六年级数学下册总复习教案

时间:2024-10-22 07:18:47 数学教案 我要投稿

六年级数学下册总复习教案

  作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?以下是小编帮大家整理的六年级数学下册总复习教案,欢迎阅读,希望大家能够喜欢。

六年级数学下册总复习教案

六年级数学下册总复习教案1

  教学目标:

  1、结合具体问题,经历认识成反比例关系的量的过程。

  2、知道反比例的意义能判断两种量是否成反比例关系,能找出生活中成反比例量的实例,并进行交流。

  3、对现实生活中成反比例关系的事物有好奇心,在判断成反比例量的过程中,能进行有条理的思考。

  课前准备:

  找一本《安徒生童话》,把四个人看书表格画在小黑板上(图用文字),找一张10元人民币。

  教学过程:

  一、问题情境

  1、师:同学们,老师知道你们都喜欢读书,许多同学特别喜欢读童话故事,老师今天带来了一本童话故事书,你们看是什么?

  出示《安徒生童话》,可了解一下谁读过这本书。

  师:猜一猜,这本书有多少页?

  学生猜测,然后实际看一看,说出页数。

  师:你们知道吗?我们书中的四个同伴都读过这本书,而且记录下了他们每人读书的情况。请同学们看小黑板。

  小黑板出示:亮亮红红聪聪丫丫

  每天看的页数12 15 18 20

  看的天数15 12 10 9

  2、让学生观察统计表,师:观察这个统计表,从表中你了解到哪些信息?

  学生可能说出很多,如:

  ●亮亮每天看12页,看了15天。

  ●红红每天看15页,看了12天。

  ●聪聪每天看18页,看了10天。

  ●丫丫每天看20页,看了9天。

  ●丫丫看得最快,只用了9天,亮亮看得最慢,用了15天。

  二、认识反比例

  (一)读书问题

  1、师:观察表中的数据,你发现了什么规律?

  预设:

  ●每天看的页数越多,看的天数就越少。

  ●每天看的页数越少,看的天数就越多。

  ●每天看的页数乘看书的天数,积是一定,都是180。

  第三种意见学生没有提出,教师启发:

  师:把他们每天看书的页数和看的天数分别乘一下,看发现了什么。(每天看书的页数与看书天数的乘积就是这本书的页数),你们能总结出一个数量关系式吗?根据学生回答,教师随即板书:

  每天看的页数×需要的天数=书的总页数(一定)

  2、师:谁能用自己的话说一说,当书的总页数一定时,每天看的页数和看的天数之间有什么变化规律?(学生自由发言)

  师:在四个同伴看同一本书这件事情中,看书需要的天数是随着每天看书的页数的变化而变化的,每天看的页数扩大,需要的天数就缩小;反之,每天看的页数缩小,需要的天数就扩大。而且,每天看的页数和需要的天数的乘积一定,我们就说每天看的页数和需要的天数这两种量成反比例。

  板书:成反比例的量

  3、师:像这样两种相关联的量,一种量扩大,另一种量缩小,而且他们的乘积相等的事例,在我们的日常生活中还有许多。下面我们就共同来看一个换零钱的问题。教师出示表格,并拿出一张10元的人民币。

  师:老师这有一张10张的人民币,如果要把它换成5元的,能换几张?如果换成1元的呢?那要换成5角的,2角的,1角的呢?

  学生说,教师填在表格中。

  面值5元1元5角2角1角

  张数2 10 20 50 100

  师:仔细观察表中数据,你都发现了什么?

  学生可能会说:

  ●换的钱的面值越大,需要的张数就越少;换的面值越小,需要的张数就越多。

  ●表中面值与张数的积是一定的。

  师:你们能总结出这里的数量关系式吗?

  学生回答,教师随机板书:

  钱的面值×张数=10(元)

  4、提出“议一议”的问题,让学生判断并得出零钱的面值与换的张数这两种量是否成反比例。

  学生可能会说:

  ●10元钱是一定的,钱的面值和换的张数是变化的,钱的面值变大,钱的'张数就变小;钱的面值变小,张数就变大。

  ●钱的总数是一定的,钱的面值与换的张数是是变化的,钱的面值越大,换的张数就越小。反之,钱的面值越小,钱的张数就越多。

  师:通过看书的事情,我们知道了什么样的两个量叫反比例,现在老师提一个问题:零钱的面值与换的张数这两种量成反比例吗?为什么?和同桌说一说。

  学生讨论后,多请几人发言。

  5、师:现在请同学们分析一下上面的两个例子和数量关系式,你发现它们有什么共同点?

  学生可能会说:

  ●它们都是乘积一定,一个量变大,另一个量变小。

  师:像上面这样两种相关联的量,一种量变化,另一种量也随着变化,如果两种量相对应的积也一定,就说这两种量成反比例,这两种量就叫做成反比例的量。它们的关?这段话在课本第13页,请同学们自己读一读。

  学生自己读书。

  6、师:我们已经知道了什么叫成反比例关系的量,谁来说一说,成反比例的量需要具备什么条件?

  学生可能会说:

  ●是两个相关联的量。

  ●这个量的乘积一定。

  ●一个量变大,另一个就变小;一个量变小,另一个就变大。

  三、尝试应用

  1、让学生自己判断“试一试”中的三组数量。

  师:现在,请同学们看“试一试”,自己判断一下,每题中的两种量是否成反比例。同学们可以互相讨论,要说明判断的理由。

  给学生独立思考、交流的时间。

  2、师:谁来汇报一下你判断的结果,并说一说判断的依据是什么?

