人教版五年级上册数学教案

时间:2024-02-02 16:21:03 丽华 数学教案 我要投稿

人教版五年级上册数学教案(通用15篇)

  在教学工作者实际的教学活动中,通常需要用到教案来辅助教学,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么优秀的教案是什么样的呢?下面是小编为大家整理的人教版五年级上册数学教案,欢迎阅读,希望大家能够喜欢。

人教版五年级上册数学教案(通用15篇)

  人教版五年级上册数学教案 1

  教学目标:

  1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

  2、培养学生空间和空间想象能力。

  教学重点:

  长、正方体体积公式的推导。

  教学难点:

  运用公式计算。

  教学用具:

  1立方厘米学具。

  教学过程:

  一、复习

  1、什么叫物体的体积?

  2、常用的体积单位有哪些?

  3、什么是l立方厘米、l立方分米、l立方米?

  二、导入新课

  1、导入

  我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

  要知道老师手中的这个长方体和正方体的体积?你有什么办法? (用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)

  说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱、电视机等,怎样计算它的体积呢?他们的'体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

  2、新课

  (1)请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

  (2)板书学生的:(设想举例)

  体积每排个数排数排数层数

  4 4 1 l

  8 4 2 1

  24 4 3 2

  (3)观察:每排个数、排数、层数与体积有什么关系?

  板书:体积=每排个数×排数×排数×层数

  每排个数、排数、层数相当于长方体的什么?

  因为每一个小正方体的棱长是l厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

  (4)如何计算长方体的体积?

  板书:长方体体积=长×宽×高

  字母公式:V=a b h

  人教版五年级上册数学教案 2

  教学内容:

  九年义务教育六年制小学数学第十册第49页

  教学目的:

  1、进一步理解和掌握整除的意义。

  2、理解、掌握约数和倍数的意义,知道约数、倍数的相互依

  存关系,渗透辨证唯物主义思想教育。

  3、让学生通过小组合作、交流,尝试解决问题;培养学生的

  数学交流能力和合作能力。

  4、激发学生的学习兴趣,通过自学、讨论等方式的学习,培养学生自主学习能力。

  教学准备:

  1、两张卡片

  2、多媒体演示课件

  〔评析〕为了体现当今新的教育观,即在课堂教学中,不仅要使儿童掌握一定的数学基础知识和基本技能,同时还要有目的去培养学生的数学能力。所以制定的目标体系全面、恰当。

  教学过程:

  一、复习整理、进一步理解和掌握整除的意义

  1、整除的含义

  ①让学生在小卡片上写一道除法算式

  ②黑板上展示学生的除法算式

  〔评析〕学生的学习材料是自己寻找的,而不是教师或书本给定的材料,它们来源于学生自己,这样的学习,可以使学生一开始就处于积极状态,使学生对学习充满着兴趣,学生乐于继续学习下去,而无须教师强迫学生学习。

  ③教师提出问题:A、哪一道除法算式的被除数能被除数整除

  B、在什么情况下,才可以说“一个数能被另一个数整除”

  ④让学生分小组合作、交流,解决以上两个问题

  ⑤学生交流完毕,每小组派代表汇报本小组研究成果

  〔评析〕让学生合作、交流,尝试解决问题,这样的教学即给了学生一个人人参与、自主探索的机会,使学生理解和掌握了知识;又使学生在平等、自由、真诚悦纳的情意关系中学会了与人共处。

  2、抽象概括整除的概念

  ①师:如果用字母a表示被除数,用字母b表示除数,在什么情况下,a能被b整除?

  ②生:略

  ③师:让学生完整地概括整除的意义

  〔评析〕由于学生对整除的含义有了进一步的理解。所以通过学生讨论,师生对话,抽象概括出整除的概念,这样的教学,符合学生的认知规律,同时可培养学生的抽象概括能力。

  3、巩固练习

  ①下面哪一组的第一个数能被第二个数整除

  17和549和73.6和1.210和10

  ②下面四个数中谁能被谁整除

  2、3、6、12

  〔评析〕概念初步后,为了有效巩固,恰到好处增加了练习,练习题设计时,考虑到不同学生的发展,增加了开放题,这不仅激发了学生的学习兴趣,而且又加深了学生对整除的理解

  二、新知教学,了解约数和倍数的意义

  1、提出问题,看书自学

  ①在什么情况下,a是b的倍数,b是a的.约数。

  ②约数和倍数中的数一般指什么数?不包括什么数?

