五年级下册数学教案

时间:2024-10-19 15:58:31 数学教案 我要投稿

(优)五年级下册数学教案

  作为一位兢兢业业的人民教师,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。我们该怎么去写教案呢?以下是小编收集整理的五年级下册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

(优)五年级下册数学教案

五年级下册数学教案1

  课标要求:

  探索给定情境中隐含的规律。

  课标解读:

  行为动词是“探索”,指的是独立或他人合作参与特定的数学活动,理解或提出问题,寻求解决问题的思路,发现对象的特征及其与相关对象的区别和联系,获得一定的理性认识。核心词是“规律”,本节课指的是有序思考的方法。

  由此看来课标对这部分知识的要求是让学生在解决实际问题的过程中,学会排列方法,即有序排列,而不是杂乱无章的去解决问题。

  教材分析:

  教材是通过三个人排列照相有多少种不同的排法,四个人小合唱固定一个人的位置又有多少中不同的排法,这样两个问题引导学生认识和了解简单的排列,通过列举等直观方法帮学生发现规律掌握解决问题的策略和方法。同时让学生初步的观察、分析、推理及有序全面思考问题的意识与能力。其中重点是培养学生的'思维方法,发展学生的思维能力。

  教学目标:

  1、探索、发现现实生活中简单的排列规律,培养观察能力及初步推理能力。

  2、通过观察、研读、交流、验证等活动,经历探索简单事物排列的过程,体验有序、全面地思考问题的方法。

  3、在解决实际问题中体验成功的喜悦,感受数学与生活的紧密联系和数学学习的乐趣,激发学生对身边事物进行数学思考的意识,培养学生初步的数学意识。

  教学重、难点:

  在探究的过程中,发现简单事物的排列规律。

  教学策略:

  (1)情境教学法:通过创设现实情境,引起学生的学习兴趣及本节课所要研究的主要问题。

  (2)“探究——研讨”法:学生在自主探究、合作交流的过程中,分析问题、解决问题、发现问题,从而提高思维能力。

  教学环节:

  第三个环节是运用规律解决问题。在这个环节,我提出了

  “如果于老师带领我们班A、B、C三个同学到文登学公园游玩,最后我们四个人要排成一行合影留念,而且要把老师安排在左起第二个位置上,其他的3个同学任意排。想一想,有多少种不同的排法?这个问题,引发学生的思考,引导学生发现,三个人排队和四个人排队且确定一个人的位置的排法总数是相等的,让学生意识到排法总数是不受确定的那个人的位置影响的。让学生在探究中体会有序思维方法,发展学生思维能力,在交流中进行思维的碰撞,统一认识。

五年级下册数学教案2

  教学目标

  1.通过整理和复习,进一步理解长方体和正方体相关知识的内在联系,并能灵活运用。

  2. 在同学们对这些形体认识和理解的基础上,进一步培养空间观念。

  3. 在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养同学们的

  合作意识和创新精神。

  教学重点

  灵活运用知识解决实际问题。

  教具学具

  师:长方体、正方体模型各一个,多媒体课件。

  生:长方体、正方体模型各一个。

  教学过程

  一、回忆所学知识

  师:(出示长方体和正方体模型)同学们对这两个物体一定很熟悉吧。它们一个是长方体,一个是正方体。关于长方体和正方体你都了解了哪些知识?

  学生回答,回顾本单元的知识点。

  教师根据学生的回答,把本单元的主要知识点出示在黑板上。

  二、系统整理本单元的知识

  1. 揭示课题

  师:今天这节课,我们就一起来对长方体和正方体的有关知识进行整理和复习。

  2. 对知识点进行分类,做好铺垫

  师:关于这一单元,我们应该从哪几方面进行整理呢?

  生:我认为应该从长方体和正方体的特征、表面积和体积三个方面进行整理。

  3. 分组整理

  师:接下来,同学们以小组为单位,把这些知识点从正方体和长方体的特征、表面积和体积三

  个方面进行整理,在整理时请将你对大家的友情提示和你们还没解决的问题提出来。现在由组长执笔,把你们整理的内容记录在纸上。

  学生分组进行交流。

  在学生交流的.过程中,教师巡视,对整理得有特色的小组,教师要心中有数,便于稍后的交流。

  4. 学生汇报

  师:哪个小组愿意把你们组整理的结果拿到前面来展示展示?

  学生展示的同时要给大家介绍一下整理的内容。

  (第一小组介绍完以后)师:听了他们组的介绍,你能不能对他们的整理进行评价?

  其他小组分别评价,评价时既要说一说优点,也要指出不足。

  师:哪个小组还愿意将你们组的整理结果向大家展示一下?

  教师请几组上来展示,总结时先肯定他们的努力,以寻找优点为主,指出不足为辅,激发学生

  的积极性。

  5. 归纳总结

  师:刚才,同学们互相合作,整理出了长方体和正方体这一单元的主要内容,并且坦诚地对各

  小组的整理进行了评价。对于这一单元的知识,你还有需要提醒同学们注意的地方吗?

  学生自由发言。

  [简评:整理知识是为了查漏补缺,教师在让学生整理时要鼓励学生大胆暴露自己的问题,寻求同伴的帮助。只有这样,才能达到提高的效果。学生在交流评价时,即要尊重同学的劳动成果,又要发现同学的不足。怎样处理这一对矛盾,可以借鉴这位老师的一些做法。]

  三、练习提高

  1. 基础练习

  师:接下来,我们就利用刚才整理的知识解决一些实际问题。

  (1)判断。

  ①棱长为6cm的正方体的表面积和体积相等。()

  ②把一个长方体分成相等的两部分,它的体积大小不变,所以表面积不变。()

  ③两个长方体的体积相等,表面积也一定相等。()

  (2)填空。

  ①5800mL=()L=()dm3。

  ②一个保温瓶能装水4()。

  ③一个长方体有个顶点,在长方体的一个顶点上相交了条棱,这三条棱分别叫做长方体的()、

  ()、()。

  (3)学生独立完成第59页第2题。

  2. 实践练习

  小正方体拼合,体积、表面积的变化情况。

  (1)课件演示:将5个棱长是2cm的小正方体合成一个大正方体,体积和表面积又有怎样的变

  化?

  (2)从这个实验中,你感受到了什么?

  四、课堂小结

  这节课整理复习了什么?你有哪些收获?

  [简评:让学生自己回忆和整理知识,有利于他们主动地梳理头脑中原有的知识体系,加强理解知识间的内在联系,使知识在孩子们的头脑中形成网络,进一步提高学生整理复习的能力。而让他们自由地独立设计或合作设计,也较大程度地激发了学生的创造性与合作性。知识的练习要针对本单元的重难点,有层次的设计使不同层次的学生都有所收获。]

五年级下册数学教案3

  第1课时

  教学课题:可能性

  教学内容:教科书第133-134页内容。

  教学目标:

  1、结合现实事例,初步学会求简单事件发生的可能性的大小。

  2、在游戏中,体验事件发生的等可能性以及游戏规则的公平性。

  3、通过解决简单实际问题,体会数学与生活的密切联系,感受学习数学的乐趣。

  教学重点:

  1、求一些简单事件发生的可能性的大小

  2、体会游戏规则公平性。

  教学难点:

  1、求一些简单事件发生的可能性的大小

  2、体会游戏规则公平性。

  教学具准备:课前预习、各种颜色的球数个。

  教学过程:

  一、创设情境、谈话导入

  你们喜欢下跳棋吗?下跳棋时你们用什么方法决定谁先走子?

  由学生口答

  同学们有这么多的办法,我们学校举行了一场跳棋比赛,李力和方明是四年级的种子选手,他们怎样决定谁先走子的?

  出示情景图:摸棋子决定吧,摸到红子你先走,摸到蓝子我先走。

  出示两袋棋子。

  这里有两袋棋子,应该摸哪袋呢?为什么?

  学生回答

  看来,同学们一致认为摸甲袋棋子公平,(板书:公平)摸甲袋棋子为什么公平呢?

  甲袋中红子和蓝子的个数同样多,摸到红子和蓝子的可能性相同吗? (甲袋中摸到红子和蓝子的可能性都是一半)

  学生说完后老师小结:红子和蓝子的个数同样多,都占总数的二分之一,也就是摸到红子和蓝子的可能性相等,你能用一个数表示出摸到红子和蓝子的可能性都是多少吗?