  重点让学生一说判断的理由,学生如果有其它说法,只要是对的就给予肯定。

  3、师:我们认识了什么叫做反比例关系的量,你能举一个生活中反比例的例子吗?先和同学交流一下。

  学生交流,然后指名举例并说明理由。

  4、师:同学们,今天我们认识了成反比例关系的量,下面请看练一练第1题,自己判断一下,每题中的两种量是否成反比例,要说明理由。

  给学生独立思考,互相交流的时间,说一说是怎样判断的,结论是什么。

  学生可能会说:

  ●乒乓球的总个数一定,就是说每盒装的个数和需要的盒子乘积一定,每盒装的越多,需要的盒子就越少,反之,每盒装的越少,需要的盒子就越多。所以乒乓球总个数一定,每盒装的个数和需要的盒数成反比例。

  ●全班的总人数一定,男生和女生人数是相关联的两种量,但他们不是相乘的关系。

  学生如果有其他说法,只要意思对,就给予肯定。

  四、课堂练习

  1、练一练第2题,先让学生自己读题并判断,然后指名汇报。

  2、练一练第3题,完成表格再判断,交流时说出自己的想法。

  3、练一练第4题,先帮助学生理解题,让学生明白大齿轮与小齿轮转数的关系,因为30:10=3,所以大齿轮转一圈,小齿轮转3圈,然后,说明在工业生产中,齿轮转的周数叫转机,让学生填表,并回答问题。

  五、知识拓展

  介绍成反比例的量可以用方格纸上的图表示,让学生课下自己阅读。

  师:在学习正比例的时候,我们知道成正比例关系的量可以在方格纸上画图表示出来,其实成反比例的量也可以在方格纸上画图来表示。请同学们课下自己看一看知识窗里的内容,了解成反比例的量怎样用方格纸上的图表示。

六年级数学下册总复习教案2

  课题:

  空间与图形

  复习内容:

  第12册100页“整理与反思”和“练习与实践”1—8题。

  复习目标:

  1、进一步理解平面图形的周长和面积的意义与区别。

  2、使学生了解平面图形的周长和面积计算公式的推导过程,并会运用这些公式进行正确计算。

  3、使学生对平面图形的周长和面积形成知识体系。

  教学准备:

  课件

  课时安排:

  第三课时

  课前设计:

  (一)直导课题

  1、回忆学过的平面图形。

  同学们,我们已经学过了哪些平面图形?学生回答后出示学过的平面图形。

  我们已经了解了它们的周长和面积,今天,我们再来一起回顾一下。

  (二)整理复习

  1、周长和面积的概念。

  (1)那么什么是平面图形的周长和面积呢?谁能任选一个图形,来说说呢?指名学生到前面去演示。

  (2)那么谁能概括地说说什么是平面图形的周长?学生回答后板书:围成一个图形的所有边长的总和叫做这个图形的周长。

  (3)表示图形的周长我们用长度单位,谁来说说我们学过了哪些长度单位?它们之间的进率分别是多少?(学生回忆后完成“练习与实践”的第1题。)

  (4)那什么是平面图形的面积?学生回答后板书:物体的表面或围成的平面图形的大小,叫做它们的面积。

  (5)表示平面图形的面积我们用面积单位,回忆一下我们学过哪些面积单位呢?它们之间的进率分别是多少?(学生回答后完成“练习与实践”的第2题。)

  (6)完成“练习与实践”的'第3题。

  2、周长和面积的比较。

  我们已经知道了周长和面积的意义,老师这里有两幅图,请你分别较

  它们的周长和面积。(出示“练习与实践”的第5题。)

  (1)如果图中每小格是边长1厘米的正方形。请同学们以小组为单位,仔细观察这两组图形,认真讨论这两个问题。

  (2)汇报:通过观察、讨论你们发现了什么?你是怎么知道的?(让学生指着说)

  ①第一幅图:面积相等,周长不等。

  ②第二幅图:周长相等,面积不等。

  (3)小结:由此可见周长和面积之间没有必然的联系。

  3、周长计算公式。

  那同学们还记得怎样计算这些图形的周长吗?

  (1)同桌一起回忆平面图形的计算方法。

  (2)指名说出长方形、正方形的周长计算公式。

  (3)多让几名学生说说圆的周长公式的推导过程。

  4、面积计算公式。

  我们已经一起回忆了平面图形的周长计算方法,那这些平面图形的面积公式是怎样推导出来的呢?

  (1)请同学们以小组为单位围绕以下两个问题展开讨论,并且用6个平面图形表示它们之间的关系。

  (2)讨论:有关面计算公式是在哪个图形的基础上推导出来的?

  这6个图形可以用怎样的网络来表示它们之间的关系?

  (3)学生汇报:你们将这6个图形组成了怎样的网络图?哪一组派一个代表上面来汇报?为什么用这样的图来表示?(根据汇报同时黑板上出示下图)

  (4)小结:由此可见,这些平面图形的计算公式是在谁的基础上推导出来的?

  像这样把新问题转化成已学过的知识,从而解决新问题,是数学学习中一种很常见的方法。

  (三)巩固拓展

  1、完成“练习与实践”的第4题。

  2、老师家客厅里有一块窗帘长3米、宽1。2米。

  问题1:这块窗帘有多大?

  问题2:如果要在窗帘的周围缝上花边,你认为应买回多少花边?

  小结:刚才,大家通过合作,利用集体的智慧,解决了两个实际问题,下面请同学们根据所给条件,想象出所学过的图形,把它画下来。

  3.想象练习。

  请你利用所给的条件,想象已学过的平面图形,把它画出来。

  (四)全课总结:今天我们复习了什么?通过复习你有什么收获?

  (五)作业:练习与实践的第6—8题。

  (六)课外实践:

  研究问题:城市排水工程建设中,地下管道的横截面为什么一般都是建成圆形?

  研究方法:

  ①实地考察;

  ②查阅资料;

  ③请教身边的人。

  研究结果:以"圆形地下管道好处多"为题,写一篇小小科学报告文章。

六年级数学下册总复习教案3

  复习目标:

  1、通过复习使学生能熟练掌握长度、面积、体积的计量单位,质量单位,时间单位等。能正确使用学过的计量单位解决实际问题。

  2、熟练掌握有关计量单位之间的进率关系。

  教学重点:

  1、学生小组整理计量单位和进率。

  2、熟练进行名数的改写。

  教学难点:

  使学生在头脑中建立计量单位的具体表象。

  复习过程:

  一、情境导入。

  师:今天老师给大家带来了一篇由“小马虎”同学写的数学日记。(请一名同学读日记)

  今天是20xx年4月29日,早上从睡梦中醒来已经7:30了,我立刻从床上爬起来,马上穿衣、洗脸、刷牙,不知不觉中已经过了20小时。该吃饭了,我端起一杯300L的牛奶一饮而尽,又吃了200千克面包和一个煎鸡蛋。吃过早餐,我便冲出家门,步行500千米到达学校!进校门的时候铃声刚刚响起!

  师:你们笑什么?

