小学五年级数学《因数与倍数》教案
作为一名优秀的教育工作者,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。快来参考教案是怎么写的吧!以下是小编收集整理的小学五年级数学《因数与倍数》教案,希望能够帮助到大家。
小学五年级数学《因数与倍数》教案1
学习内容:
人教版小学数学五年级下册第21页第8题、第22页。
学习目标:
1.通过综合练习,我能熟练掌握2、5、3的倍数的特征。
2.我能运用2、5、3的倍数的特征解决问题。
学习重点:
熟练掌握2、5、3的倍数的特征。
学习难点:
运用2、5、3的倍数的特征解决综合问题。
教学过程:
一、导入新课
二、检查独学
1.互动分享独学部分的完成情况。
2.质疑探讨。
三、合作探究
1.小组合作,完成课本第21页第8题。
(1)3个3的倍数的`偶数________________
(2)3个5的倍数的奇数________________
讨论:你能说出3个既是3的倍数又是5的倍数的偶数或奇数吗?
2.自主完成第22页第10题,然后与同伴交流。
3.小组合作,完成第11题,然后组内代表汇报。
4.小组交流“生活中的数学”。
小学五年级数学《因数与倍数》教案2
学习内容:
人教版小学数学五年级下册教材第12—13页。
学习目标:
1.我能理解因数与倍数的含义。
2.我会有序地思考,掌握了找一个数的因数的方法。
3.我知道一个数的因数的个数是有限的`。
学习重点:
理解因数和倍数的含义,掌握求一个数的因数的方法。
学习难点:
能熟练地找一个数的因数。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
三、合作探究
1.小组讨论:乘法算式中的因数和这里讲的因数一样吗?
(1)我的想法:________________________________
(2)小组代表交流、汇报。
(3)自读课本第12页下面的一段话。
2.自学课本第13页例1。思考:
(1)18的因数有________、________、________、________、________、________,共 有________个。
(2)18的最小因数是________,最大因数是________。它的因数的个数是________的。
(3)也可以这样表示: 18的因数
3.组内交流并讨论:怎样找最快,而且不容易遗漏?
我的想法:________________________________
4.小组代表汇报,总结。
5.试试身手(第13页“做一做”)。
小学五年级数学《因数与倍数》教案3
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学过程:
一、引入新课。
1、出示主题图,让学生各列一道乘法算式。
2、师:看你能不能读懂下面的算式?
出示:因为2×6=12
所以2是12的因数,6也是12的因数;
12是2的倍数,12也是6的倍数。
3、师:你能不能用同样的方法说说另一道算式?
(指名生说一说)
师:你有没有明白因数和倍数的关系了?
那你还能找出12的其他因数吗?
4、你能不能写一个算式来考考同桌?学生写算式。
师:谁来出一个算式考考全班同学?
5、师:今天我们就来学习因数和倍数。(出示课题:因数倍数)
齐读p12的注意。
二、新授
(一)找因数
1、出示例1:18的因数有哪几个?
从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?
学生尝试完成:汇报
(18的因数有:1,2,3,6,9,18)
师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2、用这样的方法,请你再找一找36的因数有那些?
汇报36的因数有:1,2,3,4,6,9,12,18,36
师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。
3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。
4、其实写一个数的因数除了这样写以外,还可以用集合表示:如
18的因数
1、2、3、6、9、18
小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数
1、我们一起找到了18的因数,那2的倍数你能找出来吗?
汇报:2、4、6、8、10、16、……
师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍数最小是几?最大的你能找到吗?