  ③你能仿照书中的(例1)举一个例子,说明一个数是另一个数的倍数,另一个数是这个数的约数

  2、学生自学,并回答问题及举例、说明理由。

  〔评析〕教师提出问题,学生带着问题去自学,这样的学习,即体现了学生在课堂教学中的主体地位和作用,又培养了学生独立思考及自学能力。

  3、明确约数和倍数的关系

  根据实例提出问题:45能被15整除,能不能单独说45是倍数、15是约数,为什么?

  生:略

  师生共同小结:约数和倍数是相互依存的关系,不能单独地说一个数是倍数或约数。

  〔评析〕通过以上的学习,学生明确了一个数是否是另一个数的倍数或约数时,必须是以整除为前提,约数和倍数是相互依存的概念,不能独立存在。突出了教学的重点,准确地把握了教学关键。

  4、巩固练习

  ①下面每组数中,谁是谁的倍数?谁是谁的约数?

  36和97和1445和451和100

  ②下列数中,谁是谁的倍数?谁又是谁的约数?

  1、2、6、12

  ③游戏

  规则:老师出示一个数,看你手中的卡片是否符合老师提出的条件,符合的请举起你的卡片。

  a、我是12,12能整除谁?

  你们是我的什么数?我又是你们的什么数?

  b、我是19,谁是我的约数?

  c、我是2,谁是我的倍数?

  d、我是1,谁是我的倍数?(小结:1是所有自然数的约数)

  e、让全体同学举起卡片,让具有数字6的同学指出自己的约数

  〔评析〕练习题设计时,考虑到不同的学生要有不同的发展,即有层次,又有坡度,形式又有多样。即重视基本知识的训练,同时还将知识性、趣味性有机地结合。学生兴趣盎然,思维敏捷。通过练习,即巩固了知识,又使全体学生不同程度得到了发展

  五、回顾反思,谈各人的收获。

  师:今天我们研究了什么?又是怎样研究的?你有什么收获?

  〔评析〕让学生总结本节课学习的方法,并谈自己的收获,这个过程不仅使学生明白了许多道理,而且使学生加深了对知识的理解和掌握;诱发了学生的创造性思维。学生的收获不仅只有知识,还包括能力、方法、情感等,学生体验到学习之乐,增强了学好数学的信心。

  〔反思〕:素质教育的重要着眼点是改变学生的学习方式。实施素质教育就必须要以学生的发展为本,要改变学生在原有的教育教学条件下所形成的那种偏重于记忆和理解、立足于接受教师知识传输的学习方式,帮助学生形成一种主动探究知识、并重视解决实际问题的积极学习方式,这是一种有利于终身学习、发展学习的方式。为了倡导这种学习方式,使素质教育落到实处,笔者在设计约数和倍数的意义这一课时,采用了以问题为中心,在教师的指导下,让学生以合作交流、讨论、自学等形式主动地去获取知识、应用知识、解决问题,从而使学生的创新精神和实践能力的发展有了切实的落脚点。

  综观整堂课,教师教得非常少,而学生讲得非常多,学生之间合作交流多,学生自主学习多,教师只是一个组织者和参与者,学生真正成为学习的主人,不仅积极参与每一个教学环节,切身感受了学习数学的快乐,品尝了成功的喜悦,而且不同的学生得到不同的发展,满足了学生求知、参与、成功、交流和自尊的需要。

  人教版五年级上册数学教案 3

  【教学内容】:

  教材P114第4题及练习二十五第1题。

  【教学目标】:

  知识与技能:使学生能够准确地、熟练地用数对表示位置。

  过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。

  情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。

  【教学重、难点】

  重 点:用数对确定位置。

  难 点:培养学生灵活运用知识的能力。

  【教学方法】:

  组织练习,质疑引导。练习体验,小组交流。

  【教学准备】:

  多媒体。

  【教学过程】

  一、练习导入

  1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:

  已知(1,4)表示小亮的位置。

  ⑴小明、小丽和小红的位置用数对分别可以表示为( , ),( , ),( , )。

  ⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。

  ⑶从小明的位置向左数2列,再向后数1行就是小强的.位置,小强的位置是( , )。

  2.下面是一幅街区平面图,请看图回答问题。

  五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。

  ⑴像上面那样描述一下其他建筑物的位置。

  ⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的位置。

  ⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。

  二、回顾整理

  1.行和列的意义:竖排叫列,横排叫行。

  2.数对可以表示物体的位置,也可以确定物体的位置。

  3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。

  4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。

  三、巩固拓展

  1.运用平移的方法加深用数对确定物体的位置。

  按要求完成题目。 (答案:数对略)

  (1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?