  为什么用二分之一表示,你是怎样想的?

  重点引导学生说出红子和蓝子的.个数都占总数的二分之一,所以摸到红子和蓝子的可能性相等,都是二分之一

  板书:可能性相等公平

  摸乙袋棋子为什么不公平呢?

  学生可能出现的情况:

  【乙袋中红旗子有1个,摸到红子的可能性是三分之一,蓝子有2个,摸到蓝子的可能性是三分之二,所以摸乙袋不公平。红子的个数占总数的三分之一,蓝子的个数占总数的三分之二,摸到蓝子的可能性大,所以摸乙袋不公平。】

  这节我们就学习可能性的大小。

  板书:可能性有大小不公平,老师就说,在甲袋中红子和篮子各一个,都占总数的,我们就说在甲袋中摸到红子和篮子的可能性相等都是,然后问学生:在甲袋中摸到红子很篮子的可能性为什么都是呢?

  二、合作交流,探究新知:

  1、抛硬币

  刚才李力和方明用摸棋子的方法决定谁先走子,用抛硬币的方法可以吗? 请同学们认真的读一读游戏规则。

  游戏规则:任意抛出一枚硬币,如果正面朝上李力先走,如果反面朝上,方明先走。

  你认为这种方法公平吗?为什么?把你的想法说给小组的同学听听。 其实抛硬币这种方法科学家们经过大量的试验证明是公平的,现在让我们一起了解一下他们的实验数据。

  浏览抛硬币的数据:

  法国数学家、自然科学家蒲丰的实验数据,他做了4040次实验,其中有xx次正面朝上,1992次反面朝上。

  美国数学家费勒的实验数据,他做了10000次实验,其中有4979次正面朝上,5021次反面朝上。

  英国统计学家皮尔逊的实验数据,他做了24000次实验,其中有1xx次正面朝上,11988次反面朝上。

  这些数据说明了什么?找学生回答

  通过大量的实验科学家们发现实验的次数越多,正面朝上和反面朝上的可能性就越接近二分之一,所以抛硬币的游戏规则是公平的。

  2、转盘摸奖游戏

  刚才同学们通过研究摸棋子和抛硬币的游戏规则,知道了可能性有大有小,当可能性相等时游戏规则就是公平的,现在我们就利用刚才的知识做个幸运转转转的游戏好吗?

  教师出示颜色大小不等的转盘。

  老师决定指针停在红色区域给第一小组发奖品,指针停在绿色区域给第二小组发奖品,指针停在黄色区域给第三小组发奖品,指针停在蓝色区域给第四小组发奖品,指针停在紫色色区域给第五小组发奖品。这样抽奖公平吗?

  怎样才能使转盘公平呢?学生回答

  教师拿出五等分的转盘,问:使用这个转盘公平吗?为什么? 引导学生说出指针停在每种颜色区域的可能性都是。

  3、装球游戏

  刚才我们做了幸运转转转游戏,我们再来做个装球的游戏好吗?。谁愿意给大家读一读装球的要求。

  你能按要求装球吗?现在请小组长拿出我们的学具,请同学们按要求装球,装完后把你的装球方法说给小组的同学。

  班内汇报交流:你是怎样装的,为什么这样装呢?

  (相同的方法只说一次) 备注:如果学生没有说出可能性是

  4、砸金蛋

  刚才我们在游戏中学习了用分数表示可能性的大小,其实在我们的生活中隐藏着许多可能性大小的问题,现在让我们带着一双数学的眼睛走进非常6加1砸金蛋的现场。

  你能解决这里面的可能性的问题吗?

  出示:在不知情的情况下,第一次砸到一部手机,第二次再砸,再次砸到手机的可能性是()

  5、摸牌游戏

  同学们喜欢玩扑克牌吗?在我们经常玩的扑克牌中也有有趣的可能性现象呢。

  6、成语中的可能性

  看来同学们对可能性的问题掌握的很牢固,解决问题已经是十拿九稳了,“十拿九稳”这个成语中用没有我们今天学习的可能性的大小问题呢?

  你还能举出这样的例子吗?

  看来语文和数学是相通的,只要我们善于观察就会发现很多有趣的现象。

  三、课堂总结:这节课你有什么收获呢?

  四、限时作业。

五年级下册数学教案4

  教学目标

  1.通过教学,使学生巩固对两个数的公倍数和最小公倍数的意义的理解,掌握求两个数最小公倍数的方法。

  2.培养学生用多种方法解决问题的能力。

  3.培养学生归纳、概括的能力。

  重点难点

  1.重点:掌握掌握求两个数的最小公倍数的方法。

  2.难点:灵活选择求两个数的最小公倍数的方法。

  教具准备

  投影。

  数学过程

  (一)导入

  上节课我们学习了两个数的公倍数和最小公倍数的意义,这节课我们继续学习有关最小公倍数的知识。

  (二)教学实施

  1.出示例2。

  怎样求6和8的最小公倍数?

  (1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。

  (2)小组讨论,互相启发,再全班交流。

  (3)可能出现以下几种方法:

  方法一:先分别写出6和8各自的倍数,再从中找出公倍数和最小公倍数。

  6的倍数:6,12,18,24,30,36,42,48...

  8的倍数:8,16,24,32,40,48...

  方法二:先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。

  8的倍数:8,16,24,32,40,48...

  方法三:先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。

  方法四:从小到大写出8的倍数,边写边判断是不是6的倍数,第一个是6的倍数的,就是8和6的最小公倍数。

  2,完成教材第90页的“做一做”。

  学生先独立完成,观察每组数有什么特点,再进行交流。

  引导学生总结出求两数的.最小公倍数的两种特殊情况:

  (1)当两数成倍数关系时,较大的数就是它们的最小公倍数。

  (2)当两数只有公因数1时,这两个数的积就是它们的最小公倍数。

  指出:像这样能够直接看出最小公倍数的,就不用再从头去找公倍数了。

  3.完成教材第91页练习十七的第3题。

  学生先独立完成,然后说一说哪几组数属于特殊情况?

  再让学生说一说这几组数的最大公因数是什么?

  你能总结一下找两个数的最大公因数和最小公倍数的一般方法与特殊情况分别是什么吗?

  学生先互相交流,再汇报,总结:

  (1)如果两个数成倍数关系,那么其中的较小数就是它们的最大公因数,较大数就是它们的最小公倍数。

  (2)如果两个数只有公因数1,那么它们的最大公因数是1,最小公倍数是两个数的积。

  (3)一般情况,可以先写出一个数的因数或倍数,再从中找另一个数的因数或倍数,区别是最大公因数从大到小找,最小公倍数从小到大找。

  随着学生的总结汇报,老师出示下表。

  4.完成教材第91页练习十七的第5题。

  学生独立完成,并说明理由。

  5.完成教材第91、92页练习十七的第4、6、7、8题。让学生先独立思考,做出解答。然后让学生汇报自己的解法,并提问:为什么是求两个数的最小公倍数?

  6.完成教材第92页练习十七的第9题。

  学有余力的学生试着完成,并说一说思考过程。

  可以这样想:先从小到大写出36的所有因数,然后从中依次观察哪两个数的最小公倍数是36。

  (四)思维训练

  1.火车站是410路和901路汽车的始发站,410路每隔10分钟发一次车,901路每隔15分钟发一次车,这两路汽车同时在早5:30同时发车后,到中午12时10分有多少次是同时发车的?

  2.兄弟三人同一天从家出发外出打工,老大15天回家一次,老二20天回家一次,老三10天回家一次,下一次兄弟3人同一天从家出发至少需要多少天?

  3.已知a、b的最大公因数是12,最小公倍数是72,且a、b不成倍数关系。求a、b各是多少?