2、让学生完成做一做1、2小题:找3和5的倍数。
汇报3的倍数有:3,6,9,12
师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……倍)
5的.倍数有:5,10,15,20,……
师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示
2的倍数3的倍数5的倍数
2、4、6、8…… 3、6、9…… 5、10、15……
师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、课堂小结
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
四、独立作业
完成练习二1~4题
小学五年级数学《因数与倍数》教案4
教学内容:
义务教育课程标准小学数学五年级下册第二章《因数和倍数》第1节例1(教材第13页)及练习二的第2题,第四题的前部分。
教材分析:
本节教学是在学生学习掌握了因数和倍数两个概念的基础上,在教师的引导下,让学生运用乘法算式及除法中的整除自主尝试、探究“求一个数的因数”的方法。同时,通过多种形式的训练,使学生能熟练找全一个数的因数。另外,通过引导学生用集合的形式表示一个数的因数,一方面给学生渗透集合思想,更重要的是为后面教学求两个数的公因数做准备。
教学目标:
1、应用尝试教学法鼓励学生自主尝试探究求一个数的因数的方法及规律特点,并能熟练找全一个数的因数;
2、逐步培养学生从个别到全体、从具体到一般的抽象归纳的思想方法。
教学重点:
探究求一个数的因数的方法及规律特点。
教学难点:
用求一个数的因数的方法熟练找全一个数的因数。
教具准备:
投影仪、小黑板、卡片
教学课时:一课时
教学设想:
运用尝试教学法,从学生已有的知识经验出发,通过教师引导、学生自学例1,自主尝试、探究求一个数的因数的方法方法,并能运用所获得的方法、经验找全一个数的因数。
教学过程:
一、复习旧知
师:同学们,前面学习了因数和倍数的概念,老师很想考考你们学得怎么样,可以吗?
生:(预设)可以!
师:出示小黑板。
1、利用因数和倍数的相互依存关系说一说下面各组数的相互关系。
21和7 2×7=14 30÷6=5
2、判断。
(1)12是倍数,2是因数。 ( )
(2)1是14的因数,14是1的倍数。 ( )
(3)因为6×0.5=3,所以,6和0.5是3的因数,3是6和0.5的倍数。( )
教师根据学生完成练习的情况对学生进行恰当的表扬激励,同时进入新课教学:……
二、新课教学
过程一:尝试训练。
(一)出示问题
师:同学们,老师有一个新问题,想请大家帮助解决,行吗?
生:行!(预设)
尝试题:14的因数有哪几个?
(二)学生解决问题,教师巡视并根据实际适时辅导学困生。
(三)信息反馈。
板书:
1×14
14 2×7
14÷2
14的因数有:1,2,7,14
过程二:自学课本(P13例1)。
(一)学生自学例1。
教师提出自学要求(投影):
1、18有哪些因数?
2、文中的小朋友是怎样找出18的因数的?他们找完了吗?如果没有,请帮助他们完成。
3、你还有别的找法吗?请试一试,并用自己喜欢的方式写出18所有的因数。
(二)信息反馈
1、反馈自学要求情况;
板书:
1×18
18 2×9
3×6
18的因数有1,2,3,6,9,18。
还可以这样表示: 18的因数
2、知识对比,探索发现规律。
(1)师:同学们,根据求14和18的因数时获得的体验,再思考下面问题:
投影出示问题:
思考一:你用什么方法找出?
(2)学生思考,教师适时引导。
(3)同桌交流思考结果。
(4)师生互动。总结方法、点出课题。
求一个数的因数的方法:用乘法计算或除法计算(整除)
过程三:尝试练习
(一)用小黑板出示练习题
1、找出30的因数有哪些?36的.因数有哪些?
2、结合14、18、30、36的因数个数,请你谈谈一个数的因数有什么特点?〖提示:一个数的最小因数是( ),的因数是( )。〗
(二)信息反馈:师生互动总结特点。
板书:
一个数的因数的个数是有限的。它的最小因数是1,的因数是它本身。
三、课堂作业
练习二第2题和第4题前半部分。
四、课堂延伸
猜一猜:(卡片)只有一个因数的数是谁?
五、课堂小结
师:今天你学会了求一个数的因数的方法吗?你知道一个数的因数特点吗?
