学水平的提高,有助于教研活动的开展。快来参考教案是怎么写的吧!下面是小编帮大家整理的初中数学《变量与函数》教案,仅供参考,大家一起来看看吧。

初中数学《变量与函数》教案

  初中数学《变量与函数》教案 1

  一、教学目标

  ①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义、能分清实例中的常量与变量,了解自变量与函数的意义

  ②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力

  ③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情、在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心

  二、教学重点与难点

  重点:函数概念的形成过程

  难点:正确理解函数的概念

  三、教学准备

  每个小组一副弹簧秤和挂件,一根绳子

  四、教学设计

  (一)提出问题:

  1、汽车以60千米/时的速度匀速行驶、行驶里程为s千米,行驶时间为t小时、先填写下面的表,再试着用含t的式子表示s:

  t(小时) 1 2 3 4 5

  s(千米)

  2、已知每张电影票的售价为10元、如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

  3、要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积S的式子表示圆半径r?

  注:(1)让学生充分发表意见,然后教师进行点评

  (2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验、

  (二)动手实验

  1、在一根弹簧秤上悬挂重物,改变并记录重物的质量,

  观察并记录弹簧长度的变化,填入下表:

  悬挂重物的质量m(kg)

  弹簧长度l(cm)

  如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

  2、用10dm长的绳子围成矩形、试改变矩形的长,观察矩形的面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)、设矩形的长为xdm,面积为Sdm2,怎样用含x的式子表示S?

  注:分组进行实验活动,然后各组选派代表汇报、

  通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息

  五、探究新知

  (一)变量与常量的概念

  1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程、其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的在一个变化过程中,数值发生变化的量,我们称之为变量、也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量

  2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量

  3、举出一些变化的实例,指出其中的变量和常量

  注:分组活动、先独立思考,然后组内交流并作记录,最后各组选派代表汇报

  培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力

  (二)函数的概念

  1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

  师生分析得出:上面的每个问题和实验中的两个变量互相联系、当其中一个变量取定一个值时,另一个变量就有惟一确定的值、

  2、分组讨论教科书P、7 “观察”中的两个问题

  注:使学生加深对各种表示函数关系的表达方式的印象

  3、一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数、如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值、例如在问题1中,时间t是自变量,里程s是t的函数、t=1时,其函数值s为60,t=2时,其函数值s为120

  同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

  在人口统计表中,年份x是自变量,人口数y是x的函数、当x=1999时,函数值y=12.52

  六、巩固新知

  下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

  1、右图是北京某日温度变化图

  2、如图,已知菱形ABCD的对角线AC长为4,BD的长在变化,设BD的长为x,则菱形的面积为y= ×4×x

  3、国内平信邮资(外埠,100克内)简表:

  信件质量m/克O

  邮资y/元O、80 1.60 2.40

  注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法、

  七、总结归纳

  1、常量与变量的概念;

  2、函数的定义;

  3、函数的三种表示方式、

  注:通过总结归纳,完善学生已有的知识结构、

  八、布置作业

  1、必做题:教科书P、18习题11、1第1题、

  2、选做题:教科书P、18习题11、1第2题、

  3、备选题:

  (1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

  ①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

  ②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

  ③14、15、16日的日平均温度有什么关系?

  ④点A表示的是哪天的`日平均温度?大约是多少度?

  ⑤说说这一周的日平均温度是怎样变化的

  (2)如右图所示,梯形上底的长是x,下底的长是15,高是8、

  ①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数、

  ②用表格表示当x从10变到20时(每次增加1),y的相应值、

  ③当x每增加1时,y如何变化?说说你的理由、

  ④当x=0时,y等于多少?此时它表示的是什么?

  (3)研究表明,土豆的产量与氮肥的施用量有如下关系:

  施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

  土豆产量(吨/公顷) 15、18 21、36 25、72 32、29 34、03 39、45 43、15 43、46 40、83 30、75

  ①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数、

  ②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

  ③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由、

  ④简单说一说氮肥的施用量对土豆产量的影响、

  九、设计思想

  变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃、因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律、遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力、同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题、还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人、

  初中数学《变量与函数》教案 2

  学习目标:

  (1)理解函数的概念

  (2)会用集合与对应语言来刻画函数,

  (3)了解构成函数的要素。

  重点:

  函数概念的理解

  难点

  函数符号y=f(x)的理解

  知识梳理:

  自学课本P29—P31,填充以下空格。

  1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。

  2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

  3、因为函数的值域被 完全确定,所以确定一个函数只需要。

  4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:① ;② 。

  5、设a, b是两个实数,且a

  (1)满足不等式 的实数x的集合叫做闭区间,记作 。

  (2)满足不等式a

  (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

  分别满足x≥a,x>a,x≤a,x

  其中实数a, b表示区间的两端点。

  完成课本P33,练习A 1、2;练习B 1、2、3。

  例题解析

  题型一:函数的概念

  例1:下图中可表示函数y=f(x)的图像的只可能是( )

  练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。

  题型二:相同函数的判断问题

  例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

  ④ 与 其中表示同一函数的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  练习:已知下列四组函数,表示同一函数的是( )

  A. 和 B. 和

  C. 和 D. 和

  题型三:函数的定义域和值域问题

  例3:求函数f(x)= 的定义域

  练习:课本P33练习A组 4.

  例4:求函数 , 在0,1,2处的函数值和值域。

  当堂检测

  1、下列各组函数中,表示同一个函数的`是( A )

  A、 B、

  C、 D、

  2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、给出下列四个命题:

  ① 函数就是两个数集之间的对应关系;

  ② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

  ③ 因为 的函数值不随 的变化而变化,所以 不是函数;

  ④ 定义域和对应关系确定后,函数的值域也就确定了.

  其中正确的有( B )

  A. 1 个 B. 2 个 C. 3个 D. 4 个

  4、下列函数完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四个图形中,不能表示函数的图象的是 ( B )

  6、设 ,则 等于 ( D )

  A. B. C. 1 D.0

  7、已知函数 ,求 的值( )

【初中数学《变量与函数》教案】相关文章:

一次初中数学函数教案12-29

初中数学函数专题总结11-22

数学教案:函数与方程02-25

数学《指数与指数函数》教案02-25

初中数学《反比例函数》说课稿(精选5篇)03-23

二次函数数学教案02-07

高一数学指数函数教案09-29

高一数学对数函数教案09-28

高中数学函数的图象教案12-28