  (五)课堂小结

  本节课我们研究了求两个数最小公倍数的方法。一般情况下,我们可以先找出一个数的倍数,再从小到大,找出另一个数的倍数,从而找到两个数的最小公倍数。另外,还有两种特殊情况:一种是两数成倍数关系时,较大数是这两个数的最小公倍数;另一种是两数只有公因数1时,这两个数的积就是它们的最小公倍数。我们通过本节课的学习,还对求两个数的最大公因数与最小公倍数进行了对比,并能熟练应用最小公倍数的知识解决生活中的实际问题

五年级下册数学教案5

  教学目标

  1、知识与技能

  初步认识分数乘法,具备计算整数乘以分数的能力。

  2、过程与方法

  通过举例以及变式初步理解分数乘法。

  3、情感态度和价值观

  通过举实例,逐步深入讲解分数乘法,有利于理解运用新知识。

  教学重难点

  通过举例以及变式初步理解分数乘法

  教学过程

  一、知识回顾

  1、

  2、

  3、

  二、新课引入

  1、举例

  1个占整张纸条的1/5,3个占整张纸条的几分之几?

  两种计算方法:

  加法计算:

  乘法计算:

  2个3/7的和是多少?

  2、观察上述算法,你发现了什么?

  3、对比下列两种算法。

  4、总结归纳

  分数和整数相乘,分子与整数相乘,分母不变。

  计算结果可以写成最简分数,能约分的,可以先约分。

  5、练习

  计算下列题目,并将结果填入表格中。

  4211/21/4

  x12

  48241263

  观察并说一说你有什么发现?

  三、例与练

  例1:4个2/15是多少?

  例2:

  练习:2/3x4

  2/3x4=(2x4)/3=8/3

  四、课堂小结

  五、拓展延伸

  淘气吃了这个蛋糕的1/8,爸爸吃的是淘气的.2倍,爸爸吃了蛋糕的几分之几?

  1x1/8x2=1/4

  答:爸爸吃了蛋糕的1/4。

五年级下册数学教案6

  教学目标:

  1、结合具体事例,经历探索容积计算问题的过程。

  2、掌握计算容积的方法,能解决有关容积的简单实际问题。

  3、在解决容积问题的过程中,体验数学与日常生活的密切联系。

  课前准备:

  每人一个水杯、水、把教材上第33页的问题写在小黑板上。

  教学过程:

  一、问题情境

  1、教师拿出一个保温杯:同学们,水杯是大家非常熟悉的一件生活用品。老师这里有一个水杯,看着这个水杯,你能想到哪些数学问题?

  学生可能会说出许多,如:

  (1)这个水杯的体积是多少?

  (2)这个水杯的高是多少?

  (3)这个水杯的底面直径是多少?

  (4)这个水杯的底面周长是多少?

  (5)这个水杯能装水多少?

  ……

  第(5)个问题如果学生想不到,教师启发:这个水杯是干什么用的?

  2、师:看着一个水杯,同学们能想到这么多数学问题,真是不简单。刚才有人想到“这个水杯能装多少水”,这个问题就很好。谁知道,这个水杯能装多少水,在数学上叫做水杯的什么?(容积)

  师:对,水杯能装多少水叫做水杯的容积。

  板书:容积。

  3、师:现在,老师有个问题,这个水杯的容积和体积相等吗?为什么?

  预设:不相等。因为水杯有厚度,容积小于体积。

  如果学生有其他的说法,只要有道理,就给予肯定。

  二、解决问题

  1、出示教材上的问题和图:同学们对体积和容积这两个概念已经很清楚了,下面我们就来解决关于体积和容积的问题。

  出示教材的问题和图,指名读题。

  师:第(1)个问题很简单,大家看第(2)个问题。谁知道求这个水杯能容纳多少毫升水,求的是什么?(容积)对,要求水杯的容积需要知道什么?(杯子里面的高和直径)很好,那同学们看题中告诉了吗?

  预设:没有,但是,可以计算出来。用外面量的高和底面直径减去水杯的厚度就能求出来。

  师:真聪明。现在请同学们自己解决这两个问题。注意,第(2)题求的是毫升,计算结果保留整数。

  学生独立完成,教师巡视,个别指导。

  2、交流学生计算的过程和结果:谁来说说第(1)题你是怎么算的?

  3.14×(7÷2)2×18≈38(立方厘米)

  内直径:7—0.8×2=5.4(厘米)

  内高度:18—0.8×2=16.4(厘米)

  容积:

  3.14×(5.4÷2)2×16.4

  ≈375(立方厘米)

  =375(毫升)

  如果学生计算内直径或高时,只减去一个0.8时厘米,可让学生讨论一下,形成共识。

  3、师:刚才我们已经计算出了保温杯的体积和容积,谁能说一说,计算容积和计算体积有什么相同点和不同点?

  预设:相同点:都可以用底面积乘高这个公式来解决。不同点:容积计算用从里面测量的数据,体积计算用从外面测量的数据。

  4、教师说明,杯子能装多少水,可以用容积单位,也可以用质量单位,并介绍1毫升水重1克。然后,让学生推算出1升水重1千克。

  5、提出问题(3):如果把6个这样的保温杯倒满,大约需要多少千克水?请同学们自己算一算。

  学生独立解答,然后全班交流。

  师:谁愿意把你计算的过程和结果给我们介绍介绍?

  答案:375×6=2250(毫升)

  2250毫升≈2.25升

  2.25升水重2.25千克

  三、实际测量

  1、师:今天,我们学习了容积的计算,下面请同学们拿出自己带的水杯,量出它的内直径和高,算出这个水杯大约可以装多少水?

  学生拿出自己带的水杯独立完成,然后集体交流测量的方法和计算的结果。学生可能有不同的测量方法。如:

  (1)用直尺直接测杯子内直径和高。

  (2)用直尺测量出杯子的高,外直径和杯子的厚度。

  2、提出兔博士的问题:通过计算水杯的容积,我们知道了水杯能装多少水。如果不测量,不求容积,怎样用天平称出这个杯能装多少克水呢?

  预设:可以先用天平称出空杯子的重量,再称出盛满水后杯子的重量,用盛满水后的重量减去空杯子的重量就是水的重量。

  学生说的`不完整,教师补充。

  三、课堂练习

  1、练一练第1题:真聪明,一个水杯装满水,能盛多少水的问题,同学们解决了。如果一个水杯不装满,你们能计算出杯子中有多少水吗?请同学们看练一练第1题,自己读题。

  师:求这个玻璃杯中有多少升水是求这个玻璃杯的容积吗?

  生:不是,因为杯中水面的高度是15厘米,而整个水杯的高度是25厘米。

  师:那这个杯中的水有多少升呢,请同学们自己计算。

  学生独立完成,再集体交流。

  师:谁来说说你是怎样计算的?

  生:3.14×102×15=4710(立方厘米)

  4710立方厘米=4710毫升=4.71升

  2、练一练第2题

  师:下面我们来看练一练的第2题,请同学们先自己读题。

  学生读完后,教师提问。

  师:谁知道每升柴油0.85千克是什么意思?

  生:就是说每升柴油不到1千克,才0.85千克,柴油比水轻。

  师:谁能说一说求这个油桶能装柴油多少千克,怎样计算?

  生:要求出油桶的容积,这也就是油桶中能装多少升柴油,再用所装柴油的升数乘0.85,就能求出这个油桶能装柴油多少千克。

  师:下面请同学们自己算一算。

  学生独立计算,然后集体交流。

  答案:

  3.14×(4÷2)2×6=75.36(立方分米)=75360(立方厘米)

  75360立方厘米=75.36升

  75.36×0.85≈64.06(千克)

  3、练一练第3题,师:请同学们先读读题,想一想这道题与第2题有什么不同?

  生1:这道题中告诉了我们底面的半径,第2题中告诉了我们底面的直径。

  生2:第2题要求柴油,第3题是汽油,汽油比柴油轻,每升才0.74千克。

  4、练一练第4题,计算环形柱体的体积,可先讨论一下怎样计算,再由学生独立完成。 师:下面请同学们自己算一算。

  学生独立完成,教师巡视。

  答案:

  1米=10分米

  3.14×32×10=282.6 (立方分米)=282600 (立方厘米)

  282600立方厘米=282.6升

  282.6×0.74≈209 (千克)

  师:下面请同学们来看第4题,这是一个环形柱体,谁知道该怎样计算它的体积呢?