生:……
板书设计:
求一个数的因数的方法
1×14
14 2×7 方法:用乘法计算或除法计算(整除)
14÷2
14的因数有:1,2,7,14
1×18
18 2×9
3×6
18的因数有:1,2,3,6,9,18 特点:一个数的因数的个数是有限的。
还可以表示为:
它的最小因数是1,的因数是它本身。
小学五年级数学《因数与倍数》教案5
教学内容:
人教版小学数学五年级下册第二单元第5第6页《因数与倍数》
教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:
1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学准备:
多媒体课件
教学过程:
一、自主探索
1、出示书上主题图,学生列出乘法算式
2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)
2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?
学生口答,巩固因数和倍数的含义?
3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?
学生发表自己的见解。
总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。
4、你还能找出12的其他因数吗?
学生独立完成,集体订正。
总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
5.小结引出课题。
师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)
6.例题学习
出示例题:18的因数有哪几个?
学生独立试做,集体订正
(1)想谁和谁相乘是18?
18=1×1818=2×918=3×6
所以18的因数是1,2,3,6,9,18。
(2)列出被除数是18的`除法算式
18÷1=1818÷2=918÷3=6
18÷6=318÷9=218÷18=1
分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个
7.出示做一做:
30的因数有哪些?36呢?学生独立练习,并口述方法,
由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。
8.小结:用字母表示数的知识表述因数和倍数的关系
M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。
A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。
二、巩固练习
1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?
4和2426和1375和2581和9
2.课本练习
三、总结反思:
由学生回忆本节课所学内容。
小学五年级数学《因数与倍数》教案6
教学目标:
知识和技能:通过动手操作,借助几何直观,认识和理解因数和倍数,体会一个数的倍数与因数之间相互依存的关系。
问题解决与数学思考:经历“活动建构”和“自主探索”的过程,发现并掌握寻找一个数的因数和倍数的方法及个数特征,发展学生的数感,培养学生思维的有序性。
情感、态度和价值观:体会数学的奇妙、有趣,产生对数学的好奇心。
重点难点
重点:
1、理解因数与倍数的意义及相互依存的关系。
2、掌握找一个数的因数和倍数的方法。
难点:理解因数与倍数的意义及相互依存关系。
教学设计:
一、认识因数和倍数
1、分类感知。
出示例1.
12÷2=6 8÷3=2?????????2 30÷6=5
19÷7=2?????????5 9÷5=1.8 26÷8=3.25
20÷10=2 21÷21=1 63÷9=7
师:谁来读一读这些算式?如果让你把这些算式分分类,你准备怎样分?
生1:分成两类。第一类:8÷3=2?????????2 19÷7=2?????????5他们商是有余数的;第二类:12÷2=6 30÷6=5 9÷5=1.8 26÷8=3.25 20÷10=2 21÷21=1 63÷9=7商是整数和有限小数。
生2:分成两类:第一类12÷2=6 30÷6=5 20÷10=2 21÷21=1 63÷9=7商是整数;第二类:8÷3=2?????????2 19÷7=2?????????5 9÷5=1.8 26÷8=3.25商是小数或有余数。
……….
师:分类的标准不同,分的方法也不同,今天我们就在第二种分类方法的基础上进行研究。在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如12÷2=6,我们就说12是2的倍数,2是12的因数。
师:说一说第一类的每个算式中。谁是谁的因数?谁是谁的倍数?
生尝试说一说。
师:在12÷2=6中,能简单地说12是倍数,2是因数吗?
生:不能这样说,要说请12是谁的倍数,2是谁的因数,因为在这个算式中12是倍数,如果在24÷2=12中,12就变成因数了,所以,到底是因数还是倍数是相对不同的数来说的,因数和倍数是相互依存的。
2、练习
说说下面四组数中,谁是谁的因数?谁是谁的倍数?
