初中数学教案

时间:2023-01-05 01:06:17 初中数学教案 我要投稿

初中数学教案精选15篇

  作为一名优秀的教育工作者,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?以下是小编为大家收集的初中数学教案,欢迎大家分享。

初中数学教案精选15篇

初中数学教案1

  一、检查反馈

  本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

  特点:

  1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的'教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

  2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

  3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

  不足:

  1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

  2、个别教师教案过于简单。

  作业方面的特点与不足

  特点:

  1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

  2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

  3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

  不足:

  1、对于学生书写的工整性,还需加强教育。

  2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案2

  教学目标:

  1、理解切线的判定定理,并学会运用。

  2、知道判定切线常用的方法有两种,初步掌握方法的选择。

  教学重点:切线的判定定理和切线判定的方法。

  教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

  教学过程:

  一、复习提问

  【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

  问题2.直线和圆有几种位置关系?

  问题3.如何判定直线l是⊙O的切线?

  启发:(1)直线l和⊙O的公共点有几个?

  (2)圆心O到直线L的距离与半径的数量关系 如何?

  学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

  再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

  二、引入新课内容

  【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

  证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

  定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

  定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

  求证:直线l是⊙O的切线

  证明:略

  定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

  ∴直线l为⊙O的切线。

  是非题:

  (1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

  (2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

  三、例题讲解

  例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

  求证:直线AB是⊙O的切线。

  引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

  证明:连结OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直线AB经过半径OC的外端C

  ∴直线AB是⊙O的切线。

  练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

  练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

  求证:CD是⊙O的切线。

  例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

  求证:DE是⊙O的切线。

  思考题:在Rt△ABC中,∠B=90°,∠A的`平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

  四、小结

  1.切线的判定定理。

  2.判定一条直线是圆的切线的方法:

  ①定义:直线和圆有唯一公共点。

  ②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[

  ③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

  3.证明一条直线是圆的切线的辅助线和证法规律。

  凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

  五、布置作业:略

  《切线的判定》教后体会

  本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

  成功之处:

  一、 教材的二度设计顺应了学生的认知规律

  这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

  二、重视学生数感的培养呼应了课改的理念

  数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

  不足之处:

  一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

  二、课的引入太直截了当,脱离不了应试教学的味道。

  三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

  通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

初中数学教案3

  知识技能

  会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

  数学思考

  1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

  2.通过一元一次方程的学习,体会方程模型思想和化归思想。

  解决问题

  能在具体情境中从数学角度和方法解决问题,发展应用意识。

  经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

  情感态度

  经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

  教学重点

  建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

  教学难点

  分析实际问题中的相等关系,列出方程。

  教学过程

  活动一 知识回顾

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

  教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

  出示问题(幻灯片)。

  学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

  教师提问:(略)

  教师追问:变形的依据是什么?

  学生独立思考、回答交流。

  本次活动中教师关注:

  (1)学生能否准确理解运用等式性质和合并同列项求解方程。

  (2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

  通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

  活动二 问题探究

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  教师:出示问题(投影片)

  提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

  (学生尝试提问)

  学生:读题,审题,独立思考,讨论交流。

  1.找出问题中的已知数和已知条件。(独立回答)

  2.设未知数:设这个班有x名学生。

  3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

  4.找相等关系:

  这批书的`总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)

  5.列方程:3x+20=4x-25(1)

  总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

  教师提问1:这个方程与我们前面解过的方程有什么不同?

  学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

  教师提问2:怎样才能使它向x=a的形式转化呢?

  学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

  3x-4x=-25-20(2)

  教师提问3:以上变形依据是什么?

  学生回答:等式的性质1。

  归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

  师生共同完成解答过程。

  设问4:以上解方程中“移项”起了什么作用?

  学生讨论、回答,师生共同整理:

  通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

  教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?

  学生思考回答。

  教师关注:

  (1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?

  在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。

  活动三 解法运用

  例2解方程

  3x+7=32-2x

  教师:出示问题

  提问:解这个方程时,第一步我们先干什么?

  学生讲解,独立完成,板演。

  提问:“移项”是注意什么?

  学生:变号。

  教师关注:学生“移项”时是否能够注意变号。

  通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。

  活动四 巩固提高

  1.第91页练习(1)(2)

  2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?