  生:用外面这个柱体的体积,减去里面那个空圆柱体的体积。

  学生独立完成,然后交流。

  答案:

  20+5+5=30(毫米)

  3.14×(30÷2)2×34=24021(立方毫米)

  3.14×(20÷2)2×34=10676(立方毫米)

  24021—10676=13345(立方毫米)

五年级下册数学教案7

  【教学内容】

  认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

  【教学目标】

  1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

  2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

  3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

  【重点难点】

  理解因数和倍数的含义。

  【复习导入】

  1. 教师用课件出示口算题。

  10÷5= 16÷2=

  12÷3= 100÷25=

  220÷4= 18×4=

  25×4= 24×3=

  150×4= 20×86=

  学生口算

  2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

  (板书课题:因数和倍数(1)

  【新课讲授】

  1.学习因数和倍数的概念

  (1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

  学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

  教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

  谁来说一说其他的式子?

  学生回答。

  教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  (2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

  学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

  学生回答,教师板书:倍数与因数是相互依存的。

  2.举例概括

  教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

  教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的.因数,谁是谁的倍数。

  教师同时板书。

  教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

  引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

  如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

  A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

  你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

  3、9、15、21、36

  学生独立思考并回答。

  【课堂作业】

  1.完成教材第5页“做一做”。

  2.完成教材第7页练习二第1题。

  3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

  4.下面的说法对吗?说出理由。

  (1)48是6的倍数。

  (2)在13÷4=3……1中,13是4的倍数。

  (3)因为3×6=18,所以18是倍数,3和6是因数。

  【课堂小结】

  我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(1)

  在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

  因数和倍数一般指的是自然数,而且其中不包括0。

  倍数与因数是相互依存的。

  本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

  因数和倍数(2)

  【教学内容】

  一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

  【教学目标】

  1.通过学习使学生掌握找一个数的因数,倍数的方法;

  2.学生能了解一个数的因数是有限的,倍数是无限的;

  3.能熟练地找一个数的因数和倍数;

  4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

  【重点难点】

  掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

  【复习导入】

  说出下列各式中谁是谁的因数?谁是谁的倍数?

  20÷4=5 6×3=18

  在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

  (板书课题:因数和倍数(2))

  【新课讲授】

  (一)找因数:

  1.出示例1:18的因数有哪几个?

  一个数的因数还不止一个,我们一起找找18的因数有哪些?

  学生尝试完成后汇报

  (18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

  教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

  2.用这样的方法,请你再找一找36的因数有哪些?

  小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

  教师:你是怎么找的?

  举错例(1,2,3,4,6,6,9,12,18,36)

  教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

  仔细看看,36的因数中,最小的是几,最大的是几?

  教师板书:一个数的最小因数是1,最大因数是它本身。

  3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

  4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

  从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

  (二)找倍数:

  1.我们一起找到了18的因数,那2的倍数你能找出来吗?

  小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

  教师:为什么找不完?

  你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

  2.让学生完成做一做1、2小题:找3和5的倍数。汇报

  3的倍数有:3,6,9,12

  教师:这样写可以吗?为什么?应该怎么改呢?

  改写成:3的倍数有:3,6,9,12,……

  你是怎么找的?(用3分别乘以1,2,3,……)

  5的倍数有:5,10,15,20,……

  教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

  教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

  (一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

  1.完成课本第7页练习二第2~5题。

  2.完成教材第8页练习二第6~8题。

  【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

  【课后作业】

  完成练习册中本课时练习。

  因数和倍数(2)

  一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

  一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

  本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

五年级下册数学教案8

  教学目标:

  1.借助数轴比较正负数的大小。

  2.联系生活里的实际问题利用数轴表示两个量的大小。

  教学重点和难点:

  重点:负数与负数比大小。

  难点:负数与负数比大小。

  教学媒体:教学平台

  课前学生准备:课堂练习本

  教学过程:

  课前准备:提问:

  1)数轴应具备哪三要素?

  2)在原点右边表示的是什么数?(正数)

  3)在原点左边表示的是什么数?(负数)

  一、复习引入:

  1、出示:各地的`最低温度:

  上海:+10℃ 北京:0℃ 哈尔滨:-10℃

  广州:+12℃ 沈阳:-4℃

  (1)你能读一读吗?

  (2)把这些温度从低到高排一排。

  -10℃<-4℃<0℃<+10℃<+12℃

  2、揭示课题:把单位名称去掉就变成了一些数在比较大小,这就是我们今天要学的知识:书的比较大小。

  二、自主探究,寻找规律:

  1、将以上这些数在数轴上用相对应的点表示出来。

  2、仔细观察这些数在数轴上的位置,想一想,数与数之间有什么规律?(小组讨论)

  3、反馈:数轴上,越往右边的数越大,越往左边的数越小。

  右边的数总比左边的数大。

  正数大于0,负数小于0,正数大于负数。

  三、利用规律,比较大小:

  1.出示:+3○-2

  比一比,说说理由。

  试一试:

  1○-2 3○-4 -1.5○1.5 ○-2

  小结:正数都大于负数。

  2、出示:0○-8

  3、出示:-4○-1 -1.5○-2 -2○-4

  小结:负数与负数在比时,通过数轴想位置,右边的数总比左边的大。

  四、巩固练习:

  1.完成P14,试一试;(1)

  2、看谁比得又对又快!

  (1)-3○0 +7○0 0○-2 +1○0

  (2)-2○+1 4○-3 -7○7 +2○-1

  (3)-1○-2 -0.5○-1.5 -4○-6 -2○-5

  3、完成P14,试一试(2)

  4、写出4个比+2小的数。

  写出5个比-1大的数。

  5、判断题:

  (1)所有的负数都小于0。

  (2)-12比-10小。

  (3)-64>62。

  五、归纳总结:正数都大于零,一个正数离原点越远,这个数就越大。

  负数都小于零,一个负数离原点越远,这个数就越小。

  正数大于负数。

  注意:1.在数轴上表示的两数,右边的数总比左边的数大。

  2.由正、负数在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数。

  3.比较大小时,用不等号顺次连接三个数要防止出现“0>-3<2”的写法。

  六、作业: 练习册P12、13

  板书设计:

  正数都大于零,一个正数离原点越远,这个数就越大。

  负数都小于零,一个负数离原点越远,这个数就越小。

  正数大于负数。

  教学反思:

五年级下册数学教案9

  教学目标

  知识目标:

  探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体体积。

  能力目标:

  在观察、操作、探索的过程中,提高动手操作的能力,进一步发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点

  在观察、操作、探索的过程中,找出长方体的计算方法。

  教学难点

  在观察、操作、探索的过程中,找出长方体的计算方法。

  教学准备

  教具:长方体模型多个、直尺等。

  学具:长方体模型、直尺等。

  教学过程

 一、引入新课

  1、同学们猜想一下“长方形的面积与长和宽有关,长方体的体积可能与什么有关?

  二、探索新知

  (1)长、宽相等的时候,越高,体积越大。

  (2)长、高相等的.时候,越宽,体积越大。

  (3)高、宽相等的时候,越长,体积越大。

  与长、宽、高都有关系。

  三、探究发现

  先算一算下列图形的体积,再读一读,想一想。(单位:dm)

  阴影部分的面积是上面各个图形底面的面积,称为底面积。

  长方体(正方体)的体积=底面积×高

  V﹦S×h

  ﹦sh

 三、小结

  我们通过合作探究,动手操作和验证的方法推导出了长方体的体积计算公式,请大家闭上眼睛回忆一下推导的过程。

  四、巩固练习

  1、选择正确答案的序号

  (1)一个正方体的棱长是2米,体积是()立方米。

  ① 4 ② 6 ③ 8

  (2)体积相等的两个长方体,它们长、宽、高的长度()

  ①一定相等②一定不相等③不一定相等

  2、课本第43页”练一练“第1、2、题。

  3、解决实际问题

  1。一根长方体木料,长5m,横截面的面积是0.06m2。这根木料的体积是多少?

  一只青蛙(2)只眼,一只青蛙(4)条腿。

  请问:这只青蛙的体积有多大?

  2×1×(1.3—1.1)=0.4(立方分米)

  五、课堂小结

  学习了这节课,同学们有什么感受和体会?