师:需要注意的是:为了方便,在研究因数和倍数的时候,我们所说的数是指非0的自然数。
二、找因数
1、师:刚刚我们认识了因数,18的因数有哪些呢?你能把他们都找出来吗?自己在练习本上试着找一找。
生独立试做,师巡视指导。
2、师:谁来说说你是怎样想的?
生1:我先想18除以几能得到整数,18除以1得整数,1是18的因数,18除以9得整数,9也是18的因数。
生2:我觉得应该一对一的找,18除以1等于18,所以1和18都是18的因数;18除以2等于9,所以2和9都是18的因数,18除以3等于6,所以3和6是18的因数。
师:他找全了吗?他找得怎么样,谁来评价一下?
生:他找的有顺序,就会不遗漏、不重复。
师:说得真好,我们再找因数的时候,要有序,要找全。
3、30的因数有哪些?36呢?
师:观察几个数的因数,看有什么相同的地方?
生1:1是所有自然数的因数。
生2:一个数最小的因数是1,一个数最大的因数是它本身。
三、找倍数
1、师:在找一个数的因数的时候,我们要想除法算式,而且要有序,怎样找一个数的倍数呢?试着找出2的倍数。
生在练习本上找。
2、师:谁来说说你找的是哪些数,是怎样想的?
生1:我想几除以2得整数,2÷2=1,4÷2=2,6÷2=3……….,2、4、6……这些数就是2的倍数。
师:他是从除法的角度想的,还有不同的想法吗?
生2:我想的是乘法:2×1=2,2×2=4,2×3=6,2×4=8.......所以2、4、6、8.......都是2的倍数。
师:他们从不同的角度找出了2的倍数,找全了吗?
生:倍数的个数是无限的,是找不全的。
师:最小的倍数有什么特点?
生:最小的倍数就是这个数本身。
3、找出3和5的倍数各5个。
四、巩固提高
1、把中间符合条件的'数填入相应的椭圆框里
1 2 3 4 5 6 7 8 9
10 12 15 16 18 20
24 30 36 60
36的因数60的因数
师:怎样才能找全?
设计意图:培养学生有序思维的习惯。
2、(1)写出下列各数的因数。(各写5个)
10 17 28 32 48
(2)写出下列各数的倍数。
4 7 10 6 9
设计意图:巩固找因数和倍数的方法。
3、下面说法正确吗?正确的请在()里划√。错误的请划“×”。
(1)1是1,2,3...........的因数。 ( )
(2)8的倍数只有16,24,32,40,48。 ( )
(3)36÷9=4,所以36是9的倍数。 ( )
(4)5.7是3的倍数。 ( )
五、课堂小结
这节课你有什么收获?今天我们学习的因数和倍数跟以前学习的因数和倍数一样吗?
师:这节课我们借助除法算式认识了因数和倍数,并学会了怎样找一个素的因数和倍数,需要大家明确的是今天我们学习的因数和倍数不同于乘法算式中的因数和表示几倍的倍数,而是一种相互依存的关系。
板书设计
因数和倍数
12÷2=6,我们就说12是2和6的倍数,2和6是12的因数。
一个数最小因数是1,最大因数是它本身。
一个数的倍数个数是无限的,最小的是它本身,没有最大倍数。
小学五年级数学《因数与倍数》教案7
一、教学内容
1.因数和倍数
2.2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
精简概念,减轻学生记忆负担。
四、方面的调整:
A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
五、具体编排
1.因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的.特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
六、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2.要注意培养学生的抽象思维能力。
小学五年级数学《因数与倍数》教案8
学习内容:
人教版小学数学五年级下册第23、24页。
学习目标:
1.我能理解什么是质数和合数,掌握了判断质数、合数的方法。
2.我知道100以内的质数,记住了20以内的质数。
3.我能在自主探究中独立思考,合作探究时畅所欲言。
学习重点:
能理解质数、合数的意义,正确判断一个数是质数还是合数。
学习难点:
用恰当的'方法找出100以内的质数;会给自然数分类。
教学过程:
一、导入新课
二、检查独学
1.互动分享收获。
2.质疑探讨。
3.试试身手:第23页做一做。
三、合作探究
1.小组合作,利用课本24页的表格,用恰当的方法找出100以内的质数,做一个质数表。
2.展示、交流:你们是怎样找出100以内质数的?