  生:他用的单位不恰当。

  师:同学们观察还真是仔细,我们学习就应该细心、认真、一丝不苟。其实在我们日常生产、生活和科学研究中,经常要接触到各种量,并且进行各种量的计量。今天我们就一起来复习小学里面学习的一些常见的量和它们的计量单位。(板书课题:量的计量)

  师:那请同学们找找这则日记中有哪些常见的量呢?(时间、长度、质量、体积)

  二、分类整理。

  师:我们还学过哪些量?它们各有哪些计量单位?请同学们以小组为单位对我们所学过的量和计量单位进行分类整理。

  过程要求:

  1、由小组同学共同分类整理。

  2、教师引导学生列表整理,并巡视课堂进行个别指导。

  三、汇报交流。

  各小组派代表上台充当小老师,讲解计量单位的进率和意义。并适当板书,老师作点拨处理,强调各单位间的进率和意义,并鼓励学生对发言同学提出建议或者意见。(每个小组汇报一种量)

  1、长度。

  (1)什么是长度?长度:两点之间的距离。

  (2)我们学过哪些长度单位?用字母如何表示?(千米、米、分米、厘米、毫米)

  (3)1厘米有多长?1分米有多长?1米呢?(用手比划比划)

  (4)它们之间的进率是什么?(1米=10分米1分米=10厘米1米=100厘米)

  2、面积。

  (1)什么是面积。面积:物体表面(图形)的大小。

  (2)我们学过哪些面积单位?(平方千米、公顷、平方米、平方分米、平方厘米、平方毫米)

  (3)我们的教室面积大约是多少?用什么单位最合适?

  (4)它们之间的进率。(1平方千米=100公顷1公顷=10000平方米

  1平方米=100平方分米1平方分米=100平方厘米))

  3、体积/容积。

  (1)体积:物体所占空间的大小。容积:容器所能容纳的物体的`体积。

  (2)体积计量单位:立方米、立方分米、立方厘米、升、毫升

  (3)1立方厘米有多大?1立方分米有多大?1立方米呢?

  (4)进率。(1立方米=1000立方分米1立方分米=1000立方厘米1升=1立方分米1立方厘米=1毫升1升=1000毫升)

  4、质量。

  (1)常见单位:克(g)千克(kg)吨(t)

  (2)进率:1吨=1000千克1千克=1000克

  5、时间单位。

  (1)常见单位:世纪、年、月、日、时、分、秒。

  (2)进率:1世纪=100年1年=12个月1年=365天(闰年366天)

  有31日的月份是:1,3,5,7,8,10,12。

  有30天的月份是:4,6,9,11。

  平年的二月有28日。闰年的二月有29日

  怎样判断某一年是闰年还是平年?

  (年份能被4整除的是闰年,不能被4整除的是平年,整百数年份能被400整除的才是闰年,如1900年虽能被4整除,但不是闰年。)

  1日=24时1时=60分1分=60秒

  (补充时和小时的概念区分。时是时间点,小时是时间段。)

  教师补充:季度、旬、星期。每月分三旬:上旬(1至10日);中旬(11至20日);下旬(21日至月底)。

  四、作业。

  请同学们课后修改一下“小马虎”同学的日记。

六年级数学下册总复习教案4

  教学目标

  1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

  2.复习用正比例方法解答应用题。

  3.复习用反比例方法解答应用题。

  教学重点和难点

  判断两种相关联的量成什么比例;确定解答应用题的方法。

  教学过程设计

  (一)复习数量关系

  判断两种相关联的量成不成比例,确定解答应用题的方法。

  1.被除数一定,除数和商。

  2.一条路,已修的和未修的。

  3.梯形的上、下底长度一定,梯形的面积和它的高度。

  4.每块砖的面积一定,砖的块数和铺地面积。

  5.挖一条水渠,参加的人数和所需要的.时间。

  6.从甲地到乙地所需的时间和所行走的速度。

  7.单位面积一定,播种面积和总产量。

  8.时间一定,速度和距离。

  9.订阅《北京儿童》的份数和所需钱数。

  (二)复习应用题

  1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

  第一步,先找对应关系:

  8天56台

  31天?台

  第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

  请你在对应关系的旁边写上正字,决定用正比例方法做。

  解设到月底可生产x台。

  x=217

  答:照这样速度月底可生产217台。

  2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

  第一步,先找对应关系:

  20页600本

  24页?本

  第二步,判断成什么比例?(纸张总页数一定,成反比例。)

  请你在对应关系的旁边写上反字,决定用反比例方法做。

  解钉成24页一本的练习本,可钉x本。

  24x=20600

  x=500

  答:如果钉成24页一本的练习本可钉500本。

  学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

  (1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

  (2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

  (三)练习解答两步的比例应用题

  1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

  黑板上的对应关系变成:

  解设x天读完。

  (6+4)x=630

  10x=630

  x=18

  答:18天可以读完。

  2.在第1题的基础上,改变问题。

  李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

  对应关系:

  解设如果每天多读4页,x天读完。

  (6+4)x=630

  10x=630

  x=18

  30-18=12(天)

  答:提前12天读完。

  (指导学生分析、比较。)

  以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

  练习(学生独立分析,做题。)

  1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

  解设甲城到乙城有x千米。

  3x=105(3+1.2)

  x=147

  答:甲城到乙城有147km。

  2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的。几天可以收割完?

  解设剩下的x天可以收割完。

  90x=554

  x=3

  答:剩下的3天可以收割完。

  (再用间接设的方法做两道题。)

  1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

  1642=24x

  42-x

  2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

  12x=4815

  x-48

  (四)总结

  这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

  课堂教学设计说明

  解答正、反比例应用题是有其独特的思考方法的,所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

  第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

  第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

  第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

六年级数学下册总复习教案5

  复习内容:第12册P92—93“练习与实践”7—9题。

  复习目标:

  1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的`打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。

  2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。

  3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。

  教学准备:课件

  课时安排:第二课时

  课前设计:

  1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?