  板书设计

  长方体(正方体)的体积=底面积×高

  V﹦S × h

  ﹦sh

  作业设计

  1、教材第43页”练一练“的第4、5、6、7、8题。

  2、长方体的长为6分米,宽为5分米,高为20分米,求这个长方体的表面积和体积。

五年级下册数学教案10

  一、教学内容

  分数的意义、分数与除法的关系

  真分数与假分数

  分数的基本性质

  最大公因数与约分

  最小公倍数与通分

  分数与小数的互化

  二、教学目标

  1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

  2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

  3、理解和掌握分数的基本性质,会比较分数的大小。

  4、理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。

  5、会进行分数与小数的互化。

  三、编排特点

  1、多侧面地展现了分数的来源。现实需要和数学需要。

  2、把因数、倍数的有关知识与分数的相关知识结合起来教学。

  3、关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。

  4、部分内容作了适当的精简处理或编排调整。

  (1)求一个数是另一个数的几分之几的实际问题,原来安排在分数与除法的关系之后,现在挪后。

  (2)分数大小比较,不单列一段,而是与通分结合在一起学习。

  (3)删去了原来第2节中把整数或带分数化成假分数的内容。

  四、具体编排

  1、分数的意义

  分数的产生

  通过测量与分物,引入分数,使学生感悟分数是适应客观需要而产生的。

  分数的意义

  (1)单位“1”既可以表示一个物体,也可以表示一些物体,体现了部分与整体的关系。同一个分数可以表示不同的具体量,体现了分数的抽象性。

  (2)分数单位的概念。

  分数与除法

  (1)体现了分数的数学来源:计算时往往不能正好得到整数的结果,常用分数来表示。可从数系的扩展角度来认识分数的产生。

  (2)分数与除法的统一点:对一个整体进行平均分。

  (3)为后面的'假分数以及把假分数改写成整数、带分数作准备。

  例1

  把除法的意义和分数的意义进行统一:把1个物体平均分成3份,用除法的意义列出除法算式1÷3,根据分数的意义得到每份是。

  例2

  (1)把许多物体(3块月饼)平均分成4份,求每份是多少。用除法的意义列出除法算式3÷4,根据分数的意义得到每份是,在这儿,可以用两种方式来理解:A、把1平均分成4份,每份是,这样的3份是。B、把3平均分成4份,每份是。

  (2)通过图示得到分数结果,方法多样:一、用操作或图示法。二、推理:1块月饼平均分给4人,每人分得块,3块月饼平均分给4人,每人分得3个块,是块。

  分数与除法关系的总结

  根据例1和例2总结出分数与除法的关系。在这儿,可以把分数的意义进一步扩展,它既可以表示作为结果的一个数,也可以表示一种运算过程。

  (1)可以解决整数除法中商不是整数的情况。

  (2)分数与除法可以互逆,可看作同一种运算。

  (3)因为除数不能为0,所以分母不能为0。

  2、真分数与假分数

  以前学生只接触过分子比分母小的分数,现在介绍分子和分母相等或分子大于分母的分数,可以让学生更全面地认识分数。

  例1

  让学生根据已有知识写出分数,并重点观察分数中分子和分母的大小,并借助直观把它们和1比较,再介绍真分数的概念。

  例2

  让学生重点观察分数中分子和分母的大小,并把它们和1的大小比较,给出假分数的概念。需指出这里的单位“1”是一个圆而不是所有圆的总体。

  例3

  (1)从生活语言“一个半”引出带分数的写法及读法。

  (2)让学生仿照着写出其他的分数。

  例4

  (1)要把假分数化成整数或带分数是因为要培养学生对于分数的数感。

  (2)化的时候有不同的方式。

  A、根据分数的意义:4个就是1。

  B、利用直观图。

  C、利用分数与除法的关系。

  (3)可引导学生总结假分数化成整数或带分数的一般方法。

  3、分数的基本性质

  分数的基本性质是约分、通分的基础。

  例1(分数基本性质的推导)

  (1)通过直观图观察得出三个分数相等。

  (2)从两个方向观察三组分数的分子、分母的变化规律。

  (3)通过自主举例,从具体到一般,总结出分数的基本性质。

  (4)由于分数与除法的内在一致性,引导学生用除法中商不变的性质来说明分数的基本性质。

  例2(分数基本性质的应用)

  把分数化成分母不同(分母扩大、分母缩小两种情况),但大小相同的另一分数。

  4、约分

  与九义教材相比,把公因数、最大公因数移至此,更体现了求公因数的必要性。

  最大公因数

  例1(公因数、最大公因数的概念)

  (1)利用实际情境(用正方形铺满长方形且必须是整块数)引出求公因数的必要性。

  (2)借助操作进一步理解正方形的边长必须既是长方形长的因数,又是宽的因数,从实际问题转入数学问题。

  (3)用集合的形式表示出因数、公因数,与第二单元相响应。

  例2(最大公因数的求法)

  (1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最大公因数的方法,只在“你知道吗”中进行介绍。

  (2)多种方法。

  A、分别列出两个数的所有因数,再找公因数。

  B、从较小的数的最大因数开始找,看是不是另一个数的因数。

  也可引导学生想出不同的方法,如:从较大的数的最大因数开始找,然后和上面的B方法进行比较,看哪种更合适。

  (3)让学生通过观察,找出公因数和最大公因数之间的关系:所有的公因数都是最大公因数的因数。

  做一做

  让学生接触两类特殊数的最大公因数:两数存在因数和倍数的关系,两数互质。

  约分

  例3(最简分数的概念)

  (1)通过实际情境引出两个分数(根据不同的素材引出:具体的米数、分成四段)。

  (2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。

  例4(约分)

  (1)原理:利用分数的基本性质把分数改写成相等的最简分数。

  (2)方法多样:可以逐步约分,也可直接用最大公因数约。

  (3)给出约分的简便写法。

  5、通分(编排方式与约分相似)

  与九义教材相比,把公倍数、最小公倍数移至此,更体现了求公倍数的必要性。

  最小公倍数

  例1(公倍数、最小公倍数的概念)

  (1)利用实际情境(用长方形铺满正方形且必须是整块数)引出求公倍数的必要性。

  (2)借助操作进一步理解正方形的边长必须既是长方形长的倍数,又是宽的倍数,从实际问题转入数学问题。

  (3)用集合的形式表示出倍数、公倍数,与第二单元相响应。

  例2(最小公倍数的求法)

  (1)前面没有正式教学分解质因数,因此这儿不教学用分解质因数的方法求最小公倍数的方法,只在“你知道吗”中进行介绍。

  (2)多种方法。

  A、分别列出两个数的倍数,再找公倍数。

  B、从较大的数的最小倍数开始找,看是不是另一个数的倍数。

  也可引导学生想出不同的方法,如:从较小的数的最小因数开始找,然后和上面的B方法进行比较,看哪种更合适。

  (3)让学生通过观察,找出公倍数和最小公倍数之间的关系:所有的公倍数都是最小公倍数的倍数。

  做一做

  让学生接触两类特殊数的最小公倍数:两数存在因数和倍数的关系,两数互质。

  通分

  例3(分数大小的比较)

  (1)通过实际情境引出两个分母相同的分数的大小比较。

  (2)和的比较方法多样(三年级上册已经有了一定基础)。

  A、根据分数的意义。

  B、根据分数单位的多少。

  (3)让学生通过一些特例,自行总结分母相同或分子相同的分数的大小比较方法(三年级上册有了分子都是1的分数大小比较方法)。

  (2)利用分数的基本性质说明两个分数相等,为后面的约分设下铺垫。再给出最简分数的概念。

  例4(通分)

  (1)从实际情境引入,出现分子、分母均不相同的情况,比较大小时产生认知冲突。

  (2)原理:利用分数的基本性质把两个分数改写成分母相等的分数。

  (3)通分时,可以把分母都化成两个分母的最小公倍数,也可以不是最小公倍数。

  (4)作为比较大小的方法,还可以把两个分数改写成分子相同的分数。

  (5)区别通分与约分:约分是对一个分数的运算,通分是对两个分数的运算。

  6、分数和小数的互化

  例1(小数化分数)

  (1)用小数和分数两种不同的方式表示同一个除法运算的结果,建立起两者的联系。

  (2)利用小数的意义给出小数化分数的一般方法。一位小数由教材给出范例,两、三位小数由自己类推。

  例2(分数化小数)