3.小组讨论:(1)有没有最大的质数或合数?(2)根据因数的个数,可把非零自然数分成哪几类?
我的想法________________________________
4.我能很快熟记20以内的质数。
5.独立思考:
(1)是不是所有的质数都是奇数?(2)是不是所有的奇数都是质数?
(3)是不是所有的合数都是偶数?(4)是不是所有的偶数都是合数?
6.组内交流。
小学五年级数学《因数与倍数》教案9
教学目标:
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
教学重点:理解因数和倍数的含义。
教学过程:
一、创设情境,引入新课
师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?
学生回答。
师:哦,老师知道了。XXX是XXX的好朋友。如果他这样介绍:XXX是好朋友。能行吗?
生:不行,这样就不知道谁是谁的好朋友了。
师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。
二、探索交流,解决问题
1、师:我们已经认识了哪几类数?
生:自然数,小数,分数。
师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。
根据学生的汇报板书:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
师:在这3组乘、除法算式中,都有什么共同点?
生:第①组每个式子都有1、12这两个数。
生:第②组每个式子都有2、6、12这三个数。
生:第③组每个式子都有3、4、12这三个数。
师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?
师:2和6与12的关系还可以怎样说呢?
生:2和6是12的因数,12是2的倍数,也是6的倍数。
师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?
生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。
生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。
生:可以说12是12的因数吗?
生:我认为可以,12×1=12,1和12都是12的因数。
师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。
师出示:
1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
12 × 5=60 45 ÷ 3=15
11 × 4=44 9 × 8= 72
2、8是倍数,4是因数。…………… ( )
强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
师出示:0×3 0×10
0÷3 0÷10
通过刚才的计算,你有什么发现?
生:我发现0和任何数相乘,都等于0。
生:0除以任何数都等于0。
生:我补充,0不能作为除数。
师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。
师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?
生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?
师:这个问题提得好!谁能回答他的问题?
生:我觉得好像不一样,但不知道为什么?
生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。
师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!
2、
试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁的倍数?
2、3、5、9、18、20
师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?
生:2、3、9、18都是18的因数。
师:18的因数只有这4个吗?
师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。
投影仪出示学生的不同作业。交流找因数的方法。
师:出示18的因数有:1、18、2、9、3、6;
你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?
生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。
师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?
生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……
师:用乘法和除法找都可以,你们认为用什么方法更容易呢?
生:乘法。
板书:18的因数有:1、2、3、6、9、18。
师:18的因数也可以这样表示。(课件出示集合圈图)
组织交流:
通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?
突出要点:有序(从小往大写),一对对找
(哪两个整数相乘得这个数),再按从小到大的'顺序写出来。
用我们找到的方法,试一个。
课件出示:
填空:
24=1×24=2×( )=( ) ×( )=( ) ×( )
24的因数有:_______________
再试一个:16的因数有( )
师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?
生:因为4×4=16,只写一个4就可以了。
师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。
生:18的因数有6个,最小的是1,最大的是18.
16的因数有5个,最小的是1,最大的是16.
师:谁能把同学们的发现,用数学语言概括起来。
边交流边板书:
因数:个数最小最大
有限1它本身
2、师:刚才同学们通过自主探索和合作交流,不但掌握了找一个数的因数的方法,而且发现了一个数的因数的特点,那么一个数的倍数,怎样找呢?找一个小一点的,2的倍数,请你们在纸上写。
师:停,写完了吗?你能把2的倍数全部写下来吗?那怎么办?
生:不能全写下来,可以用省略号表示没写完的。
师:你写得这样快,有小窍门吗?
