六年级数学《倒数的认识》教案优秀

时间:2023-09-09 07:01:09 数学教案 我要投稿
  • 相关推荐

六年级数学《倒数的认识》教案优秀

  作为一名人民教师,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?以下是小编整理的六年级数学《倒数的认识》教案优秀,仅供参考,欢迎大家阅读。

六年级数学《倒数的认识》教案优秀

六年级数学《倒数的认识》教案优秀1

  教学目标

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重难点

  教学重点:理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法

  教学过程

  一、导入

  课件出示:

  找规律:指生回答。

  找规律,填空,指生回答。

  口算,开火车口算。

  你能找出乘积是1的两个数吗?指生说。

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  教学倒数的意义。

  学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  学生汇报研究的结果:什么是倒数?生生说,举例说明。

  乘积是1的两个数互为倒数。举例说明。课件出示。

  观察每一对数字,你发现了什么?

  像这样乘积是1的数字有多少对呢?

  提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  互为倒数的两个数有什么特点?

  像这样的每组数都有什么特点呢?

  两个数的分子和分母交换了位置(两个数的分子、分母正好颠倒了位置)

  教学求倒数的方法。试着写出3/5 、7/2的倒数。

  写出3/5的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  写出7/52的倒数:求一个分数的倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  想:写出6的倒数。独立完成。

  先把整数看成分母是1的分数,再交换分子和分母的位置。 6= 6/1 1/6

  求一个数(0除外)的`倒数,只要把这个数的分子、分母交换位置就可以了。

  教学特例,深入理解

  1有没有倒数?怎么理解?(因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  课件出示,巩固练习:这些数怎样求倒数呢?

  学生独立解答,教师巡视。

  汇报时有意识地让学有困难的学生说一说求倒数的方法。

  三、巩固应用

  课件出示:

  练习六第2题:填一填。

  找朋友。

  写出上面各数的倒数

  辨析练习:练习六第3题“判断题”。

  我的发现。

  马小虎日记,开放性训练。

  谜语:

  五四三二一

  (打一数学名词)

  四、总结

  你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?

六年级数学《倒数的认识》教案优秀2

  教材分析:

  教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

  教学目标:

  知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

  能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

  情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

  教学重点:知道倒数的意义和会求一个数的倒数

  教学难点:1.0的倒数的求法。

  教具准备:课件

  教学过程:

  一、课前谈话:

  师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

  生:好!

  师:那你想怎样表述我们的关系?

  生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。

  二、揭示倒数的意义

  师:前面我们学习了分数乘法,请同学们计算几道题。师:观察它们有什么共同的特点?生:乘积都是1!??

  师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

  生:(齐)能!

  师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

  准备好了吗?开始??

  师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

  (生读,师有选择的板书在黑板上。)

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  出示例7

  师:那请你们来帮帮忙,找出乘积是1的两个数。

  (学生个别回答)

  师:你们找的这些与之前写的所有算式都有怎样的共同点?

  生:乘积都是1。

  师:你知道吗?揭示意义教师板书:乘积是1的两个数叫做互为倒数。生齐读。

  师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

  师:3/8和8/3互为倒数!我们还可以怎么说呢。

  生:3/8的倒数是8/3;8/3的倒数是3/8。

  师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

  生1:“互为”是指两个数的关系。

  生2:“互为”说明这两个数的关系是相互依存的。

  师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

  师:2/5和5/2的积是1,我们就说??(生齐说)

  师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

  (学生活动)

  (小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  探索求一个倒数的方法

  师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

  生1:互为倒数的两个数分子和分母调换了位置。

  师:同意吗?

  生:同意。

  师:根据这一特点你能写出一个数的倒数吗?

  生:能

  师:试一试!

  师在黑板上出示3/5 7/2,写出它们的倒数。

  师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?

  生:把5看成是分母是1的分数,再把分子分母调换位置。

  求小数的倒数的方法:小数求带分数的倒数的方法:带分数

  三、分数倒数。倒数。假分数

  师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)

  0的倒数呢?

  师:为什么?

  生1:因为0和任何数相乘都得0,不可能得1。

  师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2.0/3把这此分数的分子分母调换位置后。(生齐:分母就为0了,而分母不可以为0。)师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

  生1:求一个数的倒数,只要把分子分母调换位置。

  生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

  生3:1的倒数是1,0没有倒数。

  (生齐读求一个数倒数的方法。)

  四、巩固练习

  打开书,阅读课本P34,把你认为重要的划起来。

  完成练一练。

  学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

  发现一学生书写有误,与该生交流。

  用展台展示该生的错误。

  师:这样写可以吗?(4/11=11/4)

  生:不可以!