  (1)创设六个数比较大小的数学情境。

  (2)分数化小数的方法多样;

  A、分母是10、100......的,利用小数的意义来化。

  B、分母不是10、100......的,可以化成分母是10、100......的,也可以利用分数与除法的关系来化。

  整理和复习

  分数的概念

  分数的分类

  分数的基本性质及其运用

  分数与小数的互化

  五、教学建议

  1、充分利用教材资源,用好直观手段。

  2、及时抽象,在适当的抽象水平上,建构数学概念的意义。

  3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

五年级下册数学教案11

  教材分析

  在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率论正是研究不确定现象的规律性的数学分支。本单元主要是教学事件发生的不确定性和可能性,使学生初步体验现实世界中存在着的不确定现象,并知道事件发生的可能性是有大小的,“可能性”是学生学习概率知识的开始,旨在引导学生观察分析生活中的现象,初步体验现实世界中存在着不确定现象,认识事件发生的确定性和不确定性,为后面学习可能性的大小莫定基础,在概率知识的学习中起着举足轻重的作用。

  学情分析

  不确定现象和确定现象一直存在我们的生活中,小学生的概率就是从可能性的经验入手,概率的概念在生活中较少遇到,书本中直接以摸球的形式出现。这是学生在小学阶段唯一一次对概率知识的学习,是在学生已经积累了一些“可能性”方面的模糊的生活经验基础上学习的,又是以后学习较复杂的概率知识的基础。

  五年级学生已具备了一定的自学能力,能对生活中的常见现象发生的可能性进行正确的分析和判断,所以本节课中,应多为学生创造自主学习的机会,让他们主动参与、勤于动手,从而乐于探究。

  理念与方法

  小学生的概率就是从可能性的经验入手,概率的概念在生活中较少遇到,书本中直接以摸球的形式出现。在课堂中,我通过增加同学们熟悉的扑克牌,将生活情景结合到教学中,提供类似游戏的实验以便更好地帮助学生进行对于概率的初步概念理解。设计了生活中、数学中的各种方面帮助学生理解可能性。并在练习中要求学生通过涂色来完成所需任务,用电脑涂色功能将这个结果进行了显性化,学生和老师可以从每个学生的作品上清晰的看出可能性是否达到要求,同时还有开放题,帮助学生更好地通过直接看到的过程彼此互相学习,提升,有效突破重难点。

  教学目标

  1、初步认识确定现象和不确定现象;初步认识事件发生可能性的含义。

  2、知道一般用“一定发生”或“不可能发生”来描述确定现象;用“可能发生”来描述不确定现象。

  3、渗透猜想、验证等数学思想,培养学生初步的判断和推理能力

  教学重点

  可以体会和区分生活中的确定现象和不确定现象。

  教学难点

  用“一定”、“不可能”和“可能”描述日常生活中的现象。

  信息化环境

  多媒体课件、投影仪

  补充教学资源

  小学生的概率就是从可能性的经验入手,概率的概念在生活中较少遇到,书本中直接以摸球的形式出现。在课堂中,我通过增加同学们熟悉的扑克牌,将生活情景结合到教学中,提供类似游戏的实验以便更好地帮助学生进行对于概率的初步概念理解。

  前置作业(可选)无

  过程

  环节1 (情景引入)

  1、猜粉笔游戏:老师这里有一个粉笔,你们猜猜它会在哪只手里?(随意握)

  2、 (教师慢慢张开双手,再次握紧拳头)再猜。

  对于粉笔在老师的哪只手上进行猜测。

  设计意图

  初步感知事物的发生有确定和不确定之分。

  环节2(探究新知:

  探究一)

  1、猜牌游戏:出示:5张红桃扑克牌。

  2、任意抽一张会是什么花色?

  3、可能抽出黑桃的牌吗?

  4、在这些牌中加入5张黑桃,任意抽一张,会是什么花色?

  5、小结:有些事的发生是确定的,有些是不确定的。一般用“一定发生”、“一定不发生”来描述确定的事;用“可能发生”来描述不确定的事。

  6、引出课题:可能性

  【活动一】

  对五张红桃牌中任意抽一张,思考会抽出什么花色

  【活动二】

  对五张红桃牌中任意抽一张,思考是否会抽到黑桃。

  【活动三】

  对五张红桃牌,五张黑桃中任意抽一张,思考会抽到什么。

  设计意图

  通过同学们熟悉的扑克牌,将生活情景结合到教学中,提供类似游戏的实验以便更好地帮助学生进行对于概率的初步概念理解。由于学生回答的随机性,我设置了每张卡牌的隐藏显示功能,当学生回答到哪一张卡牌,便可随即翻开哪一张卡牌进行核对,更有针对性。

  环节3(跟进练习1)

  1、填空:哪些是一定发生的,哪些是不可能发生的,哪些是可能发生的。

  完成任务单【隐藏显示】

  有效进行学生答案的核对,及时出示答案。

  【超链接】

  分析:

  第五道题目“花是香的”有很多同学们选择一定发生,这时候有效的文本增盈就起到了很重要的作用,因此我提前预设了这种情况,设计了两则有关花是无味的和花是臭的两种情况,对课堂进行补充,帮助学生进行理解为何这个选项是可能发生。

  设计意图

  巩固描述可能性的三种方式

  环节4(跟进练习2)

  如何形容数学中的'可能性问题。

  一起来判断一下。

  1)平行四边形对角相等

  2)信封中是锐角三角形

  3)三十几加五十几等于七十几

  4)小胖在奶奶家连续住了2个月,正好62天,这2个月是7.8月。

  集体看题目,个别进行交流回答如何【超链接】

  分析:

  利用超链接逐步显示答案,使得同学们可以及时进行核对。第二题的材料组合隐藏,根绝学生可能出现的情况进行分别链接,让同学们知道只露出一个角并不一定就是锐角三角形。

  【形状功能】

  分析:为了帮助同学开阔思路,其实不止三角形,露出一个角的还可以是五角星,六角形……因此我现场利用形状工具画出五角星,方便学生进行对比。

  【钢笔功能】

  分析:

  对第四题,学生易错的题目,及时进行重点圈画和批注,帮助学生更好地理解题意。

  设计意图

  巩固描述可能性的三种方式

  环节5(探究新知:

  探究二- 1)有6个同样的小球,用红、蓝、绿三种颜色给盒中的小球涂色,使下列条件成立。

  (1)摸出的一定是“红球”。(个别回答)

  (2)摸出的一定不是“绿球”。(同桌交流再说)

  (3)摸出的可能是“蓝球”。(先独立设计再汇报交流)

  【活动一】

  涂色活动:摸出的一定是“红球”

  【活动二】

  涂色活动:摸出的一定不是“绿球”。

  【活动三】

  涂色活动:摸出的可能是“蓝球”。 【填充功能】

  分析:

  涂色活动为了更加显性化每个孩子的情况,我利用填充工具将学生的答案放在媒体上,方便其他学生观看核对。第二、第三题是开放题,每个孩子的思路可能不同,我将它们的即时生成的答案

  全部呈现在全班面前,并为了总结设计方法奠定一定的基础。同时为了更好的进行展示。

  【超链接】

  分析:

  考虑到学生在做这道题时,一定是总结到只要有蓝色的球就可以了,但其实可能是篮球,不能全部是篮球,因此我事先做好了全部是篮球的画面,及时拉出与同学们进行辨析。

  设计意图

  进一步理解确定现象和不确定现象

  环节6(探究二- 2)出示5种可能摸到篮球的方案

  1)哪一种摸到蓝球的可能性最大?

  2)哪一种摸到蓝球的可能性最小?

  3)摸出红球的可能性大还是蓝球的可能性大?

  【活动一】

  看图说明可能性的大小何原因。 【钢笔功能】

  分析:

  对可能性最大最小的情况及时进行标注,由于突出显示器写字并不清晰,因此钢笔功能能解决这一问题。

  设计意图

  初步探究可能性的大小

  环节7(课堂练习)

  出示小胖爸爸公司的奖品。

  1)小胖的设计,爸爸觉得不可能抽到一等奖,你同意爸爸的说法吗?