生:用这个数有顺序地乘1、2、3、4、……
先写2,再逐个加2。
板书:2的倍数:2、4、6、8、10……
师:2的倍数也可以这样表示。(出示用集合圈表示的2的倍数)
找出3的倍数:3、6、9、12、15 ……
观察2和3的倍数,你有什么发现:
板书:倍数:个数最小最大
无限的它本身无
师:找出30以内5的倍数:
生:5、10、15、20、25、30
师:这一次你找到了哪几个?为什么不加省略号呢?
课件出示:30以内5的倍数的集合圈图。
引导学生抽象地概括出一个数的最小因数和最大因数分别是什么,总结出一个数的因数的个数是有限的结论,向学生渗透从
个别到全体、从具体到一般的抽象归纳的思想方法。
三、巩固应用,内化提高
1.下面每一组数中,谁是谁的倍数,谁是谁的因数。
16和2 4和24 72和8 20和5
2.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
师:第(3)题有两种不同的意见,请反对意见的同学说说理由。
生:因为没有说明18是谁的倍数,所以不对。
师:你认为怎样说才正确呢?
生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。
师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。
3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。
4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。
①( )是4的倍数
( )是60的因数
( )是5的倍数
( )是36的因数
②请一名学生模仿刚才老师的要求,继续练习。
③想一想,应该提什么要求,让全班同学都能举手?
生:( )是1的倍数。
师:全班都举手了,谁能总结刚才的说法。
生:任何不包括0的自然数都是1的倍数。
四、回顾整理、反思提升。
通过今天的学习,你有什么收获?
课后作业:课后自已或与同学合作制作一个含有因数和倍数知识的转盘。
教后反思:
40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。
课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数。…………… ( ))的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。
因数和倍数不能单独存在。
通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。
小学五年级数学《因数与倍数》教案10
第一单元 倍数与因数
3的倍数的特征
第6课时
[教学内容] 数的奇偶性
[教学目标]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学重、难点]
1、尝试用“列表”“画示意图”等解决问题的策略发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、经历探索加法中数的奇偶性变化的过程,在活动中发现加法中数的奇偶性变化规律,在活动中体验研究的方法,提高推理能力。
[教学过程]
活动1:利用数的奇偶性解决一些简单的`实际问题。
让学生尝试解决问题,寻找解决问题的策略,利用解决问题的策略发现规律,教师适当进行“列表”“画示意图”等解决问题策略的指导。
试一试:
本题是让学生应用上述活动中解决问题的策略尝试自己解决问题,最后的结果是:翻动10次,杯口朝上;翻动19次,杯口朝下。解决问题后,让学生以“硬币”为题材,自己提出问题、解决问题,还可以开展游戏活动。
活动2:探索奇数、偶数相加的规律
先研究“偶数+偶数”的规律,在经历“列式计算—初步得出结论—举例验证—得出结论”的过程后,再引导学生用这样的研究方式探索“奇数+奇数”“奇数+偶数”的奇偶性变化规律,最后让学生应用结论判断计算结果是奇数还是偶数。还可以引导学生研究减法中奇偶性的变化规律
偶数+偶数=偶数
奇数+奇数=偶数
偶数+奇数=奇数
[板书设计]
数的奇偶性
例子: 结论:
12 + 34 = 48 偶数+偶数=偶数
11 + 37 =48 奇数+奇数=偶数
12 + 11 =23 奇数+偶数=奇数
【小学五年级数学《因数与倍数》教案】相关文章:
数学:数的世界(倍数与因数)教案12-17
《倍数与因数》教案03-14
小学五年级数学下册《因数与倍数》教案08-27
数学《因数和倍数》教案设计02-19
数学《因数和倍数》教案(精选13篇)07-31
《因数与倍数》小学教案(精选16篇)06-17
因数和倍数教案08-23
因数与倍数二教案02-24