九年级数学上一元二次方程的解法教案

时间:2024-11-04 07:21:03 数学教案 我要投稿
  • 相关推荐

九年级数学上一元二次方程的解法教案

  在教学工作者开展教学活动前,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。优秀的教案都具备一些什么特点呢?以下是小编收集整理的九年级数学上一元二次方程的解法教案,欢迎阅读,希望大家能够喜欢。

九年级数学上一元二次方程的解法教案

九年级数学上一元二次方程的解法教案1

  教材分析

  1.本节在引言中的方程基础上,首先通过两个实际问题,进一步引出一元二次方程的具体例子,然后引导学生观察出它们的共同点,得出一元二次方程的定义。

  2.书中的定义是以未知数的个数和次数为标准,用文字的形式给出的。一元二次方程都可以整理为ax2+bx+c=0(a≠0)的形式,即一元二次方程的一般形式。

  3、本节始终都有列方程的内容,这样安排一方面是分散列方程这一教学难点,化整为零地培养由实际问题抽象出方程模型的'能力;另一方面是为由一些具体的方程归纳出一元二次方程的概念。

  学情分析

  1、通过课堂练习,大部分学生对概念基本理解,能够找出各项系数,但有少数学困生对于系数符号没有掌握。

  2、部分学生由于基础较薄弱,用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主。

  3、学生认知障碍点:一元二次方程与不等式和整式的综合运用能力有待提高。

  教学目标

  1、从实际问题引出一元二次方程,使学生进一步体会方程是刻画现实世界中数量关系的一个有效数学模型,培养学生分析问题和解决问题的能力及用数学的意识。

  2、使学生正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

  3、通过概念教学,培养学生的观察、类比、归纳能力,同时通过变式练习,使学生对概念理解具备完整性和深刻性。

  教学重点和难点

  1、重点:概念的形成及一般形式。

  2、难点:从实际问题引出一元二次方程;正确识别一般形式中的“项”及“系数”。

九年级数学上一元二次方程的解法教案2

  第一课时

  一、教学目标

  1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

  2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

  3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

  二、重点·难点·疑点及解决办法

  1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

  2.教学难点:根据数与数字关系找等量关系。

  3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。

  4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

  三、教学过程

  1.复习提问

  (1)列方程解应用问题的'步骤?

  ①审题,②设未知数,③列方程,④解方程,⑤答。

  (2)两个连续奇数的表示方法是,(n表示整数)

  2.例题讲解

  例1 两个连续奇数的积是323,求这两个数。

  分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

  以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

  解法(一) 设较小奇数为x,另一个为,据题意,得

  整理后,得

  解这个方程,得。

  由得,由得,答:这两个奇数是17,19或者-19,-17。

  解法(二) 设较小的奇数为,则较大的奇数为。

  据题意,得

  整理后,得

  解这个方程,得。

  当时,当时。

  答:两个奇数分别为17,19;或者-19,-17。

【九年级数学上一元二次方程的解法教案】相关文章:

九年级数学上一元二次方程的解法教案精品01-25

一元二次方程的解法教案12-30

一元二次方程的解法05-02

数学教案-一元二次方程的解法05-02

一元二次方程的解法教案(通用11篇)09-19

一元二次方程的解法教学反思04-04

一元二次方程的解法 - 初中数学第三册教案05-02

运用因式分解法解一元二次方程04-30

【精华】一元二次方程的解法教学反思10篇09-26