  2.学生练习、交流、检验。

  3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。

  4.练习P93第9题。

  学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。

六年级数学下册总复习教案6

  目标:

  1、整理和复习估算的方法,结合具体情境进行估算,并解释估算的过程

  2、在解决具体问题的过程中,能选择合适的估算方法和策略,养成估算的习惯

  3、培养估算意识,发展估算能力

  教学重点:

  整理和复习估算的方法,能具体情境能选择合适的估算方法和策略

  学情分析:

  估算在日常生活中有着广泛的应用,它有利于人们是先把握运算的结果的范围,是发展学生数感的重要方面,同时估算也有利于减少运算错误,有利于人们对运算结果进行检验。在实际生活中,我们在解决一些对计算结果要求不太严格,或者难于精确计算的问题时,也经常用到估算的方法,学生有一定的认知基础和生活经验,但学生的估算意识比较薄弱,已经形成根深蒂固的精确极端的习惯,估算的能力也有待进一步加强。

  教学过程:

  一、感受估算的价值

  1、创设情境提出问题解决问题

  (1)创设情境:

  创设情境:同学们,在这阳光灿烂的日子里,在这优美的环境下学习,估计同学们心情都不错。上次帮三年级同学搬桌子,有兴趣再帮他们一个忙吗?新教学楼建好后,小星星剧场将被拆迁,三年级同学举行“义方百家讲坛”不知该如何选择场地,你能帮忙吗?

  2)现在大家看到的是三年级各班人数的统计表

  (3)你会选择那个场所呢?

  (4)指名回答:说一说,你选择了哪个场所,说明理由。

  预设1:

  将每班的学生人数都看作40个,三个年级就有240人,至少要能容纳240人,因此可以排除食堂。40×6=240(人)——最少

  预设2:

  将每班的学生人数都看作50个,三年级就有300人,最多只要容纳300人,因此可以选择五楼综合教室。50×6=300(人)——最多

  预设3:四舍五入法50×5+40=290(人)大约要290人,所以选择五楼综合教室。

  预设4:选中间数47×6=282(人)所以选择五楼综合教室。

  预设5:235÷6<40所以要选择五楼综合教室。这是用每班人数和每班人数比。

  预设6:计算出三年级的总人数,再于两个场所能容纳的.人数进行比较。

  (5)小结:你怎么想到用估算的?问题——只需近似值——估算(更方便)

  刚才我们用了这么多的估算方法,每种方法一样吗?(进一法、去尾法、四舍五入法、选中间数法)

  这些方法有什么共同点?(根据结果的要求把原始的数据看作整百数或者整十数,便于计算)

  三、说一说:生活中和学习中哪些时候用到过估算?

  (1)、在我们六年的学习、生活中哪些时候要用到估算、怎么估算呢?课前请同学们收集有关的信息,谁来交流一下,好吗?

  如1:买东西的时候要估算带的钱购买几件商品。

  2:计算题时要估算结果是多少。

  (2)、四人小组交流

  (3)老师这里也收集了一些:我们还曾经学会了如何估算一张报纸的字数,也会估算一堆黄豆大约有多少粒。一个操场大约能站下多少人。一个没拧紧的水龙头一年会浪费多少水。看来在我们生活中经常会用到估算。

  四、判断下列情景中哪些可以估算。如何估算。

  1、那是不是生活中的问题都能用估算来解决呢?老师也有几个问题,你们能帮我看看哪些情况可以用估算解决问题吗?

  判断下列4种情况哪些可以用估算解决问题。

  1、判断791+118=809结果是否正确。

  2、小红1分钟最多能打49个字,一篇作文共1025个字,小红能在20分钟内打完这篇作文吗?

  3、奶奶在超市买了6.70元的蔬菜和12.8元的鱼,当营业员计算奶奶应付多少钱时。

  4、牛排每斤12.40元,爷爷买了1.9斤,店主说一共26.60元。店主说的对吗?

  2、选择汇报3为什么不可以?

  3、可以估算的分别说说该如何估算。

  下面我们就来分析这五种情况如何用估算解决问题

  (1)790+110=900(最少)所以结果不正确。

  (2)50×20=1000(个)(最多)所以不能

  (4)13×2=26(元)(最多)所以店主说错了。

  五、课堂总结

  这节课,通过复习,你有哪些收获?

  总结:生活中很多时候要用到估算,在估算时,我们要具体情况具体分析,灵活运用估算的方法,更好的解决实际问题。

  六、组织练习:下面我们来看看哪些同学能灵活的运用估算。

  在()里填上合适的数。

  七、数学万花筒

  在小学阶段我们学习了估算的这么多知识,在你们以后的学习中还将继续学习。比如当在测量或估计一个较大量时,常常用到数量级。

  八、布置课堂作业

六年级数学下册总复习教案7

  教学内容:

  教科书30到32页。

  教学目标:

  1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

  2、通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

  3、通过教学情境,培养学生热爱祖国的思想感情。

  教学过程

  一、导入新课

  1、同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

  2、请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

  3、按大小分类。(讨论后说明随意画的长方形不是教室的平面图)

  4、讨论:将这么大的'教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

  5、分别请同学说说自己画的设想。

  6、在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

  7、板书课题。“认识比例尺”

  二、新课展开

  1、自学课文

  让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

  说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。

  改写自己所画的图的比例尺。

  2、出示中国地图(投影)

  找出这幅地图的比例尺:1:30000000

  (电脑演示放大效果)

  介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

  你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

  小组反馈,评比优秀方案。

  电脑课件演示。

  根据讨论板书:

  补充板书:

  把实际距离按原来的大小画出来,比例尺就是1:1

  三、练习

  1|试一试。

  四、作业:31页练一练。

六年级数学下册总复习教案8

  教学目标:

  1.知道扇形统计图,能说出其特点;

  2.会画出简单的扇形统计图;

  3.能从扇形统计图中尽可能多地得到信息。

  教学准备:

  两幅扇形统计图。

  教学过程:

  一、复习引新

  l.复习旧知。

  提问:在简单的统计里我们学习过哪些知识,其中条形统计图和折线统计图各有什么特点?

