五年级数学上册多边形的面积教案

时间:2024-02-23 10:37:49 数学教案 我要投稿
  • 相关推荐

五年级数学上册多边形的面积教案

  作为一位兢兢业业的人民教师,总归要编写教案,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?以下是小编收集整理的五年级数学上册多边形的面积教案,希望能够帮助到大家。

五年级数学上册多边形的面积教案

五年级数学上册多边形的面积教案1

  教学目标

  包含知识、技能、价值观、情感、态度、过程、方法等。教师根据学科及教材内容特点制定。

  1.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重难点:掌握平行四边的面积计算公式,并能正确运用。

  教学过程

一、自为:

  1.我们学习过哪些平面图形?

  2.哪个平面图形的面积会求?

  二、共研

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等。

  (7)提出猜想:平行四边形的面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (5)小组讨论:

  A.拼成的长方形和原来的平行四边形的大小有什么关系?

  B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?

  (2)学生独立完成并反馈答案。

三、看书质疑

  1.判断题

  (1)一个平行四边形一定能剪拼一个长方形。()

  (2)平行四边形的面积等于长方形的面积。()

  (3)由平行四边形剪拼成的长方形的长实际上是平行四边形的底。()

  2、填空

  3、练习十五第3题。

  4、选择题

  5、思考题

  五、课堂总结通过这节课的'学习,你有哪些收获?(学生自由回答。)

  学生通过数方格的方法求出长方形和平行四边形的面积很直观,也很容易让学生发现问题。

  大胆鼓励学生进行猜想:平行四边形的面积=底×高

  通过学生动手剪一剪、拼一拼等方法,把平行四边形想办法转变成我们已学过面积计算的图形,在这里渗透转化的思想,培养学生动手能力,将感性材料上升到理性材料。

  在学生出现沿着高来剪的时候,老师可以适当的加一句:“为什么要沿着这条高来剪呢?”

  讲授完平行四边形的面积计算公式之后,出示例题1就显得水到渠成了,老师在讲授的时候,可以适当的增加变式练习,多增加一条高,问学生能不能底乘高,引导出相对应的高才能相乘。

  自学部分可以增加学生看书时间,有不懂的马上提问解决。

  常规练习,帮助学生巩固学习成果。

  课堂最后提问,唤起学生的记忆,老师适当加以小结,巩固新知。

五年级数学上册多边形的面积教案2

  第一课时

  教学目标:

  1、使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。

  2、通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  3、培养学生学习数学的兴趣及积极参与、团结协作的精神。

  教学重点:

  探究平行四边形的面积计算公式,会计算平行四边形的面积。

  教学难点:

  平行四边形面积公式的推导过程。

  教具准备:

  、方格纸、剪刀、长方形、平行四边形。

  教学过程:

  一、情景引入,激趣导课

  1、情景引入(出示) 师:同学们,在以前的学习中我们已经认识了很多图形,请看大屏幕。你发现了哪些图形?你能计算哪些图形的面积? 生:长方形、正方形、平行四边形、三角形、梯形。 相机板书:长方形的面积=长×宽 正方形的面积 =边长×边长

  2、从平行四边形的花坛中引出“平行四边形的面积”。

  师:这两个花坛哪一个大?(生自由说)。 提出问题:你确定哪一个面积大吗? 我们已经知道长方形的面积是怎样算,平行四边形的面积又怎样算呢? (生可能猜想:平行四边形的面积=底×高 ,试问:你是怎么知道的?今天我们这节课主要来研究平行四边形的面积)

  3、揭题:平行四边形的面积(板书课题)

  二、动手操作,探究新知

  1、联想、猜测。(用数格子的方法) 长方形的面积与它的`长和宽有关系,请大家猜测一下平行四边形的面积和谁有关系,有什么关系?