  3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。

  教师按顺序出示问题。

  学生独立完成,用实物投影展示部分学而生练习。

  教师关注:

  1.学生在计算中可能出现的错误。

  2.x系数为分数时,可用乘的办法,化系数为1。

  3.用实物投影展示学困生的完成情况,进行评价、鼓励。

  巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。

  2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。

  活动五

  提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?

  提问2:本节课重点利用了什么相等关系,来列的方程?

  教师组织学生就本节课所学知识进行小结。

  学生进行总结归纳、回答交流,相互完善补充。

  教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。

  引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。

  布置作业:

  第93页第3题

初中数学教案4

  教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。

  教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。

  2、调动学生丰富的联想,养成一种思考的习惯。

  教学重难点:"扑克"与年月日、季度的联系。

  教学过程:

  一、谈话引入

  师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?

  生:......

  (教师补充,引发学生的好奇心。)

  师: "扑克"还有一种作用,而且与数学有关!

  生:......

  二、新课

  1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬

  2、大王=太阳 小王=月亮 红=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天数

  所有牌的和+小王+大王=闰年的天数

  5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月

  6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。

  7、一种花色的'和=一个季度的天数

  一种花色有13张牌=一个季度有13个星期

  三、小结

  生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。

初中数学教案5

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?

  同学们动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  这正是我们本章要解决的问题。

  三、巩固练习

  1、教科书第3页练习1、2。

  2、补充练习:检验下列各括号内的数是不是它前面方程的解。

  (1)x-3(x+2)=6+x(x=3,x=-4)

  (2)2y(y-1)=3(y=-1,y=2)

  (3)5(x-1)(x-2)=0(x=0,x=1,x=2)

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业。教科书第3页,习题6。1第1、3题。

  解一元一次方程

  1、方程的简单变形

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1、重点:方程的`两种变形。

  2、难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

初中数学教案6

  4.1二元一次方程

  【教学目标】

  知识与技能目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

  二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

   情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  【重点、难点】

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点1、了解二元一次方程的解的.不唯一性和相关性。即了解二元一次方程的解有无数个,

  但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学方法与教学手段】

  1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

  次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

  空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

  【教学过程】

  一、创设情境导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

  如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  二、师生互动探索新知

  1、推陈出新发现新知

  引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  (板书:二元一次方程)

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、小试牛刀巩固新知

  判断下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、师生互动再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

  知数的值,叫做二元一次方程的一个解。)

  ?若未知数设为x,y,记做x?,若未知数设为a,b,记做

  ?y?

  4、再试牛刀检验新知

  (1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  6、动动笔头巩固新知

  独立完成课本第81页课内练习2

  三、你说我说清点收获

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点:方程两边都是整式

  含有未知数的项的次数都是一次

  如何求一个二元一次方程的解

  四、知识巩固

  1、必答题

  (1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多选题:方程

  y?1

  x?7

  (4)判断题:方程2x?y?15的解是。()y?1

  2、抢答题

  是方程2x?3y?5的一个解,求a的值。(1)已知x??2

  y?a

  (2)写出一个解为x?3的二元一次方程。

  y?1

  3、个人魅力题

  写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

  五、布置作业

初中数学教案7

  1.知识结构

  2.重点和难点分析

  重点:本节的重点是平行四边形的概念和性质.虽然平行四边形的概念在小学学过,但对于概念本质属性的理解并不深刻,为了加深学生对概念的理解,为以后学习特殊的平行四边形打下基础,所以教师不要忽视平行四边形的概念教学.平行四边形的性质是以后证明四边形问题的基础,也是学好全章的关键.尤其是平行四边形性质定理的推论,推论的应用有两个条件:

  一个是夹在两条平行线间;

  一个是平行线段,具备这两个条件才能得出一个结论平行线段相等,缺少任何一个条件结论都不成立,这也是学生容易犯错的地方,教师要反复强调.

  难点:本节的难点是平行四边形性质定理的灵活应用.为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论给学生讲清楚,哪几个条件,决定哪个结论,如何用数学符号表示即书写格式,都要在讲练中反复强化.

  3.教法建议

  (1)教科书一开始就给出了平行四边形的定义,我感觉这样引入新课,不利于调动学生的积极性.自己设计了一个动画,建议老师们用它作为本节的引入,既可以激发学生的学习兴趣,又可以激活学生的思维.