  2.引入新课。

  出示两幅扇形统计图。说明:这也是一种统计图,叫做扇形统计图。(板书:扇形统计图)哪位同学来说一说,这里的扇形统计图各表示的什么意思?说明:扇形统计图究竟有什么特点呢?它是怎样绘制出来的呢?这就是本节课要学习的内容。

  二、教学新课

  1.说明扇形统计图及其特点。

  说明:从上面的扇形统计图可以看出:它是用一个圆表示各个部分的总数量,在圆里用大小不同的扇形表示出各个部分的数量占总数量的百分之几。这种统计图清楚地反映出各个部分数量同总数量之间的关系。

  2.教学例题。

  (1)出示例题.根据扇形统计图的表示形式,讨论制成扇形统计图的步骤。引导学生交流各自的想法,得出步骤井板书:

  ①

  ②

  ③

  ④计算百分数;计算圆心角;画出圆和扇形;标明百分数。

  (2)要求学生自己完成第一步,在练习本上计算出各部分数量占总数量的百分之几。同时指名一1

  人板演,然后集体订正,用加法检验各部分百分比的和是不是100%。

  (3)先说明一个圆的度数是360度,再让学生按总数量的百分之几求出表示各部分数量扇形的圆

  心角度数。学生口答,老师板书算式和结果。检验几部分圆心角的和是不是360度。

  (4)分割成扇形。

  老师说明画法,同时板书:先画一个圆,说明表示总数量;再分割成3个扇形,说明各表示哪个数量。

  (5)标明各部分数量名称和百分数。

  指名学生说说每个扇形各表示哪个数量,占百分之几,老师在图中板书。让学生自己画圆、分扇形并标明各个部分数量的名称和百分数。

  (6)区分各部分并写出统计图名称。

  说明要用阴影或不同颜色区分不同的扇形,写出统计图名称,并让学生自己完成。指名一人板演,其余学生完成在自己的统计图上。集体订正。

  (7)小结过程。

  提问:谁来看图说说刚才制作这幅统计图的.。过程?你能说一说这幅统计图的意思吗?扇形统计图有什么特点?

  三、课堂练习

  l.做课后习题第1题。

  提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算后填写课本上的表格。出示表格,指名口答结果,老师板书。让学生说说每一个数量是怎样计算出来的。

  2.做课后习题第2题。

  提问:这个圆等分成多少份?每份所对扇形的圆心角多少度?请大家先计算每项收入相应的扇形圆心角度数,再画出扇形统计图。老师巡视辅导。提问学生每一部分所占扇形是图的20等份里的几份。

  四、课堂小结

  扇形统计图有什么特点?怎样根据统计数据来制作扇形统计图?

六年级数学下册总复习教案9

  教学目标:

  知识与技能

  学会用正、反比例的方法解决问题,并掌握用比例解决问题的思路和一般步骤。

  过程与方法

  1.通过知识迁移,在复习用正比例解决问题的基础上,探究用反比例解决问题的方法。

  2.借助对比练习,总结用正、反比例解决问题的方法步骤,培养学生分析解决问题的能力。

  3.通过策略多样化的训练,培养学生的发散性思维。

  情感态度和价值观

  感受数学知识与实际生活的密切联系,培养应用数学的能力。体验解决问题的乐趣,激发学习兴趣,培养学生动脑思考的良好学习习惯。

  教学重难点:

  教学重点:

  用比例知识解答比较容易的归一、归总应用题。

  教学难点:

  掌握用比例知识解决问题的思路和一般步骤,准确判断题中数量之间存在的比例关系,根据正、反比例的意义正确列式。

  教学准备:

  多媒体课件;小组学习记录卡。

  教学方法:

  尝试教学法、引导发现法等。

  教学过程:

  一、铺垫孕伏,建立表象。(课件出示)

  1.判断下面每题中的两种量成什么比例?

  (1)一辆汽车行驶速度一定,所行路程和时间。

  (2)书的总本数一定,每包的本数和包装的包数。

  (3)圆柱的体积一定,圆柱的底面积和高。

  (4)单价一定,总价和数量。单价一定,总价和数量。

  2.下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

  (1)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

  (2)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

  [设计意图]本节课的教学内容是正、反比例的应用,因此通过本环节的教学,使学生加深对正、反比例的意义理解,能正确判断成正、反比例的量。

  二、创设情境,探索新知

  (一)回顾旧知,激发兴趣

  1.出示例5情景图,说一说图意,了解数学事例。

  2.让学生自己解答,然后交流解答方法。

  [设计意图]用以往学过的方法解决问题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的'检验,帮助学生在后面的学习中构建知识结构。

  引导过渡:这个问题除了用算术方法解答外,还可以用比例的知识来解答,下面我们继续探究怎样用比例解决问题。

  (二)探究新法,感知策略

  1.梳理两种相关联的量。

  师:用比例解决问题,必须知道题中有哪两种相关联的量,你们能说一说题中有哪两种相关联的量吗?(板书:相关联的两种量:水费、用水吨数)

  2.因为( )一定,所以( )和( )成( )比例。也就是说,( )和( )的比值相等。

  5.根据这样的关系,你能列出比例吗?

  6.请解比例。

  小组合作探究用比例解题的方法。

  找出题中两种相关联的量,以及对应的数据,完成探究活动。

  设计意图]教师提出小组合作学习的要求,明确学习的目标和任务、组织学生如何开展学习,是小组合作学习必不可少的部分。探究的问题既突出了学习的重点,又把用比例解决问题的探究过程清晰地呈现出来,有利于学生建构用比例解决问题的策略。

  (三)形成策略,展示成果

  我们知道(每吨水的价钱)一定,所以(水费)和(用水量)成正比例。也就是说,两家的(水费)和(用水量)的(比值)相等。设李奶奶家上个月的水费是x元。列出比例是:(或28:8=x:10),比例的解是x=35。(板书解法)

  [设计意图]注重学生在教学活动中的主体性,留给学生充分的时间和空间。先让学生自己解答,再组织、引导学生合作、交流自己发现方法。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力,探究能力。使学生增强学习的自信。

  (四)检验反思,提炼策略

  师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?

  启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。

  师:反思刚才的学习过程,我们一起来归纳用比例解决问题的“五步曲”:

  一找(梳理相关联的两种量)、二判(判断相关联的两种量成什么比例)、三列(设未知x,根据判断列出比例)、四解(解比例)、五检(用自己熟练的方法来检验)。

  [设计意图]“检验反思”有利于培养学生良好的学习习惯,同时提高解决问题的正确率。归纳解题的策略,有助于提高学生解决问题的能力。

  (五)即时练习,巩固提高

  同学们不仅用我们过去的方法解决了李奶奶的问题,还发现用比例的方法也能解决李奶奶的问题,同学们真能干!接下来请你们解决一下王大爷的问题吧!