  生 1:底和高,底乘高等于平行四边形的面积。

  生 2:相邻两边的积等于平行四边形的面积。

  2、归纳意见,提出验证。(用剪、拼的方法) 能不能把平行四边形转化成长方形来计算它的面积呢?请同学们想一想,同桌交流,并动手用学具试一试。

  ⑴小组合作,动手操作。

  ⑵演示操作过程。(演示) 同学们真聪明,在操作过程中运用了一种重要的数学方法“转化”,都是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。

  例 1:一块平行四边形花坛的底是 6 米,高是 4 米,它的面积是多少? 两人板演,其余做在练习本上。S=ah=6×4=24( 2), 6×4=24( 2)

  〔评析:根据刚才对平行四边形面积计算方法的初步感知,先让学生猜测平行四边形的面积怎样算,然后把平行四边形转化成长方形,利用长方形面积推导出平行四边形的面积,从而验证了学生的猜测是正确的。通过教学,向学生渗透了猜测—转化—验证等数学思想方法,为以后学习三角形和梯形的面积做了充分准备。〕

  三、反馈练习,发展思维。

  练习

  四、课堂总结

  今天我们学习了平行四边形面积的计算,通过学习你又有哪些新的收获呢?

  板书设计: 平行四边形的面积

  长方形的面积 = 长 × 宽

  平行四边形的面积 = 底 × 高

  S = ah

五年级数学上册多边形的面积教案3

  【教学内容】:教材P113第2题及练习二十五第7、20题。

  【教学目标】:

  知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

  过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

  情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

  【教学重、难点】

  重点:整理完善知识结构,灵活运用面积公式解决问题。

  难点:沟通多边形面积公式之间的内在联系。

  【教学方法】:归纳整理,演示讲解;复习回顾。

  【教学准备】:多媒体。

  【教学过程】

  一、构建网络,新知汇总

  师:同学们,咱们在第五单元里学习了平行四边形、三角形和梯形的面积及其计算,而且,还接触到了组合图形的面积,大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系,学会观察组合图形的组成。今天,我们就来复习这部分知识。(板书课题:多边形面积的复习)

  师:那么我们是如何根据长方形的面积推倒出平行四边形、三角形和梯形的面积公式呢?请大家从你的头脑记忆库里提取下面的知识,看看谁的记忆库最充实?

  讨论:平行四边形、三角形和梯形的面积公式是怎样推导出来的?

  师:同位同学可以商量商量。(学生汇报:教师演示)

  师:大家在回忆推导公式的过程中,本着把新知转化为旧知的原则,找到了几个面积公式之间的联系。通过这样的梳理,大家对我们的面积公式是不是更加熟悉了。(边说边出示图。见板书设计)

  引导学生观察,从左往右看,根据长方形的面积公式可以推导出其他图形的面积公式,从右往左看,我们在探讨一种新的图形面积时,都是把它转化成已学过的图形来计算。

  二、查漏补缺,错误汇总

  师:现在你们的记忆库中还有内存吗?那,就请大家想一想,你们在利用公式解决问题时有什么容易出错的地方或是需要大家注意的地方?

  根据学生的回答归纳:

  1.弄清图形,选择公式。

  2.找对应的底和高。

  3.注意单位换算。

  4.三角形和梯形的面积别忘了除以

  2.

  5.解决问题时,弄清面积与其他数量的关系。

  6.看清组合图形是由哪几个简单图形组成的,找简单的解决方法。

  7.已知面积,求底或高可以用方程解。)

  师:看来同学们都特别的善于总结和观察,下面,我们就利用前面的复习来做几组练习。

  三、综合练习,巩固提高

  (一)按要求解答。(只列式,不计算)

  1、平行四边形底是

  4分米,高2.7分米,求它的`面积?

  2、三角形面积是

  30平方米,底8分米,求它的高?

  3、梯形的面积是

  84平方米,高10米,上底5米,求下底?

  师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

  (二)判断题:

  1.三角形面积是平行四边形面积的一半。 ()

  2.两个面积相等的梯形,形状是相同的。 ()

  3.两个完全一样的梯形可以拼成一个平行四边形。 ()

  4.两个三角形的高相等,它们的面积就相等。 ()

  5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()

  看来,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

  (三)解决问题

  1.教材第113页第2题。

  出示第2题,引导学生看题。

  学生独立解答,并在小组中互相检查。

  教师指名板演,然后集体订正。

  师:通过计算这些图形面积,你想提醒大家什么?