  (2)在生产或生活中,平行四边形是常见图形之一,教师可以多给学生提供一些平行四边形的图片,增加学生的感性认识,然后,让他们自己总结出平行四边形的定义,教师最后做总结.平行四边形是特殊的四边形,要判定一个四边形是不是平行四边形,要判断两点:首先是四边形,然后四边形的两组对边分别平行.平行四边形的定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.

  (3)对于教师来说讲课固然重要,但讲完课后有目的的强化训练也是不可缺少的`,通过做题,帮助学生更好的理解所讲内容,也就是我们平时说的要反思回顾,总结深化.

  平行四边形及其性质第一课时

  一、素质教育目标

  (一)知识教学点

  1.使学生掌握平行四边形的概念,理解两条平行线间的距离的概念.

  2.掌握平行四边形的性质定理1、2.

  3.并能运用这些知识进行有关的证明或计算.

  (二)能力训练点

  1.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想.

  2.通过推导平行四边形的性质定理的过程,培养学生的推导、论证能力和逻辑思维能力.

  (三)德育渗透点

  通过要求学生书写规范,培养学生科学严谨的学风.

  (四)美育渗透点

  通过学习,渗透几何方法美和几何语言美及图形内在美和结构美

  二、学法引导

  阅读、思考、讲解、分析、转化

  三、重点·难点·疑点及解决办法

  1.教学重点:平行四边形性质定理的应用

  2.教学难点:正确理解两条平行线间的距离的概念和运用性质定理2的推论;在计算或证明中综合应用本节前一章的知识.

  3.疑点及解决办法:关于性质定理2的推论;两点的距离,点到直线的距离,两平行直线中间的距离的区别与联系,注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系;平行四边形的高有关问题.

  四、课时安排

  2课时

  五、教具学具准备

  教具(做两个全等的三角形),投影仪,投影胶片,小黑板,常用画图工具

  六、师生互动活动设计

  教师复习提问,学习思考口答;教师设疑引思,学生讨论分析;师生共同总结结论,教师示范讲解,学生达标练习

  第一课时

  七、教学步骤

  【复习提问】

  1.什么叫做四边形?什么叫四边形的一组对边?

  2.四边形的两组对边在位置上有几种可能?

  (教师随着学生回答画出图1)

  图1

  【引入新课】

  在四边形中,我们常见的实用价值最大的就是平行四边形,如汽车的防护链,无轨电车的击电杆都是平行四边形的形象,平行四边形有什么性质呢?这是这节课研究的主要内容(写出课题).

  【讲解新课】

  1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.

  注意:一个四边形必须具备有两组对边分别平行才是平行四边形,反过来,平行四边形就一定是有“两组对边分别平行”的一个四边形.因此定义既是平行四边形的一个判定方法(定义判定法)又是平行四边形的一个性质.

  2.平行四边形的表示:平行四边形用符号“

  ”表示,如图1就是平行四边形

  ,记作“

  ”.

  align=middle>

  图1

  3.平行四边形的性质

  讲解平行四边形性质前必须使学生明确平行四边形从属于四边形,因此它具有四边形的一切性质(共性),同时它又是特殊的四边形,当然还有其特性(个性),下面介绍的性质就是其特性,这是一般四边形所不具有的.

  平行四边形性质定理1:平行四边形的对角相等.

  平行四边形性质定理2:平行四边形对边相等.

  (教具用两个全等的三角形拼凑的平行四边形演示,由此得到证明以上两个定理的方法.如图2)

  图2如图3

  所以四边形是平行四边形,所以.由此得到

  推论:夹在两条平行线间的平行线段相等.

  图3

  要注意:必须有两个平行,即夹两条平行线段的两条直线平行,被夹的两条线段平行,缺一不可,如图4中的几种情况都不可以推出图4

  4.平行线间的距离

  从推论可以知道,如果两条直线平行,那么从一条直线上所有各点到另一条直线的距离相等,如图5.

  我们把两条平行线中一条直线上任意一点到另一条直线的距离,叫做平行线的距离.

  图5

  注意:(1)两相交直线无距离可言.

  (2)连结两点间的线段的长度叫两点间的距离,从直线外一点到一条直线的垂线段的长,叫点到直线的距离.两条平行线中一条直线上任意一点到另一条直线的距离,叫做这两条平行线的距离,一定要注意这些概念之间的区别与联系.

  例1 已知:如图1,

初中数学教案8

  教学目标

  1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;

  2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;

  3.通过加法运算练习,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.

  由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.

  (二)知识结构

  (三)教法建议

  1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.

