七年级上册数学教案

时间:2024-09-29 10:13:30 数学教案 我要投稿

北师大版七年级上册数学教案(通用10篇)

  在教学工作者开展教学活动前,就有可能用到教案,教案是教学蓝图,可以有效提高教学效率。那么应当如何写教案呢?以下是小编精心整理的北师大版七年级上册数学教案,希望对大家有所帮助。

北师大版七年级上册数学教案(通用10篇)

  七年级上册数学教案 1

  教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

  重点、难点

  1.重点:方程的两种变形。

  2.难点:由具体实例抽象出方程的两种变形。

  教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

  问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

  学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

  问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

  让同学们看图(2)。左天平两盘内的砝码的`质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?

  把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

  由图(1)、(2)可归结为;

  方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

  让学生观察(3),由学生自己得出方程的第二个变形。

  即方程两边都乘以或除以同一个不为零的数,方程的解不变:

  通过对方程进行适当的变形。可以求得方程的解。

  例1.解下列方程

  (1)x-5=7 (2)4x=3x-4

  (1)解两边都加上5,x,x=7+5即x=12

  (2)两边都减去3x,x=3x-4-3x即x=-4

  请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?

  这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

  例2.解下列方程

  (1)-5x=2 (2) x=

  这里的变形通常称为“将未知数的系数化为1”。

  以上两个例题都是对方程进行适当的变形,得到x=a的形式。

  练习:

  课本第6页练习1、2、3。

  练习中的第3题,即第2页中的方程①先让学生讨论、交流。

  鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

  三、巩固练习

  教科书第7页,练习

  四、小结

  本节课我们通过天平实验,得出方程的两种变形:

  1.把方程两边都加上或减去同一个数或整式方程的解不变。

  2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

  五、作业

  教科书第7—8页习题6.2.1第1、2、3。

  七年级上册数学教案 2

  一、教学目标:

  通过观察生活中的大量物体,认识基本的几何体。

  经过比较不同的物体学会观察物体间的不同特征,体会几何体间的联系与区别。

  二、教学过程:

  1、引入:(1)幻灯投影P2的彩图,利用现实生活的'背景让学生说出熟悉的几何体(如球体、长方体、正方体等)

  (2)展出圆柱、圆锥、正方体、棱柱、球的模型,让学生分别说出这几种几何体的名称。

  2、过程:

  (1)组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。

  (2)组织学生分组讨论棱柱、圆锥的共同点与异同点,老师巡场指导。

  (3)学生回答问题。老师鼓励学生大胆说出自己的答案,并对每一种答案再交由学生共同讨论它的正确性。

  (4)幻灯演示,棱柱的两种类型:直棱柱与斜棱柱,一般棱柱仅指直棱柱。

  (5)组织学生讨论如何对以上几何体进行分类:

  (1)按底面

  (2)按侧面

  学生上台动手将这几种几何体进行分类,老师让学生试着说明归类的理由是什么?无论学生说什么老师都应用鼓励的目光让学生说出自己的答案。

  3、议一议:

  投影P3的图片让学生感知这是现实生活中的一角,可能是书房的一角可能是教室的一角,让学生分组讨论:

  (1)、上图中哪些物体的形状与长方体、正方体类似?

  (学生在回答桌面时老师应指出桌面是指整个层面)

  (2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?

  (3)请找出上图中与笔筒形状类似的物体?

  (4)请找出上图中与地球形状类似的物体?

  4、想一想:

  生活中还有哪些物体的形状类似于棱柱、圆柱、圆锥与球。

  5、小结:

  与学生总结本节课所学的内容,通过感知不同的物体体验现实生活中原来有如此多的几何体,几何体在我们的生活中无处不在。我们也学会简单地区别不同的物体。

  6、作业:

  七年级上册数学教案 3

  一、学生基本情况分析:

  本期我担任的数学教学工作。七(5)班共有50名学生,通过小学的升学成绩来看,学生的数学成绩较好,不及格的同学较少;在学习习惯上,部分学生的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业,超前学习等,都应得到强化。在近日的学习中,后面的学生掌握的非常不好,可能是刚开学还没有完全适应过来,或初中知识比小学的难度大一些。总之,我会和孩子们共同努力,提高他们的学习能力和学习成绩。