  (计算图形面积时,底和高要对应)

  2.教材第116页练习二十五第9题。

  (1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

  (2)算一算剩下的面积是多少。

  方法一:4×4-2×2÷2=14(cm2)

  方法二:(2+4)×2÷2+2×4=14(cm2)

  3.教材第116页练习二十五第10题。

  (1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

  (2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

  ①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

  教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

  ②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

  ③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

  (3)全班交流,集体订正。

  四、课堂小结

  多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

  五、作业:教材练习二十五第7、20题。

  【板书设计】

  多边形的面积总复习

五年级数学上册多边形的面积教案4

  第四课时:多边形的面积复习

  教学内容:教材P113第2题及练习二十五第7、20题。

  教学目标:

  知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

  过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

  情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

  教学重点:整理完善知识结构,灵活运用面积公式解决问题。

  教学难点:沟通多边形面积公式之间的内在联系。

  教学方法:归纳整理,演示讲解;复习回顾。

  教学准备:多媒体。

  教学过程

  一、 构建网络,新知汇总

  二、整理复习

  1.复习面积单位之间的进率。

  说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

  平方厘米 平方分米 平方米 公顷 平方千米

  100 100 10000 100

  2.及时练习

  520平方米=(??)公顷?????300平方千米=( )公顷

  4.2公顷=( )平方米 0.12平方米=( )平方分米

  三、巩固深化

  我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

  (一)按要求解答。(只列式,不计算)

  1、平行四边形底是4分米,高2.7分米,求它的面积?

  2、三角形面积是30平方米,底8分米,求它的高?

  3、梯形的面积是84平方米,高10米,上底5米,求下底?

  师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

  (二)判断题:

  1.三角形面积是平行四边形面积的一半。( )

  2.两个面积相等的梯形,形状是相同的。( )

  3.两个完全一样的梯形可以拼成一个平行四边形。( )

  4.两个三角形的高相等,它们的面积就相等。( )

  5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。( )

  看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

  (三)解决问题

  1.教材第113页第2题。

  出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

  教师指名板演,然后集体订正。

  师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

  2.1.课件出示教材第116页练习二十五第7题。

  (1)学生独立解题。

  (2)汇报评价。

  3.课件出示教材第116页练习二十五第8题。

  (1)学生独立解题。

  (2)汇报评价。

  4.教材第116页练习二十五第9题。

  (1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

  (2)算一算剩下的面积是多少。

  5.教材第116页练习二十五第10题。

  (1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

  (2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

  ①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

  教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

  ②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

  ③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的'面积。

  (3)全班交流,集体订正。

  四、课堂小结。

  多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

  布置作业:

  板书设计

  多边形的面积总复习

五年级数学上册多边形的面积教案5

  一、教学内容:

  北师大版教科书五年级上册第四单元《多边形的面积》。

  二、教学目标:

  1.进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算图形的面积,并解决一些简单的实际问题。

  2.回顾梳理本单元知识,能用思维导图清晰的整理单元知识网络,并熟练运用本单元知识解决实际问题。

  3.经历单元复习过程,熟练掌握单元知识的同时,再次感受合作学习的重要性以及转化思想在数学学习中的重要性,培养良好的数学学习兴趣。

  三、教学重点、难点:

  重点:理解本单元所学的面积公式,理解计算公式之间的联系,形成知识网络。

  难点:灵活运用平行四边形、三角形、梯形的面积公式解决问题。

  四、配套资源:

  《多边形的面积》ppt课件

  《多边形的面积》单元小测、《多边形的面积》专项突破

  五、学习设计

  (一)课前设计

  课前,教师发给学生如下复习资料,学生独立完成:

  (二)课堂设计

  1.谈话引入,揭示课题

  师:我们在这个单元学习了哪些内容?

  学生自由回答,教师引导有序回忆概念。

  师:今天这节课我们就对“多边形的面积”进行整理和复习。

  【设计意图:以一组简单并且特征明显的数为线索,让学生重现已有的概念,不仅能抓住要领,而且能提高复习的效率,为接下来建构知识网络做好准备。】

  2.知识梳理,整体回顾

  (1)比较图形的面积。

  师:下面哪些图形的面积与图①一样大?为什么?