  2.关于“去括号法则”,只要学生了解,并不要求追究所以然.

  3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如

  -3-4表示-3、-4两数的代数和,

  -4+3表示-4、+3两数的代数和,

  3+4表示3和+4的代数和

  等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

  4.先把正数与负数分别相加,可以使运算简便。

  5.在交换加数的位置时,要连同前面的符号一起交换。如

  12-5+7 应变成 12+7-5,而不能变成12-7+5。

  教学设计示例一

  有理数的加减混合运算(一)

  一、素质教育目标

  (一)知识教学点

  1.了解:代数和的概念.

  2.理解:有理数加减法可以互相转化.

  3.应用:会进行加减混合运算.

  (二)能力训练点

  培养学生的口头表达能力及计算的'准确能力.

  (三)德育渗透点

  通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.

  (四)美育渗透点

  学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.

  二、学法引导

  1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练

  习,步步为营,分散难点,解决关键问题.

  2.学生写法:练习→寻找简单的一般性的方法→练习巩固.

  三、重点、难点、疑点及解决办法

  1.重点:把加减混合运算算式理解为加法算式.

  2.难点:把省略括号和的形式直接按有理数加法进行计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.

  七、教学步骤

  (一)创设情境,复习引入

  师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目: -9+(+6);(-11)-7.

  师:(1)读出这两个算式.

  (2)“+、-”读作什么?是哪种符号?

  “+、-”又读作什么?是什么符号?

  学生活动:口答教师提出的问题.

  师继续提问:(1)这两个题目运算结果是多少?

  (2)(-11)-7这题你根据什么运算法则计算的?

  学生活动:口答以上两题(教师订正).

  师小结:减法往往通过转化成加法后来运算.

  【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.

  师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算.(板书课题2.7有理数的加减混合运算(1))

  教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.

  (二)探索新知,讲授新课

  1.讲评(-9)+(-6)-(-11)-7.

  (1)省略括号和的形式

  师:看到这个题你想怎样做?

  学生活动:自己在练习本上计算.

  教师针对学生所做的方法区别优劣.

  【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算??这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.

  师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:

  原式=(-9)+(+6)+(+11)+(-7)

  =-9+6+11-7.

  提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成??

  学生活动:先自己练习尝试用两种读法读,口答(教师纠正).

  【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.

  巩固练习:(出示投影1)

  1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.

  (1)(+9)-(+10)+(-2)-(-8)+3;

  (2)+()-()-().

  2.判断

  式子-7+1-5-9的正确读法是().

  A.负7、正1、负5、负9;

  B.减7、加1、减5、减9;

  C.负7、加1、负5、减9;

  D.负7、加1、减5、减9;

  学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.

  【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.

  2.用加法运算律计算出结果

  师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.

  -9+6+11-7

  =-9-7+6+11.

  学生活动:按教师要求口答并读出结果.

  巩固练习:(出示投影2)

  填空:

  1.-4+7-4=-______________-_______________+_______________

  2.+6+9-15+3=_____________+_____________+_____________-_____________

  3.-9-3+2-4=____________9____________3____________4____________2

  4.____________________________________

  学生活动:讨论后回答.

  【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.

  师:-9-7+6+11怎样计算?

  学生活动:口答

  [板书]

  -9-7+6+11

  =-16+17

  =1

  巩固练习:(出示投影3)

  1.计算(1)-1+2-3-4+5;

  (2).

  2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;

  (2).

  学生活动:四个同学板演,其他同学在练习本上做.

  【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.

  师小结:有理数加减法混合运算的题目的步骤为:

  1.减法转化成加法;

  2.省略加号括号;

  3.运用加法交换律使同号两数分别相加;

  4.按有理数加法法则计算.

  (三)反馈练习

  (出示投影4)

  计算:(1)12-(-18)+(-7)-15;

  (2).

  学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.

  【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.

  (四)归纳小结

  师:1.怎样做加减混合运算题目?

  2.省略括号和的形式的两种读法?

  学生活动:口答.

  【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.

  八、随堂练习

  1.把下列各式写成省略括号的和的形式

  (1)(-5)+(+7)-(-3)-(+1);

  (2)10+(-8)-(+18)-(-5)+(+6).

  2.说出式子-3+5-6+1的两种读法.

  3.计算

  (1)0-10-(-8)+(-2);

  (2)-4.5+1.8-6.5+3-4;

  (3).