  2)如果你是主办方,你会怎么设计?

  【活动一】

  学生进行可能性的判断。

  【活动二】

  学生根据涂色要求自行设计自己的奖品转盘。

  【逐步出示】

  分析:

  帮助学生看清具体要做的任务是什么。

  【投影功能】

  分析:

  对于最后三位小朋友的抽奖圆盘进行逐一出示,方便同学们进行讲评。

  环节7 总结提升

  通过今天的学习,你获得了哪些知识?

  学生思考回答

  设计意图

  回顾整节课探索的过程,培养归纳总结的数学意识。

  课堂评价方式自评、生生互评、教师点评

  板书设计思路

  可能性

  确定事件:

  一定发生

  一定不发生(不可能发生)

  不确定事件:

  可能发生

五年级下册数学教案12

  教学目标:

  1、知道分数的产生过程,理解分数的意义及分数单位,能对具体情境中分数的意义做出解释,能有条理地运用分数的知识对生活中的问题进行分析和思考。

  2、感受数学知识是在人类的生产和生活实践中产生的,培养学生学习数学的兴趣,树立学习数学的能力。

  教学重点:理解分数的意义。

  教学难点:对把多个物体组成的一个整体看作单位“1”的理解。

  教学过程:

  一、情境导入:

  同学们,在正式进入课程内容学习之前,老师先请同学们看一组图片,这是(一个橙子),我们可以用自然数“1”来表示;这是(六个橙子),那怎么用自然数“1”来表示呢?(可以说是一盘橙子);那有很多橙子,数也数不清,怎么用自然数“1”来表示呢?(可以说是一堆橙子)。

  小小的“1”可真是了不起,今天我们学习的知识就与“1”有着密切的联系。那现在我想把一个橙子平均分给4个同学,每人分得多少呢?(1/4)你是怎么得出来的呢?(学生回答)那现在每人分得的数量还能用整数来表示吗?(不能)在实际生活中,人们计算的时候结果往往得不到整数,这个时候就产生了分数。今天,老师就和大家一起来进一步学习分数。

  二、出示学习目标:

  1、了解分数的产生。

  2、掌握单位“1”的含义,明确分数的意义。

  3、认识分数单位,初步了解分数单位的特点。

  三、引导自学,探究成果:

  1、师:同学们。书中自有颜如玉,书中自有黄金屋,接下来,老师就把课堂还给大家,希望通过你们自己的努力,来发现宝贵的知识财富。请大家根据自学提纲,完成以下三个题目。

  (小荷才露尖尖角,早有蜻蜓立上头!)

  2、师:同学们都已经完成了自学提纲的习题,现在请同学们进行小组讨论,之后再将你们小组讨论的结果向大家汇报。

  (小组合作,现在开始!)

  3、师:从同学们激烈的讨论情况来看,大家一定讨论出了结果,现在就请小组同学来进行汇报。

  组1成员:我们小组是这样讨论的:

  1、分数的产生(教材第45页):

  想一想:观察这两幅图,可以发现:在实际生活中,进行测量、分物或计算时,往往不能正好得到整数的结果,这时,常用(分数)来表述的。

  试一试:把一块月饼平均分给2个人,每人分得(1/2)块;把一个西红柿平均分给2个人,每人分得(1/2)个。

  同学们,他填的对吗?(预设:对)你了解了分数是如何产生的了吗?你会用分数来表示一个不是整数的数的结果了吗?(预设:会)那老师要考考大家,把一个西瓜平均分给5个人,每人分得(1/5块),把一个蛋糕平均分给8个人,每人分得(1/8块)。看来同学们自学能力很强,希望同学们再接再厉。

  组2成员:我们小组是这样讨论的:

  2、单位“1”和分数的意义(教材第46页):想一想:先感知一个物体和一些物体的1/4是多少,如下图:

  试一试:一个物体、一个计量单位或是一些物体等都可以看作一个(整体),这个(整体)可以用自然数(1)来表示,通常把它叫做(单位“1”)。把这个(整体)平均分成若干份,这样的一份或几份都可以用(分数)来表示。

  同学们,我们一起来回顾一下,我们刚把什么看成一个整体了?(一个圆、一个正方形和一条线段);我们刚把哪些物体看成是一个整体了?(六个橙子和八个面包)。一个物体、一些物体都可以看作是一个整体,这样的一个整体我们可以用自然数“1”来表示,我们通常把它叫做单位“1”。我们一起来读一遍单位“1”的概念:

  一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。

  在生活中,你还能把哪些看成是单位“1”?(学生回答)

  任何一个单位“1”的量,只要平均分了,就可以得到分数,那谁能总结一下,什么叫分数?

  (把单位“1”平均分成若干份,表示1份或几份的数就叫做分数。)

  同学们,刚才我们已经掌握了单位“1”和分数的'概念,那你知道分数有什么意义吗?它代表什么?例如,把一条线段平均分成4份,其中的一份就是1/4。老师这里有几个分数,你能说出它的意义吗?

  组3成员:我们小组是这样讨论的:

  3、分数单位的意义(教材第46页):

  想一想:把单位“1”平均分成若干份,表示其中一份的数就叫做(分数单位)。

  试一试:把10厘米平均分成10份,1厘米处就是(1/10),2厘米处就是(2/10),8厘米处就是(8/10)。它们的分数单位是(1/10)。

  同学们,我们前面学过,计算长度时,我们用(长度单位),计算面积时,可以用(面积单位),那么其实分数也有单位。例如一把10厘米的尺子,每一个数字对应的就是一个分数,那根据“分数单位”的定义你能找出它们的分数单位是几吗?(学生回答)

  老师这里还有几个分数,你能说出这些分数的分数单位吗?

  四、课堂小结:

  通过前面学习的知识,你学会了什么?

  五、巩固练习:

  第一关:填一填

  1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用()来表示。

  2、一个物体、一些物体等都可以看作一个(),把这个整体()分成若干份,这样的一份或几份都可以用分数来表示。

  3、3/4表示单位“1”()分成()份,表示其中()份的数。

  4、一堆糖,平均分成2份,每份是这堆糖的();平均分成4份,3份是这堆糖的();平均分成7份,5份是这堆糖的()。

  5、5/7表示把()平均分成()份,取其中的()份。

  第二关:说一说

  读出下面分数,并说说它们的具体含义。

  第三关:做一做

  用分数表示下面各图中的彩色部分。

  第四关:想一想

  他们吃的水果一样多吗?

五年级下册数学教案13

  教学目标:

  1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

  2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

  3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

  4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

  教学重点:

  初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

  教学难点:

  通过探索,自主推算出相邻体积单位间的进率。

  教学准备:

  多媒体课件、体积单位模型、彩泥、魔方等。

  教学过程:

  一、创设情境,引发思考

  师:上一节课,我们认识了体积,什么是物体的体积?

  问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

  师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

  二、合作学习,探究新知

  (一)探寻学生已有知识:

  问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

  (预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

  【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

  (二)建立1cm3、1dm3、1m3的空间观念

  1、建立1立方厘米的空间观念:

  (1)初步感知1cm3有多大:

  问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

  【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

  <<<123>>>

  (2)触类旁通,定义1 cm3的大小:

  师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

  【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

  (3)进一步感知1cm3的大小:

  做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

  (4)想一想,填一填:

  师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

  2、建立1立方分米、1立方米的空间观念:

  (1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

  【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

  (2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

  【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

  (3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

  【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

  3、练习(用合适的体积单位表示下面物体):

  一块橡皮的体积约是8( )。

  一台录音机的体积约是10( )。

  运货集装箱的体积约是40( )。

  一本新华字典的体积约是0.4( )。

  一个西瓜的体积约是5( )。

  一间教室的体积约是180( )。

  (三)继续类比,探究相邻体积单位间的进率:

  1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

  2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

  【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的'发现”(牛顿)。】

  3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

  【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

  4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

  5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

  【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

  三、动手操作,质疑反思:(机动,也可作为课后拓展)

  学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

  1、用4个小正方体可以摆成一个大正方体吗?

  2、最少要用多少个小正方体才可以摆成一个大正方体?