  二、教材基本结构分析

  本学期初一数学教学工作共分为6章。

  第一章丰富的图形世界

  第二章有理数及其运算

  第三章代数式

  第四章平面图形及其位置关系

  第五章一元一次方程

  第六章生活中的数据。

  三、教材的重点、难点

  1、利用图形来解决简单的实际问题。

  2、认识并能字母表示算式,初步认识角并解决实际问题。

  3、了解一元一次方程的“消元”思想初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想。

  4、培养学生的逻辑推理、逻辑思维能力和计算能力,培养学生的合作交流意识和实践创新能力。总之在每一章中都要与学生一起认真的来研究学习。

  四、提高教学质量的主要措施:

  1、做好教学六认真工作。把教学六认真做为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真。

  2、兴趣是最好的老师。激发学生的兴趣,给学生介绍相应的数学趣题,给出相应的数学思考题,激发学生的兴趣。

  3、挖掘数学特长生,发展这部分学生的'特长,使其冒尖。

  4、以学生发展为本,注重学生个性的养成,潜能的开发,能力的培养和智力的发展。

  5、在注重基础知识、基本技能的同时,注意培养学生自主学习的良好习惯,让学生全面发展。

  6、在教学中注意既要使用好教材,又要走出教材,同社会实践相结合。

  7、强调在实践中学习,在探索发现中学习,在合作交往中学习。

  8、开展分层教学实验,使不同的学生学到不同的知识,使人人能学到有用的知识,使不同的人得到不同的发展,获得成功感,使优生更优,差生逐渐进步。

  9、重在发现和肯定学生身上所蕴涵的潜能,所表现出来的闪光点,鼓励学生的一点小进步。

  五、教学进度安排:

  七年级上册数学教案 4

  教学目标:

  1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

  2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

  3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

  教学重点:

  认识一些基本的几何体,并能描述这些几何体的特征

  教学难点:

  描述几何体的特征,对几何体进行分类。

  教学过程:

  一、设疑自探

  1.创设情景,导入新课

  在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

  2.学生设疑

  让学生自己先思考再提问

  3.教师整理并出示自探题目

  ①生活常见的几何体有那些?

  ②这些几何体有什么特征

  ③圆柱体与棱柱体有什么的相同之处和不同之处

  ④圆柱体与圆锥体有什么的.相同之处和不同之处

  ⑤棱柱的分类

  ⑥几何体的分类

  4.学生自探(并有简明的自学方法指导)

  举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

  说说它们的区别

  二、解疑合探

  1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

  2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

  2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

  三、质疑再探:

  说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

  四、运用拓展:

  1.引导学生自编习题。

  请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

  2.教师出示运用拓展题。

  (要根据教材内容尽可能要试题类型全面且有代表性)

  3.课堂小结

  4.作业布置

  七年级上册数学教案 5

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得。

  解这个方程,就能得到所求的`结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2。

  四、小结

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  七年级上册数学教案 6

  教学目标

  1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;

  2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;

  3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

  教学难点

  数轴的概念和用数轴上的点表示有理数

  教学过程

  (师生活动) 设计理念

  设置情境

  引入课题 教师通过实例、课件演示得到温度计读数.

  问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?

  (多媒体出示3幅图,三个温度分别为零上、零度和零下)

  问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.

  (小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学

  点表示数的感性认识。

  点表示数的理性认识。

  合作交流

  探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?

  让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?

  从而得出数轴的三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。

  从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解

  寻找规律

  归纳结论 问题3:

  1, 你能举出一些在现实生活中用直线表示数的实际例子吗?

  2, 如果给你一些数,你能相应地在数轴上找出它们的.准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?

  3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?

  4, 每个数到原点的距离是多少?由此你会发现了什么规律?

  (小组讨论,交流归纳)

  归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。

  巩固练习

  教科书第12页练习

  小结与作业

  课堂小结 请学生总结:

  1、数轴的三个要素;

  2、数轴的作以及数与点的转化方法。

  本课作业

  1、必做题:教科书第18页习题1.2第2题

  2、选做题:教师自行安排

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

  2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。

  3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。

  七年级上册数学教案 7

  教学目标

  1、 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3、体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的`数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2、教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

  七年级上册数学教案 8

  教学目标

  1、知识与技能:

  使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  2、过程与方法:

  通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。

  3、情感态度与价值观:

  让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。

  教学重难点

  1、教学重点:

  掌握用整十数除的口算方法。

  2、教学难点:

  理解用整十数除的口算算理。

  教学工具

  多媒体设备

  教学过程

  1、复习引入

  口算。

  20×3= 7×50= 6×3=

  20×5= 4×9= 8×60=

  24÷6= 8÷2= 12÷3=

  42÷6= 90÷3= 3000÷5=

  2、新知探究

  1、教学例1

  有80面彩旗,每班分20面,可以分给几个班?