  九、布置作业

  (一)必做题:1.计算:(1)-8+12-16-23;

  (2);

  (3)-40-28-(-19)+(-24)-(-32);

  (4)-2.7+(-3.2)-(1.8)-2.2;

  (二)选做题:(1)当时,,,哪个最大,哪个最小?

  (2)当时,,,哪个最大,哪个最小?

  十、板书设计

初中数学教案9

  教学目标:

  1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、过程与方法:通过观察,归纳一元一次方程的概念。

  3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

  教学重点:归纳一元次方程的概念

  教学难点:感受方程作为刻画现实世界有效模型的意义.

  教学过程:

  一、情景导入:

  我能猜出你们的年龄,相信吗?

  只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

  问:你的年龄乘以2加3等于多少?

  学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

  学生讨论并回答

  二、知识探究:

  1、方程的教学(投影演示)

  小彬和小明也在进行猜年龄游戏,我们来看一看。

  找出这道题中的等量关系,列出方程.

  大家观察,这两个式子有什么特点。

  讨论并回答:什么是方程?方程有哪些特点?

  2、 判断下列式子是不是方程?

  (1)X+2=3(是)(2)X+3Y=6(是)

  (3)3M-6(不是)(4)1+2=3(不是)

  (5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

  情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

  你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

  情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)

  截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

  1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的.长和宽分别是多少米?

  下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

  问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

  生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

  四、随堂练习

  1、投影趣味习题,

  2、做一做

  下面有两道题,请选做一题。

  (1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

  (2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

  五、课堂小节

  1、这节课你学到了什么?

  2、这节课给你印象最深的是什么?

  六、作业:分组布置

  数学教案-你今年几岁了搜集整理

初中数学教案10

  教学目标:

  (一)知识与技能

  理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

  (二)过程与方法

  1.在经历用字母表示数量关系的过程中,发展符号感;

  2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

  (三)情感态度价值观

  1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

  2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

  教学重、难点:

  重点:单项式及单项式系数、次数的概念。

  难点:单项式次数的概念;单项式的书写格式及注意点。

  教学方法:

  引导——探究式

  在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

  教具准备:

  多媒体课件、小黑板.

  教学过程:

  一、 创设情境,引入新课

  出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

  情境问题:

  青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

  爱国主义情感,得到一次情感教育。

  解:根据路程、速度、时间之间的关系:路程=速度×时间

  2小时行驶的路程是:100×2=200(千米)

  3小时行驶的路程是:100×3=300(千米)

  t小时行驶的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

  如:100×a可以写成100a或100a。

  代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

  代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

  设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

  让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

  1、边长为a的正方体的表面积是__,体积是__.

  2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

  3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

  4、数n的相反数是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它们有什么共同的特点?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  单项式:数与字母、字母与字母的乘积。

  注意:单独的一个数或字母也是单项式。

  设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

  火眼金睛

  下列各代数式中哪些是单项式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  设计意图:加强学生对不同形式的单项式的直观认识。

  解剖单项式

  系数:单项式中的数字因数。

  如:-3x的系数是 ,-ab的系数是 , 的系数是 。

  次数:一个单项式中的所有字母的指数的和。

  如:-3x的次数是 ,ab的次数是 。

  小试身手

  单项式 2a 2 -1.2h xy2 -t2 -32x2y

  系数

  次数

  设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

  单项式的注意点:

  (1)数与字母相乘时,数应写在字母的___,且乘号可_________;

  (2)带分数作为系数时,应改写成_______的形式;

  (3)式子中若出现相除时,应把除号写成____的形式;

  (4)把“1”或“-1”作为项的系数时,“1”可以__不写。

  行家看门道

  ①1x ②-1x

  ③a×3 ④a÷2

  ⑤ ⑥m的系数为1,次数为0

  ⑦ 的系数为2,次数为2

  设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

  三、例题讲解,巩固新知

  例1:用单项式填空,并指出它们的系数和次数:

  (1)每包书有12册,n包书有 册;

  (2)底边长为a,高为h的三角形的面积 ;

  (3)一个长方体的长和宽都是a,高是h,它的体积是 ;

  (4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

  为 元;

  (5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

  解:(1)12n,它的系数是12,次数是1

  (2) ,它的系数是 , 次数是2;

  (3)a2h,它的系数是1,次数是3;

  (4)0.9a,它的系数是0.9,次数是1;

  (5)0.9a,它的系数是0.9,次数是1。

  设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

  试一试

  你还能赋予0.9a一个含义吗?