  师:为什么?

  生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

  师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的.一样。

  小游戏:同桌互相出一题,对方说出答案。

  先说说下面每组数的倒数,再看看你能发现什么?

  3/4的倒数是()(2)9/7的倒数是()

  2/5的倒数是()10/3的倒数是()

  4/7的倒数是()6/5的倒数是()

  1/3的倒数是()(4)3的倒数是()

  1/10的倒数是()9的倒数是()

  1/13的倒数是()14的倒数是()

  由学生说出各数的倒数。然后

  师:请你仔细观察,看能从中发现什么,发现得越多越好。

  师:小组间可以先互相说一说。

  汇报:

  生1:我从第一组中发现真分数的倒数都是假分数。

  生2:我从第二组中发现假分数的倒数是真分数或者假分数。

  生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。

  生4:我发现分子是1的分数。

  填空:

  7×()=15/2×()=()×3又2/3=0.17×()=1

  五、课堂小结

  小结:今天我们学习了什么???

  学了倒数有什么用呢?

  大家课后可去思考一下。

  板书设计

  倒数的认识

  乘积是1的两个数互为倒数1的倒数是1.0没有倒数。

  1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

  1=1/10)(5=5/1)(1又1/8=9/8)

  求小数的倒数的方法:求带分数的倒数的方法:带分数

  分数假分数倒数。倒数。

六年级数学《倒数的认识》教案优秀3

  0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)

  分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?

  1的倒数是多少?如何求的?

  练一练示范写的倒数:的倒数是,明确不能写成=。

  学生独立完成,集体核对。

  四、巩固练习

  练习十第1题

  学生独立完成后集体订正,说说思路及倒数的.意义和求倒数的方法

  练习十第2题

  学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。

  练习十第3题

  学生独立填空后集体订正。

  练习十第4题

  写出每组数的倒数。说说有什么发现?

  第1组中都是真分数,倒数都是大于1的假分数。

  第2组中都是大于1的假分数,倒数都是真分数。

  第3组中都是一个分数的分数单位,倒数都是整数。

  第4组中都是非0的自然数,倒数都是几分之一。

  练习十第5题:

  学生独立完成。说说怎样求正方体的表面积和体积。

  练习十第6题

  学生独立列式解答后,辨析。

  两题中分数的不同意义:

  第一题中的表示两个数量间的倍比关系,要用乘法计算。

  第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。

  思考题

  学生小组讨论,指名交流。

  按钢管的长度分三种情况考虑:

  如果钢管的长度都是1米,那么两根钢管用去的一样多;

  如果钢管的长度小于1米,那么第一根用去的长度长一些;

  如果钢管的长度大于1米,那么第二根用去的长度长一些。

  五、课堂总结:

  今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?

六年级数学《倒数的认识》教案优秀4

  教学目标:

  引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。

  通过合作活动培养学生学会与人合作,愿与人交流的习惯。

  通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

  教学重点:

  理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。

  教学难点:掌握求倒数的方法。

  教具准备:多媒体课件。

  教学过程

  一、旧知铺垫(课件出示)

  口算:

  × × 6× ×40

  ××3××80

  今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识

  二、新授

  课件出示知识目标:

  什么叫倒数?怎样理解“互为”?

  怎样求一个数的倒数?

  1有倒数吗?是什么?

  教学倒数的意义。

  学生看书自学,组成研讨小组进行研究,然后向全班汇报。

  学生汇报研究的结果:乘积是1的两个数互为倒数。

  提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)

  互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  教学求倒数的方法。

  写出的倒数:求一个分数的.倒数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。

  写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

  教学特例,深入理解

  1有没有倒数?怎么理解?(因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)

  0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)

  同桌互说倒数,教师巡视。

  三、当堂测评

  练习六第2题:

  辨析练习:练习六第3题“判断题”。

  开放性训练。

  3/5×()=()×4/7=()×5=1/3×()=1

  四、课堂总结

  你已经知道了关于“倒数”的哪些知识?

  你联想到什么?

  还想知道什么?

  设计意图

  倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。

  教学后记

  第十一、十二课时:整理和复习

六年级数学《倒数的认识》教案优秀5

  教学内容:

  新人教版六年级数学上册的例1。

  教学目标:

  通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

  学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

  在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

  教学重点:

  理解倒数的意义,学会求倒数的方法。

  教学难点:

  熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

  教学准备:

  多媒体课件。

  教学过程:

  一、猜字游戏导入,揭示课题。

  上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

  如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8 /3)。

  师:谁还能说出这样的数?(课件出示)

  象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)

  二、出示学习目标:

  理解倒数的意义。

  掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

  三、自主探究新知

  探究讨论,理解倒数的意义。

  (课件出示教材例1的四个算式。)

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)

  生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

  你是怎样理解互为倒数的呢?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)能举例吗?

