五年级上册《梯形的面积》数学教案

时间:2024-06-04 15:47:32 数学教案 我要投稿

人教版五年级上册《梯形的面积》数学教案

  作为一名老师,编写教案是必不可少的,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?以下是小编为大家收集的人教版五年级上册《梯形的面积》数学教案,欢迎大家分享。

人教版五年级上册《梯形的面积》数学教案

  教学内容:教材P95~96例3及练习二十一第2、3、4题。

  教学目标:

  知识与技能:在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。

  过程与方法:通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。

  情感、态度与价值观:渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣。

  教学重点:理解并掌握梯形的面积公式.会计算梯形的面积。

  教学难点:自主探究梯形的面积公式。

  教学方法:动手实践、自主探索、合作交流

  教学准备:师:多媒体、完全一样的梯形若干个。生:剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形等)、练习本。

  教学过程

  课前预习案

  判断

  (1)两个完全相同的梯形可以拼成一个平行四边形,拼成的平行四边形的面积是梯形的2倍。 ( )

  (2)梯形的面积比平行四边形的面积小。 ( )

  (3)一个面积是80平方厘米的平行四边形,分割成两个完全一样的梯形,每个梯形的面积是40平方厘米。 ( )

  一、谈话导入

  师:前面我们学习了三角形和平行四边形的面积公式,在公式的推导过程中运用了变形的思想。这一节我们一起来学习梯形的面积。

  二、创设情境,探索新知

  1、计算面积(单位厘米)

  (第1题图)

  (第2题图)

  2、 计算面积(单位厘米)

  怎么计算呢?能不能运用转换的思想,变成已经学过的图形。 已学过的图形,三角形,平行四边形,长方形。)

  讨论梯形面积推导过程。转化为两个三角形。从这里可以看出两个三角形的高与梯形的高都、

  两个一样的梯形拼成一个平行四边形。平行四边形的底为梯形的(上底+下底),高为梯形的高。那么梯形的面积=(上底+下底)×高÷2剪切拼接成长方形,长为梯形的中位线,宽为梯形的高。那么:梯形的面积=(上底+下底)×高÷2

  3、如果用 S 表示梯形的面积,梯形面积的计算公式可以写成:S=(a+b)h÷2

  三、学以致用

  1.出示教材第96页例3。

  教师:什么是横截面?

  请学生独立解决,全班核对答案。

  教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。

  2.出示教材第96页“做一做”。

  教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。

  3.下面图中哪几个梯形的面积是相等的?为什么?

  小结:这几个梯形的高相等,所以判断哪几个梯形的面积相等,只要看哪几个梯形的上底与下底的和相等就可以了。

  四、课堂检测

  1.填空。

  (1)两个完全一样的梯形能拼成一个( ),拼成的平行四边形的底由梯形的上底和下底的( )组成,所以梯形的面积=( ),用字母表示是( )。

  (3)1680平方厘米=( )平方分米 0.95平方米=( )平方分米

  2.判断。

  (1)任意一个平行四边形都可以分成两个大小和形状都相同的梯形。( )

  (2)平行四边形的面积大于梯形的面积。 ( )

  (3)两个面积相等的梯形可以拼成一个平行四边形。( )

  (4)梯形的面积等于梯形的上底加下底的和乘以高。( )

  3完成教材第97页第1题到第5题。

  (1)完成教材第96页“做一做”。先说一说这是一个什么图形,并对该图进行分析。

  学生可以把它看成一个大梯形,梯形的上底是(40+45) cm,下底是(71+65) cm,高是40cm,也可以看成两个直角梯形,其中一个梯形的上底是40cm,下底是7lcm,另一个梯形的上底是45cm,下底是65cm,高都是40cm,算出两个梯形的面积再加起来。

  (2)完成教材第97页“练习二十一”第3题。

  本题需要先测量计算所需条件的长度,再利用梯形面积计算公式求面积。

  (3)完成教材第97页“练习二十一”第4题。先让学生观察飞机模型的机翼是什么形状,(是两个完全相同的梯形)再让学生说一说怎样求机翼的面积。求机翼的面积,可以先求出一个梯形的面积,再乘2;也可以根据梯形面积公式的推导经验,设想把两个梯形拼成一个底长lOOmm+48mm,高250mm的平行四边形,求出它的面积。

  五、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:

  1.在推导梯形的面积公式时,可以把梯形转化成我们学过的图形来推导。

  2.梯形的面积=(上底+下底)×高÷2。

  3.用字母表示:S=(a+b)×h÷2。

  布置作业:

  板书设计:

  梯形的面积

  梯形的面积=(上底+下底)×高÷2

  用字母表示:S=(a+b)×h÷2

  例3:

  S=(a+b)h÷2

  =(36+120)×135÷2

  =156×135÷2

  =10530 (m2)

【五年级上册《梯形的面积》数学教案】相关文章:

小学五年级上册数学教案——梯形的面积01-16

五年级数学教案:梯形面积的计算04-10

小学五年级数学教案《梯形的面积》04-04

《梯形的面积》教案04-25

梯形的面积五年级数学上册教学反思04-14

《梯形的面积》教学反思08-25

梯形面积计算教案04-25

梯形的面积教学反思(精选15篇)04-25

五年级数学《梯形面积的计算》教案02-10