  (1)提出问题,寻找解决问题的方法。

  师:从中你能获取什么数学信息?

  师:怎样解决这个问题?

  (2)列式 80÷20

  (3)学生独立探索口算的方法

  师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。

  学生汇报:

  预设学生可能会有以下两种口算方法:

  A.因为20×4=80,所以80÷20=4 这是想乘算除

  B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成

  为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)

  这样我们就把除数是整十数的转化为我们已经学过的表内除法。

  (4)师小结:

  同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?

  把你喜欢的方法说给同桌听。

  (5)检查正误

  师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)

  (6)用刚学会的方法再次口算,并与同桌交流你的想法

  40÷20 20÷10 60÷30 90÷30

  (7)探究估算的方法

  出示:83÷20≈ 80÷19≈

  师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。

  生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。

  师:谁想把你的方法跟大家说一说。

  预设:83接近于80,80除以20等于 4,所以83除以20约等于4。

  19接近于20,80除以20等于 4,所以80除以19约等于4。

  2、教学例2

  (1)创设情境引出问题

  师:谁会解决这个问题?

  150÷50

  (2)小组讨论口算方法

  (3)你是怎么这样快就算出的呢?

  A.因为15÷5=3,所以150÷50=3。

  B.因为3个50是150,所以150÷50=3。

  这一题跟刚才分彩旗的口算方法有不同吗?

  都是运用想乘算除和表内除法这两种方法来口算的。

  师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。

  口算练习:150÷30 240÷80 300÷50 540÷90

  3、估算

  (1)探计估算的.方法

  师:你能知道题目要求我们做什么吗?

  你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。

  (2)谁想把你的方法跟大家说一说。

  (3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。

  (4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?

  4、巩固提升

  1)独立口算

  观察每道题,怎样很快说出下面除法算式的商?

  如果估算的话把谁估成多少。

  2)算一算、说一说。

  (1)除数不变,被除数乘几,商也乘几。

  (2)被除数不变,除数乘几,商反而除以几。

  3)解决问题

  (1)一共要寄240本书,每包40本。要捆多少包?

  你能找到什么条件、问题。你会解决吗?

  240÷40 = 6(包)

  答:要捆6包。

  (2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。

  出示条件:一共有120个小故事,每天看1个故事。

  问题:看完这本书大约需要几个月?

  问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?

  120÷30 = 4(个)

  答:看完这本书大约需要4个月。

  课后小结

  这节课你有什么收获?还有什么问题?

  本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。

  板书

  口算除法

  有80面彩旗,每班分20面,可以分给几个班?

  80÷20=

  七年级上册数学教案 9

  教学目的:

  (一)知识点目标:

  1.了解正数和负数是怎样产生的。

  2.知道什么是正数和负数。

  3.理解数0表示的量的意义。

  (二)能力训练目标:

  1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

  2.会用正、负数表示具有相反意义的量。

  (三)情感与价值观要求:

  通过师生合作,联系实际,激发学生学好数学的'热情。

  教学重点:

  知道什么是正数和负数,理解数0表示的量的意义。

  教学难点:

  理解负数,数0表示的量的意义。

  教学方法:

  师生互动与教师讲解相结合。

  教具准备:

  地图册(中国地形图)。

  教学过程:

  引入新课:

  1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?

  内容:老师说出指令:

  向前两步,向后两步;

  向前一步,向后三步;

  向前两步,向后一步;

  向前四步,向后两步。

  如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。

  讲授新课:

  1.自然数的产生、分数的产生。

  2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。

  3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。

  举例说明:3、2、0.5、等是正数(也可加上“十”)

  -3、-2、-0.5、-等是负数。

  4、数0既不是正,也不是负数,0是正数和负数的分界。

  0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。

  5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。

  巩固提高:练习:课本P5练习

  课时小结:这节课我们学习了哪些知识?你能说一说吗?