  出示“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”让学生进行变式联系。

  (学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

  三。应用策略,拓展新知

  1.例6:一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?这个问题同学们一定会解决!

  (1)自主解决问题。

  (2)交流汇报解决过程。

  (3)师:通过这个问题的解决,我们又了解到了用反比例意义也能帮助我们解决生活中的实际问题。

  [设计意图]让学生通过自己的努力获得用反比例的知识解决问题的能力。

  2.学生独立解决做一做的问题。

  师:说一说题中的数量关系以及解决问题的思路。

  [设计意图]再次让学生感受用比例的知识解决问题的方法,丰富解决问题的思路。

  四、归纳总结,揭示主题

  应用比例知识解答应用题,你是怎样想怎样做的?

  强调:用比例解答应用题的关键是正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。

  [设计意图]通过例题的讲解,学生总结用比例解答应用题关键和解题步骤。

  五、巩固练习,考考自己(课件出示)

  1.独立去思考,列式不计算。

  (1)食堂买3桶油用780元,照这样计算,买8桶油要用多少元?

  (2)同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

  2.仔细去分析,巧妙来选择。

  (1)李师傅5小时做80个零件,照这样计算,16小时可以做多少个零件?这题( ) A.用正比例解B.用反比例解C.不能用比例解

  (2)装订一批书,计划每天装订1800本,40天完成,实际每天装订20xx本,实际几天可以完成?解答时设实际X天可以完成。正确的列式是( )

  A.1800X=20xx×40 B.20xxX=1800×40 3.争做小法官,认真来判断。

  (1)某食堂12天烧煤15吨,照这样计算,100吨煤可以烧多少天?

  解答时设100吨可以烧X天。列式为12:15=100:X ( )

  (2)一辆汽车从甲地开往乙地,每小时行驶70千米,5小时到达。如果要4小时到达,每小时需要行驶多少千米?这是一道正比例应用题。( )

  4.用边长为15cm的方砖给教室铺地,需要20xx块。如果改用边长为25cm的方砖铺地,需要多少块?(用比例解答)

  [设计意图]通过不同层次的练习,循序渐进,围绕所学基础知识设计变式题,符合学生的知识水平和思维水平,使学生不仅会做,而且会想。练习形式多样,从而激发学生的练习兴趣,使他们从不同的途径和角度去加深理解和巩固知识。

  六、盘点收获

  今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?解题的步骤是什么?(学生自己用语言叙述)

  七、作业布置:

  教科书P63、64练习十一第3、8题。

  【板书设计】

  用比例解决问题

  用比例解决问题的“五个步骤”:例5解:设李奶奶家上个月的水费是χ元。

  一找(梳理相关联的两种量) 28:8=χ:10

  二判(判断相关联的两种量成什么比例) 8χ=28×10

  三列(设未知x,根据判断列出比例) χ=280÷8

  四解(解比例) χ=35

  五检(用自己熟练的方法来检验)答:李奶奶家上个月的水费是35元。

六年级数学下册总复习教案10

  教学内容:

  成反比例的量。

  教学目的:

  使学生理解反比例的意义,会正确判断两种相关联的量是否成反比例,培养学生判断能力。

  教学重点、难点:

  反比例的意义和正确判断成反比例的量。

  教具准备:

  小黑板、投影片。

  教学过程

  一、复习

  1、口答正比例的意义。

  2、怎样判断两种量成正比例?

  3、写出下面各题的数量关系,并判断在什么条件下,其中哪两种量成正比例?

  (1)已知每小时加工零件数和加工时间,求加工零件总数。

  (2)已知每本书的价钱和购买的本数,求应付的钱。

  (3)已知每公亩产量和公亩数,求总产量。

  二、引新

  在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)

  三、新授

  1、教学例4。

  (1)出示例4。

  引导学生观察上表内数据,然后回答下面的问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、加工的时间是否随着每小时加工的个数的变化而变化?怎样变化?

  C、表中两个相的数的比值是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律?

  D、这个积表示什么?写出表示它们之间的数量关系式。

  学生口答,师板书

  小结:

  2、教学例5

  用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系?请你先填写下表。

  每本的页数15 20 25 30 40 60

  装订的本数40

  (1)先填表,然后观察上表,回答下列问题:

  表中有哪两种量?

  装订的本数是怎样随着每本的页数变化而变化的?

  表中相对应的每两个数的乘积各是多少?

  你从中发现什么规律?写出它们的数量关系式?

  学生回答,教师板书如下:

  每本页数装订的本数=纸的总页数(一定)

  (2)小结:

  从上表可以看出:每本的页数和装订的`本数也是两种相关联的量,装订的本数是随着本页数的变化的。每本的页数扩大,装订的本数反而缩小;每本的页数缩小,装订的本数反而扩大。它们扩大、缩小的规律是:每本的页数和装订的本数的积总是一定的。

  (3)归纳反比例的意义及关系式。

  (1)请你比较一下上面的例4、例5,它们有什么共同特点?(教师引导学生归纳概括出反比例的意义)

  (2)判断成反比例量的方法:根据反比例的意义判断两种量是否面反比例的量要具备的条件:

  a两种相关联的量。

  b一种量变化,另一种也随着变化。

  C两种量中相对应的两个数的积一定。

  (3)例4中,加工的时间随着每小时加工数量的变化,每小时加工的数量和加工的时间的积(零件总数)是一定的,我们就说每小时加工的数量和加工的时间是成反比例的量。想一想:在例5中,有哪两种相关联的量?它们是不是成反比例的量?为什么?(指名几个学生口述,教师帮助纠正)

  (4)概括关系式。

  如果用字母X和Y表示两种相关联的量,用R表示它们的积(一定),反比例关系可以用下面的式子表示:

  XY=R(一定)

  3.教学例6。

  播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  师:大家能不能根据反比例的意义判断一下?

  指名口述,师讲评。

  (每天播种的公顷数和要用的天数是两6种相关联的量,每天播种的公顷数天数=播种的总公顷数,已知播种的总公顷数一定,也就是每天播种的公顷数和天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。)

  四、小结

  判断两种相关联的量是否成反比例,关键是看两种相关联的量中相对应的两个数的积是否一定,积一定这两种量成反比例。

  讨论:想一想:播种总公顷数一定,已经播种的公顷数和剩下的公顷数是不是成反比例?为什么?