  设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

  大胆尝试

  写出一个单项式,使它的系数是2,次数是3.

  设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

  四、拓展提高

  尝试应用

  用单项式填空,并指出它们的`系数和次数:

  (1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

  (2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

  (3)产量由m千克增长10%,就达到 千克;

  设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

  能力提升

  1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

  2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

  设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

  五、小结:

  本节课你感受到了吗?

  生活中处处有数学

  本节课我们学了什么?你能说说你的收获吗?

  1、单项式的概念: 数与字母、字母与字母的乘积。

  2、单项式的系数、次数的概念。

  系数:单项中的数字因数;

  次数:单项中所有字母的指数和。

  3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

  设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

  结束寄语

  悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

  设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

  六、板书设计

  2.1 整式

  单项式概念 探究 例1 多

  单项式的系数概念 观察交流 尝试应用 媒

  单项式的次数概念 能力提升 体

  七、作业:

  1.作业本(必做)。

  2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

  设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

  八、设计理念:

  本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

  针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案11

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的`关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学教案12

  教学目标

  1.使学生正确理解的意义,掌握的三要素;

  2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;

  3.使学生初步理解数形结合的思想方法.

  教学重点和难点

  重点:初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数.

  难点:正确理解有理数与上点的对应关系.

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

  2.用“射线”能不能表示有理数?为什么?

  3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

  待学生回答后,教师指出,这就是我们本节课所要学习的内容——.

  二、讲授新课

  让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的.不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

  与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

  1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

  2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

  3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

  提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

  在此基础上,给出的定义,即规定了原点、正方向和单位长度的直线叫做.

  进而提问学生:在上,已知一点P表示数-5,如果上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

  通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不可.

  三、运用举例 变式练习

  例1 画一个,并在上画出表示下列各数的点:

  例2 指出上A,B,C,D,E各点分别表示什么数.

  课堂练习

  示出来.

  2.说出下面上A,B,C,D,O,M各点表示什么数?

  最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

  四、小结

  指导学生阅读教材后指出:是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

  本节课要求同学们能掌握的三要素,正确地画出,在此还要提醒同学们,所有的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再研究.

  五、作业

  1.在下面上:

  (1)分别指出表示-2,3,-4,0,1各数的点.

  (2)A,H,D,E,O各点分别表示什么数?

  2.在下面上,A,B,C,D各点分别表示什么数?

  3.下列各小题先分别画出,然后在上画出表示大括号内的一组数的点:

  (1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初中数学教案13

  一元一次不等式组

  教学目标

  1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

  2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

  3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的`价值。

  教学难点

  正确分析实际问题中的不等关系,列出不等式组。

  知识重点

  建立不等式组解实际问题的数学模型。

  探究实际问题

  出示教科书第145页例2(略)

  问:(1)你是怎样理解“不能完成任务”的数量含义的?

  (2)你是怎样理解“提前完成任务”的数量含义的?

  (3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

  师生一起讨论解决例2.

  归纳小结

  1、教科书146页“归纳”(略).

  2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

  在讨论或议论的基础上老师揭示:

  步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

初中数学教案14

  ①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?

  ③你怎样认识一次函数和正比例函数的关系?

  一个常数b的和即 Y=kx+b 定义:一般地,形

  如

  Y=kx+b( k,b 是常数,k≠0 )的.函数,叫做一次函数, 当

  b=0时,

  Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

  例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

  学生独立

  A①②③B①③④C①②④D①②③④

  例2、写出下列各题中x与y之间的关系式,并判

  解释与应用

  断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教案15

  一、教学案例的特点

  1、案例与论文的区别

  从文体和表述方式上看,论文是以说理为目的,以议论为主;案例则以记录为目的,以记叙为主,兼有议论和说明。也就是说,案例是讲一个故事,是通过故事说明道理。

  从写作的思路和思维方式来看,论文写作一般是一种演绎思维,思维的方式是从抽象到具体;案例写作是一种归纳思维,思维的方式是从具体到抽象。

  2、案例与教案、教学设计的区别

  教案和教学设计都是事先设想的教学思路,是对准备实施的教学措施的简要说明;教学案例则是对已经发生的教学过程的反映。一个写在教之前,一个写在教之后;一个是预期达到什么目标,一个是结果达到什么水平。教学设计不宜于交流,教学案例适宜于交流。