  师:同学们说的很清晰。我们利用这样的分割、移补后,图形的面积是没有改变的。这就是数学上的“出入相补”原理。

  出示课件:

  (2)认识底和高

  师:屏幕上的这些图形都不陌生,你能按要求画出它们的高吗?

  师:用三角尺画图形的高,需要先确定什么?(确定图形中的某个顶点或图形边上的某个点)

  师:接着该怎样画呢?(接着,思考如何用三角尺画出底上的垂直线段,其中一条直角边过图形中确定好的某个点,另一条直角边和图形的底重合。最后画出图形的高)

  注意:画高时要用虚线,关注底和高的对应关系。

  出示课件:

  (3)多边形的面积

  师:我们在之前的学习中已经会计算平行四边形、三角形、梯形的面积。你还记得我们是如何推导出这些公式的嘛?它们之间存在着什么样的联系呢?

  小组交流,教师概括学生的`回答,学生交流会后用课件动态依次出示:

  小结:把平行四边形转化成了长方形,推导出了平行四边形的面积计算公式;

  把三角形和梯形转化成了平行四边形,推导出了它们的面积计算公式。

  3.完善思维导图

  (1)引导整理,汇报交流

  师:现在请小组集体整理/调整思维导图(知识网络)。

  师:哪一组愿意来介绍下整理/调整后的的情况?

  请2~3个小组的同学上台展示汇报知识整理图,说明这样整理的理由,其他小组的同学进行质疑,提出改进意见。

  师:通过刚才的交流,同学们对本单元的知识有了进一步的认识,下面请各小组的同学看看你们小组整理的知识图有没有需要改进的地方,请通过改进,使你们组的知识图也更加完善。

  各小组对本组的知识图进行反思和修改。

  师:现在哪个小组的同学愿意来展示一下经过修改之后的知识整理图?

  学生二次交流,全班评价,在共同讨论的基础上逐步完善,大致形成下面知识思维导图。

  【设计意图:让学生在共同交流的基础上进行改进,能够起到自我反思、自我修正的作用,使学生对知识的理解进一步加深,认识进一步升华。】

  4.典型题目练习,综合应用知识

  (1)计算下列图形的面积。

  【知识点】平行四边形、梯形、三角形的面积计算。

  【答案】平行四边形的面积:24×15=360(cm)

  梯形的面积:(14+26)×22÷2=440(cm)

  三角形的面积:42×7÷2=147(dm)

  【解析】代入相应的面积公式,求出相应的面积。

  (2)一面用纸做成的直角三角形小旗,两条直角边分别长12厘米和20厘米。做10面这样的小旗,至少需要用纸多少平方厘米?

  【知识点】灵活运用三角形的面积公式解决问题。

  【答案】12×20÷2×10=1200(cm)

  答:至少需要用纸1200平方厘米。

  【解析】三角形的面积公式=底×高÷2,题目中已说明是直角三角形,并说明两条直角边分别是12厘米、20厘米。则根据公式可求出1个直角三角形的面积,题目中要求要做10面这样的小旗。因此再用1个直角三角形的面积×10即可解决问题。

  (3)做《多边形的面积》单元小测、《多边形的面积》专项突破。

  5.全课小结

  师:通过对本单元的整理与复习,你有哪些新的收获?

  全班相互交流自己的收获与不足。

  《多边形的面积》整理复习

  1.想一想:本单元我们学过那些平面图形的面积?它们的公式分别是什么?是怎样推导出来的?这些平面图形的面积计算公式之间有什么联系?

  2.请用表格或画图的方式将本单元的知识进行整理。

  3.在学习多边形的面积时,哪些题目容易出错?收集整理一些容易错误的题目。

【五年级数学上册多边形的面积教案】相关文章:

五年级上册数学《多边形的面积》的教学反思(精选17篇)12-13

五年级上册数学《组合图形的面积》教案03-07

小学五年级上学期数学《多边形的面积》教案(通用8篇)09-29

人教版五年级上册数学《组合图形的面积》教案03-07

小学五年级上册数学教案——梯形的面积01-16

多边形的面积手抄报08-15

五年级上册数学《组合图形的面积》教案(7篇)03-07

数学圆的面积教案02-14

数学面积单位教案01-04