  课后作业:课本P7习题1.1的第1、2、4、5题。

  活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。

  (1)美美得95分,应记为多少?

  (2)多多被记作一12分,他实际得分是多少?

  七年级上册数学教案 10

  学习目标:

  1、引导学生正确区分“线段、射线、直线”,掌握其表示方法,理解并能运用相关性质、公理。

  2、了解线段中点的概念,能借助刻度尺、圆规等画图工具画一条线段等于已知线段。

  3、引领学生在感受美妙多变的图形世界中,培养他们的观察、分析、比较、探究等能力。

  重点与难点:了解线段中点的概念,能画一条线段等于已知线段。发展学生有条理的思考,并能正确地表述。

  学习过程:

  一、课前预习导学

  1、如图,点a、b、c、d在直线ab上,则图中能用字母表示的共有条线段,有条射线,有条直线。

  2、从a到b地有①、②、③三条路可以走,每条路长分别为:,则第条路最短,另两条路的长短关系是。

  第1题

  第2题

  3、如图,若是中点,是中点,

  (1)若,_________;

  (2)若,_________。

  二、课堂学习1、议一议:

  (1)、在平面内画一个点,过这个点画直线,能画多少条?

  (2)、要在墙上钉牢一根木条,至少要用几个钉子?为什么?

  (3)、如果平面内有两个点,过这两个点画直线,又能画多少条?

  总结:“过两点有______,并且____ ”

  思考:过平面上三点中的每两点画直线,可画多少条?

  2、做一做:已知两点a、b

  (1)画线段ab(连接ab)

  (2)延长线段ab到点c,使bc=ab

  注意:我们把上图中的点b叫做线段ac的。

  3、想一想:(1)如果点b是线段ac的中点,那么线段ab、bc、ac之间有怎样的数量关系?与同学交流。

  (2)如何用符号语言表述中点的概念?

  总结:如果点b是线段ac的中点,那么;

  如果,那么b是线段ac的中点。

  4、知识运用:

  例1、如图,线段ab=8cm,c是ab的中点,点d在cb上,db=1.5cm.求线段cd的长度。

  练习:1、如图ab=8cm,点c是ab的中点,

  点d是cb的中点,则ad=____cm

  2、如图,下列说法,不能判断点c是线段ab的中点的是( )

  a、ac=cb b、ab=2ac c、ac+cb=ab d、cb=0.5ab

  3、已知线段ab=8cm,点c是线段ab上任意一点,点m,n分别是线段ac与线段bc的中点,求线段mn的长。

  三、课堂检测1.下列说法中,正确的是()

  a.射线oa和射线ao表示同一条射线;b.延长直线ab;

  c.经过两点有一条直线,并且只有一条直线;d.如果ac=bc,那么点c是线段ab的中点.

  2.如果要在墙上固定一根木条,你认为至少要钉子()

  a.1根b.2根c.3根d.4根

  3.如图,若是中点,是中点,

  (1)若,_________;(2)若,_________。

  4.如图在平面内有a、b、c、d四点,按要求画图。

  (1)画直线ab、射线bc、线段bd

  (2)连结ac交bd于点o

  (3)画射线cd并反向延长射线cd,

  (4)连结ad并延长至点e,使ad=de。

  四、课后作业

  1、下列说法中正确的是()

  a、连结两点的线段叫做两点之间的距离b、直线没有端点,射线至少有一个端点

  c、经过平面内两点有且只有一条直线d、运动场上的.300m赛跑,表示起点和终点之间的距离是300米

  2、如图,b是线段ad上一点,c是线段bd的中点,ad=10,bc=3,求线段cd、ab的长度

  3、如图,线段ad=8,ab=cd=3,e、f分别是ab、cd的中点,求线段ef的长。

  4、已知线段mn=7,点p在直线mn上,且mp=3,则np= 。

  5、一条直线上有a,b,c三点,其中ab=4cm,bc=3cm,若o是线段ac的中点,求线段ob的长度。

【七年级上册数学教案】相关文章:

[精选]七年级上册数学教案07-02

七年级上册数学教案01-16

七年级下数学教案上册12-10

七年级上册数学教案05-06

七年级数学教案上册模板01-08

湘教版七年级上册数学教案01-17

七年级上册数学教案11篇02-15

七年级上册数学教案(11篇)02-15

七年级上册数学教案13篇02-06

七年级上册数学教案(13篇)02-06