  五、巩固练习

  课本第16页的做一做练后讲评。

  六、课内外作业

  完成练习三的第4――7题。

六年级数学下册总复习教案11

  教学目标:

  1.让学生感受数学与生活的联系。

  2、学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。

  3.明确折扣的含义,能熟练地把折扣写成分数、百分数。正确解答有关折扣的。实际问题。

  教学重点:

  会解答有关折扣的`实际问题。

  教学难点:

  合理、灵活地选择方法,解答有关折扣的实际问题。

  教学准备:课件、计算器

  一、导入新课:

  圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销?(学生汇报调查情况。)

  二、在生活情境中,讲授新知:

  1.教学折扣的含义,会把折扣改写成百分数。

  刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?

  你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)

  ①大衣,原价:1000元,现价:700元。

  ②围巾,原价:100元,现价:70元。

  ③铅笔盒,原价:10元,现价:?

  ④橡皮,原价:1元,现价:?

  动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?

  仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。

  讨论,找规律:

  A、学生动手操作、计算,并在计算或讨论中发现规律。

  B、学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。

  归纳,得定义:

  A、通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?

  B、概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”是就是十分之几,也就是百分之几十)

  练习:

  ①四折是十分之(),改写成百分数是()。

  ②六折是十分之(),改写成百分数是()。

  ③七五折是十分之(),改写成百分数是()。

  ④九二折是十分之(),改写成百分数是()。

  2.运用折扣含义解决实际问题。

  例1:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

  (1)指导学生分析题意:打八五折怎么理解?是以谁为单位“1”?

  (2)学生试做,讲评。

  3、巩固练习:

  (1)爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

  A、打九折怎么理解?是以谁为单位“1”?

  B、学生试做,讲评。

  (2)判断:

  ①商品打折扣都是以原商品价格为单位“1”,即标准量。()

  ②一件上衣现在打八折出售,就是说比原价降低10%。()

  (3)完成课本中P8“做一做”练习题。

六年级数学下册总复习教案12

  教学目标

  1、通过复习使学生把稍复杂的分数、百分数应用题的有关知识系统化。

  2、使学生牢固掌握分数、百分数应用题的基本数量关系和解题方法。

  3、通过运用知识解题,提高解决实际问题的能力。

  教学重点

  综合运用知识解答有关应用题

  教学准备

  课件,作业纸

  教学过程

  一、 导入

  谈谈学校的体育达标情况。

  出示;体育达标率为99.7%

  从这个条件,你能知道什么?你还想到了什么?

  揭题:分数、百分数应用题

  二、 教学新课

  (一)求分率

  1、出示学校体育达标情况:优秀650人,良好400人,合格250人。

  2、根据这些条件,你可以提出那些不同的有关分数、百分数的问题?

  3、同桌合作,讨论完成。

  4、反馈

  (1)一个数是另一个数的几(百)分之几?

  例如:优秀率?650(650+400+250)=50%

  (2)一个数比另一个数多(少)几(百)分之几?

  例如:优秀比良好人数多几分之几?(650-400)400=5/8

  (二)求单位1或求分率所对应的量

  1、把问题当成条件,根据条件编分数、百分数应用题

  优秀650人,良好400人,合格250人,总人数1300人,优秀率50%,优秀比良好人数多5/8。

  2、小组合作完成

  3、反馈,并解答,想想有没有另外方法可以解答。

  ① 在体育达标中,我校1300人,优秀率为50%,优秀人数是多少人?

  130050%=650(人)(说说你的.揭题思路)

  ② 在体育达标中,我校优秀率为50%,优秀人数为650人,全校有多少人?

  65050%=1300(人)

  ③ 在体育达标中,我校优秀人数650人,比良好人数多5/8,良好人数有多少人?

  650(1+5/8)=400(人)(说说你的解题思路)

  ④ 在体育达标中,我校良好人数400人,优秀人数比良好人数多5/8,优秀人数多少人?

  400(1+5/8)=650人

  4、观察这些应用题,找找相同点与不同点

  ①有共同的数量关系 单位1分率=分率对应的量

  ②单位1已知或未知

  5、你认为在解这类应用题是要注意什么?

  6、师小结:找准单位1的量,根据已知与未知判断方法。列出题中数量间的相等关系。

  (三)练习

  1、对比练习

  ① 学校运动队有30名男队员,女队员比男队员少1/6,女队员比男队员少多少人? 301/6=5人 (说说另外的方法)

  ② 学校运动队有25名女队员,女队员比男队员少1/6,女队员比男队员少多少人? 25(1-1/6)-25=5(人) (说说另外的方法)

  通过练习,你想说什么?(看清单位1,找准关系。)

  2、一题多解

  陈老师看一本200页的故事书,前5天看了1/4,照这样计算,还要几天可以看完?

  你能用几种方法就用几种方法,先独立完成,不能解答时与同桌交流,比比谁的方法多,谁的方法好?

  反馈、交流

  师总结:在解答时可以不用具体数量,直接用分率求,也可以用具体数量进行计算。通过比较可以发现用分率求比较简单。

  3、专题研究

  某种股票进期走势如下

  日期

  13日

  14日

  15日

  16日

  涨跌

  +5%

  +5%

  -5%

  -5%

  某股民用10000元炒该股,你认为该股民从13日购入到16日为止是亏还是盈,并说明理由。

  (四)课堂总结

  谈谈通过这节课的复习,说说你的想法

六年级数学下册总复习教案13

  【教学内容】

  教材第11-12页内容。

  【教学目标】

  1.理解储蓄的含义,明确本金、利息和利率的含义。能正确地进行利息的计算。

  2.经历储蓄的认识过程,体验数学知识之间的联系和广泛应用。

  3.激发学生学习兴趣,培养学生的应用意识和实践能力。

  【教学重点】

  掌握利息的计算方法。

  【教学难点】

  理解税率的含义。

  【教学过程】

  一、情境导入

  快要到年底了,许多同学的爸爸妈妈单位里会在年底的时候给员工发放奖金。你的爸爸妈妈拿到这笔钱以后是怎么处理的呢?爸爸妈妈会不会把一大笔现金放在家里?为什么?