  3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

  【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

  四、总结全课,感悟学习方法:

  师:通过今天的学习,你有哪些新的收获?(生生互动)

  小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案14

  教学内容

  教科书第65~66页例2,第66页课堂活动,练习十四第4~7题。

  教学目标

  1. 进一步探索异分母分数加减法的计算方法,并概括归纳成法则。

  2. 能灵活地运用计算法则,正确地进行异分母分数加减法的计算。

  3. 培养同学们对知识的迁移、归纳能力,以及灵活运用知识解决问题的能力。

  教学重点

  掌握异分母分数加减法的计算法则。

  教学难点

  熟练地运用通分的方法解决异分母分数不能直接相加减的问题。

  教学过程

  一、以旧引新

  1. 我会算。(口答)

  2/5+1/5 5/8-3/8 5/6+4/6 9/7-4/7 1/8+7/8

  13/17-5/17 5/9-5/9 2/19+5/19+1/19

  抽学生说答案。

  师:这几道题有什么共同特点?我们是怎样计算的?计算的结果要注意什么?抽生说一说。

  小结:分母相同的分数相加减,只要把分子相加减,分母不变。最后的结果要化成最简分数。

  2. 我能算:3/4+1/2,7/8-1/4。

  抽两生上台板演,其他学生独立完成。

  师:上一节课,我们已经会把分母不同的分数变成分母相同的分数,再进行计算。今天这节课,我们要研究在进行异分母分数加减法的计算时,怎样做得又对又快。

  板书课题:异分母分数加减法。

  二、合作交流,深入探究

  1. 教学例2

  板书:8/9-5/6。

  学生动笔尝试计算8/9-5/6。

  小组交流算法,并对同伴的算法进行评价。

  学生汇报,全班交流。

  生1:先通分,要把两个分数化成同分母分数。因为9×6=54,所以把54作为两个分数的公分

  母,这样8/9-5/6=48/54-45/54=3/54=1/18。

  教师板书:8/9-5/6=48/54-45/54=3/54=1/18。

  生2:我也是先通分,把分数化成同分母分数。通分时,只需要把两个分母的最小公倍数18,作为两个分数的公分母,也就是8/9-5/6=16/18-15/18=1/18。

  教师板书:8/9-5/6=16/18-15/18=1/18。

  师小结:这两种方法都行,都是先通分,把两个分数化成同分母的分数,再计算。

  2. 选自己喜欢的方法计算

  2/15+7/10

  学生独立完成,抽生汇报。

  生1:先通分,找出两个分母的最小公倍数30做公分母,得到4/30+21/30=25/30=5/6。

  教师板书:2/15+7/10=4/30+21/30=25/30=5/6。

  生2:因为15×10=150,所以两个分数通分后得到20/150+105/150=125/150=5/6。

  教师板书:2/15+7/10=20/150+105/150=125/150=5/6。

  生3:我用15和10的公倍数60做公分母,通分后是8/60+42/60=50/60=5/6。

  教师板书:2/15+7/10=8/60+42/60=50/60=5/6。

  ……

  算法的'优化:引导学生发现,这些方法中第一种方法更简便些。用分母的最小公倍数做公分母,数据小一些,便于计算,不容易出错。

  3. 尝试练习:试一试

  教材第66页,例2的试一试。

  计算:5/6+7/8 15/17-2/3 1/8-5/12 3/8+1/5

  学生独立计算,教师巡视,并个别辅导。

  小组内交流计算方法。

  集体订正。

  4. 梳理算法

  师:同学们通过积极动脑、动手,能正确的、比较熟练的计算异分母分数的加减法。你能用自

  己的话说说我们是怎样计算的?

  抽生说一说。

  指导学生读课本第66页,并勾画下来。提醒补充:计算的最后结果要化成最简分数。

  三、巩固练习,拓展深化

  1. 课堂活动第1题。

  学生独立计算。

  引导学生仔细观察,每组算式的分母有什么特点?(两个数为互质数)

  再引导学生观察,像这样的算式在计算上有什么窍门?(分母的乘积为结果的分母,分子的和

  或差为结果的分子。)

  2. 课堂活动第2题。

  学生4人小组开展活动。

  (1)独立完成计算题。小组内交流第一小题的答案并相互订正。

  (2)组内统计全对的同学人数,并完成第2小题。

  (3)同桌互相口头提问题,并列式解答。

  3. 练习十四第4,5,6题。

  学生独立完成,集体订正。

  四、总结全课

  通过今天的学习,你有什么收获?

五年级下册数学教案15

  教学目标:

  通过练习使学生能熟练地求正方体、长方体的表面积。

  教学重点和难点:

  重点:正方体、长方体的表面积的计算。

  难点:正方体、长方体的表面积的计算。

  教学媒体:教学平台

  课前学生准备:课堂练习本

  教学过程:

  课前准备:

  长方体体积计算公式:v=abh 正方体体积计算公式:v=a3

  长方体表面积计算公式:s=2(ab+ah+bh) 正方体表面积计算公式:s=6a2

  练习

  1. 计算下面形体的表面积。(单位:厘米)

  (1)解:

  (2)

  (1)S=2(ah+ab+bh)

  =2×(6×2+6×1+1×2)

  =2×(12+6+2)

  =2×20

  =40(平方厘米)

  答:长方体的表面积是40平方厘米。

  (2)解:S=6a2

  =6×62

  =6×(6×6)

  =6×36

  =216(平方厘米)

  答:正方体的表面积是216平方厘米。

  (3)解:S=2(ah+ab+bh)

  =2×(3×12+3×1+1×12)

  =2×(36+3+12)

  =2×51

  =102(平方厘米)

  答:长方体的表面积是102平方厘米。

  (4)解:S=2(ah+ab+bh)

  =2×(4×4+4×3+3×4)

  =2×(16+12+12)

  =2×40

  =80(平方厘米)

  答:长方体的表面积是80平方厘米。

  (5)解:S=2(ah+ab+bh)

  =2×(5×5+5×1+1×5)

  =2×(25+5+5)

  =2×35

  =70(平方厘米)

  答:长方体的表面积是70平方厘米。

  2. 想一想,上面形体(4)(5)的表面积还可以怎么求?

  求出前面的面积再乘以4就是上下左右4个面的面积之和,再加上前后面的面积之和,就是它的表面积。

  3. 填空:

  (1)长方体的表面积是(2×(9×3+9×2+2×3) )(填算式)。

  (2)长方体的'表面积是(2×(8×1+8×4+4×1))(填算式)。

  (3)长方体的表面积是(2×(1×5+1×5+5×5)或5×5+4×(1×5) )(填算式)。

  (4)正方体的表面积是(6×(7×7))(填算式)。

  (5)长方体表面积计算公式是(S=2(ah+ab+bh))。

  (6)正方体表面积计算公式是(S=6a2)。

  4. 一个长方体的长是2厘米,宽3厘米,高6厘米。分别求出它的底面面积,前面面积与左面面积。

  解:2×3=6(平方厘米)

  2×6=12(平方厘米)

  3×6=18(平方厘米)

  答:它的底面面积是6平方厘米,前面面积12平方厘米,左面面积是18平方厘米。

  5. 长方体的长是5厘米,宽4厘米,高3厘米,它的表面积是多少平方厘米?

  解:S=2(ah+ab+bh)

  =2×(5×3+5×4+4×3)

  =2×(15+20+12)

  =2×47

  =94(平方厘米)

  答:长方体的表面积是94平方厘米。

  6. 做一个长15分米,宽4米,高3分米的长方体铁皮油箱,至少需要多少铁皮?

  解:4米=40分米

  S=2(ah+ab+bh)

  =2×(15×3+15×40+40×3)

  =2×(45+600+120)

  =2×765

  =1530(平方分米)

  答:长方体的表面积是1530平方分米。

  总结:长方体表面积计算公式是S=2(ah+ab+bh),正方体表面积计算公式是S=6a2。

  检测目标达成练习:练习册P15

【五年级下册数学教案】相关文章:

五年级下册数学教案12-03

五年级下册人教版数学教案01-12

数学教案五年级下册范文11-08

五年级下册数学教案03-20

小学五年级下册数学教案01-03

小学五年级下册数学教案08-27

人教版五年级下册数学教案01-09

【精】五年级下册数学教案02-02

五年级下册数学教案【热门】02-13