  深化理解。

  乘积是1的两个数存在着怎样的倒数关系呢?

  举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)

  互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)

  例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)

  想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  运用概念。

  讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。学生试做讨论后,教师将过程板书如下:3/5的分子分母调换位置---5/3 7/2的分子分母调换位置---2/7

  所以3/5的倒数是5/3,7/2的倒数是2/7 。(能不能写成3/5=5/3,为什么?)

  小结:求一个数(0除外)的倒数,只要把这个数的`分子、分母调换位置。)

  怎样求小数和带分数的倒数呢?(课件演示,学生观察。)

  师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

  怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  四、堂堂清作业

  填一填。(出示课件)

  乘积是()的()个数()倒数。

  a和b互为倒数,那a的倒数是(),b的倒数是()。

  只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

  一个真分数的倒数一定是()。

  判断题。(演示课件)

  5/3是倒数。()

  因为3/4×4/3=,所以4/3是倒数。()

  真分数的倒数大于1,假分数的倒数小于1。()

  因为1/4+3/4=1,所以1/4和/4互为倒数。()

  说一说。(课本的第3题)

  五、课堂小结

  今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

  倒数的认识

  乘积是1的两个数互为倒数。 0没有倒数,1的倒数是它本身。例2:写出其中2/5 、7/2两个分数的倒数。

  2/5的分子分母调换位置---5/2 7/2的分子分母调换位置---2/7 6的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

  求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

六年级数学《倒数的认识》教案优秀6

  教学目的:

  使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。

  培养学生的观察能力、数学语言表达能力、发现规律的能力等。

  教学重点:求一个数的倒数的方法。

  教学难点:理解倒数的意义,掌握求一个数的倒数的方法。

  教学准备:教学光盘

  课前研究:自学课本P50:

  什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。

  观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?

  0有倒数吗?为什么?

  教学过程:

  一、作业错例分析。

  二、学习分数的倒数:

  出示例7

  学生在自备本上完成,指名核对。

  教师板书:×=1×=1×=1

  你能模仿着再举几个例子吗?

  学生回答,教师板书。

  观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)

  和互为倒数,也可以说的倒数是,的倒数是。

  让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?

  你能分别找出和的倒数吗?

  学生同桌讨论找法,指名交流。

  观察上面互为倒数的'两个数,学生讨论怎样求一个分数的倒数?

  指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。

  合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。

  三、学习整数的倒数:

  电脑出示:5的倒数是多少?1的倒数呢?

  学生跟自己的同桌说一说,再指名交流。

  方法一:求5的倒数时,可以先把5看作,所以它的倒数是;

  方法二:想5×()=1,再得出结果。

六年级数学《倒数的认识》教案优秀7

  课题:倒数的认识

  教学内容:p27倒数的认识,练习六全部习题。

  教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

  教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

  教学过程:

  一、用汉字作比喻引入

  师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

  提一个开放性的问题:看到这个课题,你们想到了什么?

  (学生各抒己见)

  师生共同确定本节课的目标——研究倒数的意义、方法和用处。

  二、新知探索:

  研究倒数的意义

  师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

  学生自学后,问:有没有疑问?

  师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

  学生自主举例,推敲方法:

  师:下面,请大家各自举例加以说明。

  学生先独立思考,再交流。

  (a、以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

  (b、以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

  (c、以“带分数”为例;带分数的倒数是真分数。)

  (d、以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

  (e、以“整数”为例;整数相当于分母是1的'假分数)

  学生举例的过程同时将如何寻找倒数的方法也融入其中。

  讨论“0”、“1”的情况:

  1的倒数是1.0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1.0和任何数相乘都得0,不可能是1,所以0没有倒数。)

  总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

  三、反馈巩固:

  完成“练一练”。

  学生独立完成后,集体订正。重点问:“8”的倒数是几?