  (启发学生说出各种可能性和原因)

  师生共同小结:人们常常把暂时不用的钱存入银行,储蓄起来。这样不仅可以支援国家建设,使得个人钱财更加安全和有计划,还可以增加一些收入,即到期可以取出比存入的要多些的钱。

  那么同学们知道为什么有时我们把钱存在银行,最后去取的时候钱会变多呢?

  同学们知道吗,在不同的银行,有时我们可以得到不同的。利息,因为它们的利率不同。那么,什么是利率呢?今天我们就一起来学习一下。

  教师板书课题:利率。

  二、探究新知

  1.引导质疑,理解相关概念。

  (1)学生围绕上面提出的问题,以小组为单位,阅读教科书第11页,不理解的内容可在小组讨论或做上记号。

  学生看书时,教师巡视指导,并参与学生的讨论。

  (2)汇报交流。

  师:通过看书学习和讨论,你知道了储蓄中的哪些知识?能向全班同学汇报一下吗?

  教师根据学生的回答板书:

  存款方式

  活期

  定期:零存整取、整存整取

  本金:存入银行的钱叫本金。

  利息:取款时银行多支付的钱叫利息。

  利率:利息和本金的比值叫做利率。

  利息=本金×利率×存期

  教师说明:利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。同一时期,各银行的利率是一定的。

  2.教学例4。

  (1)课件出示例4。

  (2)引导学生理解题意,本题中本金、利率、存期分别是多少?

  (3)到期后取回的钱除了本金,还应加上利息。

  (4)学生独立完成,后交流展示。

  方法一:5000×3.75%×2=375(元)

  5000+375=5375(元)

  方法二:5000×(1+3.75%×2)=5375(元)

  (5)教师讲解:存期是几年,就要选取相对应的年利率。本金与年利率相乘,得出的是一年的`利息,求两年的利息就要乘2。

  三、巩固练习

  1.完成教科书第11页“做一做”。

  先提问本题中本金、利率、存期分别是多少?后学生独立完成,集体订正。

  2.完成教科书第14页第9题。

  教师引导学生观察存款凭证后提问:存期是多长?半年用多少年计算?

  四、课堂小结

  这节课你学习了什么?你有哪些收获?

  【板书设计】

  【教后思考】

  储蓄与人们的生活联系密切。本节课中概念较多,教学中结合具体实例,帮助学生理解本金、利息、利率的含义以及三者之间的关系,在引导学生探究学习的过程中,有意识地引导学生把所学知识运用到生活实践中去。学生在解决有关“利率”的问题时,可能会出现以下几个错误:计算利息时忘记乘存期;没有注意利率和存期的对应性;计算利息时,存款的利率是年利率,计算时所乘时间的单位应是年等。要将学生的错误转化成学习资源,在纠错中进一步理解和掌握知识。

六年级数学下册总复习教案14

  第五单元 总复习

  数 与 代 数

  课题一:数的分类和读写法整理和复习

  教学内容:六年级下册第38—40页 1—5题

  教学目标:

  1、使同学牢固地掌握整数,小数、正负数等概念的意义,沟通知识之间的联系和区别。

  2、使同学能熟练地读、写数,并进行数的改写。

  3、通过自主探索和合作学习,使同学在整理复习中形成知识网络,学会复习方法,提高综合运用能力。

  教学重、难点:掌握有关数的意义和多位数的读写法,沟通联系,形成知识网络。

  教学准备:多媒体课件,练习纸等

  教学过程:

  一、联系实际,引入课题

  1、谈话激趣。

  谈话主题:日常生活中的整理话题

  同学联系实际举例,教师和时渗透整理的'意义和整理方法。

  2、迁移导课。

  师:生活中我们很多地方用到了整理,整理也是一种非常重要的学习方法,这节课我们一起整理和复习有关数的基础知识。(板书课题)

  二、回忆整理,沟通联系。

  1、数的搜集。

  师:同学们,回忆一下我们学过哪些数呢?

  同学回忆搜集学过的数(随着同学回忆屏幕上显示:整数、小数、自然数、正数、负数……)

  2、分类整理。

  师:大家还记得这些数的意义吗?咱们看着大屏幕,小组内互相说一说。

  各小组在班上交流,然后独立完成书38页第1题,集体证正。

  3、数的读写和改写。

  小组探究,一起参与

  同学自身举例,出示多位数,提出问题考考大家。

  通过同学之间、组与组之间、师生之间相互提问、相互质疑、相互争辩、相互评价,完成知识构建。

  三、综合练习,加深理解。

  填空:(1)在0、8、-15、10、3.15、-3.7、0.43中( )是自然数,( )是小数,( )是整数,( )是正数,( )是负数。

  (2)九亿六千万四百三十写作( ),四舍五入到亿位记作( )。

  (3)二百零七零零四写作( )

  (4)53005300读作( )

  (5)3.92保存一位小数约是( )

  四、总结全课学习情况。

  五、作业。

  教科书39—40页3、4、5题。

六年级数学下册总复习教案15

  教学内容

  (1)负数的初步认识

  (2)(教材第3页例2)。

  教学目标

  通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

  重点难点

  体会引入负数的必要性,初步理解负数的含义。

  情景导入

  教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。

  师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)

  新课讲授

  1、教学例2。

  (1)教师出示存折明细示意图。(教材第3页的`主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。

  (2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。

  (3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。

  2、归纳正数和负数。

  (1)你能把黑板上板书的这些数进行分类吗小组讨论交流。

  (2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我

  们把它叫做负数。

  (3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”

  归纳:0既不是正数也不是负数,它是正数和负数的分界点。

  (4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。

  课堂作业

  完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:

  4 +41 51负数有:—7?

  3、正数有:+

  课堂小结

  通过这节课的学习,你有什么收获

  课后作业

  完成练习册中本课时的练习。

  第2课时负数的初步认识

  (2)正数:+8负数:—8

  +4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20

  0既不是正数也不是负数。

【六年级数学下册总复习教案】相关文章:

数学总复习教案11-16

六年级数学下册总复习教案01-15

小学数学总复习教案05-06

六年级下册数学总复习教案设计05-01

小学数学总复习教案【热】06-29

数学总复习教案(15篇)01-27

数学总复习教案14篇01-26

小学六年级数学下册《常见的量》总复习教案05-01

小学数学五年级下册总复习教案05-03