  3、案例与教学实录的区别

  案例与教学实录的体例比较接近,它们都是对教学情景的描述,但教学实录是有闻必录,而案例则是有所选择的,教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断或理性思考)。

  4、教学案例的特点是

  ——真实性:案例必须是在课堂教学中真实发生的事件;

  ——典型性:必须是包括特殊情境和典型案例问题的故事;

  ——浓缩性:必须多角度地呈现问题,提供足够的信息;

  ——启发性:必须是经过研究,能够引起讨论,提供分析和反思。

  二、数学案例的结构要素

  从文章结构上看,数学案例一般包含以下几个基本的元素。

  (1)背景。案例需要向读者交代故事发生的有关情况:时间、地点、人物、事情的起因等。如介绍一堂课,就有必要说明这堂课是在什么背景情况下上的,是一所重点学校还是普通学校,是一个重点班级还是普通班级,是有经验的优秀教师还是年青的新教师执教,是经过准备的“公开课”还是平时的“家常课”,等等。背景介绍并不需要面面俱到,重要的是说明故事的`发生是否有什么特别的原因或条件。

  (2)主题。案例要有一个主题:写案例首先要考虑我这个案例想反映什么问题,例如是想说明怎样转变学困生,还是强调怎样启发思维,或者是介绍如何组织小组讨论,或是观察学生的独立学习情况,等等。或者是一个什么样的数学任务解决过程和方法,在课程标准中数学任务认知水平的要求怎么样,在课堂教学中数学任务认知水平的发展怎么样等等。动笔前都要有一个比较明确的想法。比如学校开展研究性学习活动,不同的研究课题、研究小组、研究阶段,会面临不同的问题、情境、经历,都有自己的独特性。写作时应该从最有收获、最有启发的角度切入,选择并确立主题。

  (3)情节。有了主题,写作时就不会有闻必录,而要是对原始材料进行筛选。首先需要教师对课堂教学中师生双方(外显的和内隐的)活动的清晰感知,然后是有针对性地向读者交代特定的内容,把关键性的细节写清楚。比如介绍教师如何指导学生掌握学习数学的方法,就要把学生怎么从“不会”到“会”的转折过程,要把学习发生发展过程的细节写清楚,要把教师观察到的学生学习行为,学习行为反映的学生思想、情感、态度写清楚,或者把小组合作学习的突出情况写清楚,或者把个别学生独立学习的典型行为写清楚。不能把“任务”布置了一番,把“方法”介绍了一番,说到“任务”的完成过程,说到“掌握”的程度就一笔带过了。

  (4)结果。一般来说,教案和教学设计只有设想的措施而没有实施的结果,教学实录通常也只记录教学的过程而不介绍教学的效果;而案例则不仅要说明教学的思路、描述教学的过程,还要交代学生学习的结果,即这种教学措施的即时效果,包括学生的反映和教师的感受等。读者知道了结果,将有助于加深对整个过程的内涵的了解。

  (5)反思。对于案例所反映的主题和内容,包括教育教学指导思想、过程、结果,对其利弊得失,作者要有一定的看法和分析。反思是在记叙基础上的议论,可以进一步揭示事件的意义和价值。比如同样是一个学困生转化的事例,我们可以从社会学、教育学、心理学、学习理论等不同的理论角度切入,揭示成功的原因和科学的规律。反思不一定是理论阐述,也可以是就事论事、有感而发,引起人的共鸣,给人以启发。

  三、初中数学教学案例主题的选择

  新课程理念下的初中数学教学案例,可从以下六方面选择主题:

  (1)体现让学生动手实践、自主探究、合作交流的教学方式;

  (2)体现教师帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验;

  (3)体现让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,采用“问题情境——建立模型——解释、应用与拓展”的模式教学的成功经验;

  (4)体现数学与信息技术整合的教学方法;

  (5)体现教师在教学过程中的组织者、引导者与合作者的作用;

  (6)体现教学中对学生情感、态度的关注和评价,以及怎样帮助不同的人在数学上获得不同的发展,等等。

【初中数学教案】相关文章:

初中数学教案08-12

初中数学教案02-21

初中数学教案[经典]02-21

人教版初中数学教案07-17

初中数学教案模板11-02

角初中数学教案12-30

初中数学教案【热】11-17

【热】初中数学教案11-15

【热门】初中数学教案11-18

初中数学教案【精】11-19