  练习六5(判断)

  补充判断:

  a、a是自然数,a的倒数是1/a。

六年级数学《倒数的认识》教案优秀8

  教学内容

  倒数的认识

  教学目标

  通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

  使学生经历倒数意义的概括过程,提高观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

  通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

  教学重难点

  教学重点

  理解倒数的意义,学会求倒数的方法。

  教学难点

  发现倒数的一些特征。

  教具准备

  课件

  设计意图

  教学过程

  特色设计

  通过观察,使学生发现一个分数的倒数就是把它的分子与分母的位置颠倒,进而使学生体会到“倒数”这一概念中“倒”的含义,很自然的得出求一个分数的倒数的方法。

  一、猜字游戏引入新课

  找找下面文字的构成规律

  呆———杏土———干吞———吴

  按照上面的规律填数

  ——()——()——()

  能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数

  二、新知探究

  探究讨论,理解倒数的意义。

  课件出示算式。

  开展小组活动:算一算,找一找,这组算式有什么特点?

  小组汇报交流。

  我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的'两个分数叫做“倒数”。

  出示倒数的意义:乘积是1的两个数互为倒数。

  你是怎样理解互为倒数的呢?能举例吗?

  深化理解。

  乘积是1的两个数存在着怎样的倒数关系呢?

  互为倒数的两个数有什么特点?

  想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?

  因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

  又因为0与任何数相乘都不等于1,所以0没有倒数。)

  运用概念。

  讨论求一个数的倒数的方法。

  出示例2:写出其中3/5 、7/2两个分数的倒数。

  学生试做讨论后,教师将过程。

  小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)

  怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)

  三、巩固练习

  完成教材的“做一做”

  完成教材练习六的第1-5题。

  四、课堂小结

  今天我们学习了有关倒数的哪些新知识?

六年级数学《倒数的认识》教案优秀9

  教学内容:六年级上册第二单元倒数的认识。

  教学目标:

  使学生理解倒数的意义,掌握求倒数的方法。

  提高学生观察、比较、、概括的能力。

  感悟“变通”的数学思想。

  教学重点:倒数的意义与求法。

  教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

  教学程序:

  一、激趣导入,揭示课题。

  师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?

  (生:上下两部分调换了位置,变成了另一个字)

  师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

  再出示“吴”,让学生得出“吞”。

  师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识

  二、引导质疑,自主探究。

  引导质疑。

  师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?

  生:什么是倒数?

  生:倒数是指一个数吗?

  生:倒数应该怎样表述?

  生:怎样求倒数?

  生:倒数是不是一定是分数?

  生:倒数有什么用?

  生:是不是每个数都有倒数?

  游戏比赛,理解倒数的意义。

  师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

  好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

  准备好了吗?开始……

  师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

  (生读,师有选择的板书在黑板上。)

  师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

  师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

  生:无数个

  师:为什么能写这么多呢?你们有什么窍门吗?

  生:因为我们所写的这两个数的乘积都是1。将其中一个分数的'分子分母颠倒就能写出另一个数。

  揭示倒数的意义

  师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

  生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。

  师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本例1,并找出倒数的意义。

  师板书:乘积是1的两个数互为倒数

  你认为哪个词非常重要?你是如何理解“互为”的?生回答

  (小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

  强调:(1)乘积必须是1。

  只能是两个数。

  倒数是表示两个数的关系,它不是一个数。

  小组探究求一个倒数的方法

  师:同学们知道了什么是倒数,你能求出一个数的倒数?

  请大家打开课本,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

  汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100.1.0 1.2.3 0.5.3.4.0.23

  小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

  三、巩固练习,内化提高。

  判断题。

  真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。

  师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

  交流发现:

  师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

  (的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)

  师:是不是所有真分数的倒数都是假分数?

  (出示结论:所有真分数的倒数都是假分数)

  师:第二组(这组分数都是假分数,它们的倒数都是真分数。)

  师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

  师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?

  (都是大于1的假分数。)

  所以——(卡片结论:大于1的假分数的倒数都是真分数。)

  师:第3组呢?(这组分数的倒数都是整数。)

  这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)

  师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)

  师:是不是所有整数的倒数都是分数单位?

  (出示:非零整数的倒数都是分数单位)

  师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

  四、总结反思,发展能力。

  师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

  师:你能用“我学会了--”来描述今天学到的知识吗?

  生:。.。.。.。

  五、学科融合

  今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?

  接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

  后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

  在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?

【六年级数学《倒数的认识》教案优秀】相关文章:

数学教案-倒数的认识09-29

小学数学教案:倒数的认识02-12

倒数的认识教案02-11

倒数的认识 教案12-16

倒数的认识教案12-17

《倒数的认识》教案02-18

数学倒数的认识教学反思04-22

小学数学《倒数的认识》教案(通用14篇)06-16

小学数学教案:倒数的认识8篇02-12