  (2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。

  学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。

  2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?

  学生观察图片,独立思考,同桌交流,然后指名汇报。

  四、课后小结

  位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。

  五、作业:教材第115页练习二十五第1题。

  【板书设计】

  位置复习课

  竖排叫列,横排叫行。 先表示列,再表示行。

  物体向左、右平移,行数不变,列数减去或加上平移的格数。

  物体向上、下平移,列数不变,行数加上或减去平移的格数。

  人教版五年级上册数学教案 4

  教学目标:

  1、 使学生能够运用分数表示可能性的大小,自主的设计一些活动方案。

  2、 对实际生活中的事件和现象,学生能运用可能性的知识进行合理地解释。

  教学重点:

  在学生学习分数表示可能性大小的基础上,提出自主设计方案。

  教学难点:

  让学生自主设计活动的方案

  教学过程:

  一、课前谈话

  教师做自我介绍。(生自由介绍)

  你们学校五年级有几个班啊?咱班被选中和老师一起来上课的可能性是多少?(生答)嗯,很难得!

  这次讲课活动啊,共有55位数学老师参加,那老师被抽到给你们上课的可能性是多少?(五十五分之一)是啊,在可能性这么小的情况下,老师有幸为你们上课,这个机会更难得!所以老师觉得,我和你们真的很有缘分,你们觉得呢?那么,就让我们好好的珍惜这份缘分,好好的利用这一节课的时间,可以吗?

  二、创设情境

  同学们啊,你知道马上就要到什么节日了吗?(生:圣诞节)圣诞节这天你最盼望的是什么啊?(收到礼物)

  今天老师也给你们准备了礼物,想要吗?只可惜,老师准备的礼物不够,那我们不如玩个幸运摸奖游戏,试试你的运气,怎么样?摸到红球的`同学可以得到老师准备的礼物哦,谁愿意来试一下?(生摸球)

  老师这个盒子里放入了1个红球、两个白球、三个红球,通过游戏想一想,摸到红球的可能性是多少?(生答)怎么想的?

  师:在游戏中我们运用上节课所学的知识知道了“摸到红球的可能性是六分之一,像这样好玩又有趣的游戏你能设计吗?那今天这节课我们就来当一次小小设计师。

  (板书——设计活动方案)

  三、探究新知

  设计活动一

  (1)刚才只有x位同得到了礼物,可是老师很想把这些礼物都送给大家,那么怎样往盒子里放球,会使你们摸到红球的可能性大一些呢?(生陆续举手)看样子,有的同学已经有了自己的想法,下面就以小组为单位,把你的想法与小伙伴们交流,看你们能设计出什么样的方案?开始吧!

  (2)小组活动,师巡视指导。

  (3)哪个小组愿意到前面来汇报一下你们的设计方案?

  (4)生分组汇报。

  设计活动二

  (1)为我班学生设计节目表演活动方案。师出示要求,生读题。

  (2)学生同位合作填表格,师巡视指导。

  (3)学生汇报,师汇总。

  (4)观察这些方案,你有什么看法?

  设计活动三

  (1)为了调动同学们的积极性,凡是参加活动的30名同学都可以得到一份纪念品,根据他们的兴趣爱好,我准备了食品、学习用品和小型玩具三种纪念品,要使同学们得到学习用品的可能性是五分之二,该如何设计呢?你能帮我设计一个活动方案吗?

  (2)独立设计活动方案,教师巡视指导。

  (3)学生汇报,教师汇总,那对于这些方案,你又有什么发现?

  那你能不能根据他们的共同点,对这些方案进行总结一下?

  四、巩固应用

  现在很多商场超市在节日期间,都想出了很多别出心裁的促销活动。

  1、下面是老师的调查情况(出示课件)学生读题。

  2、同学们以小组为单位,进行设计。

  3、汇报想法,实物投影总结活动情况。

  4、看看另外一个商场的促销活动吧!(课件)学生读题

  五、总结

  通过本节课的学习,你都有哪些收获?你有什么体会?

  人教版五年级上册数学教案 5

  设计说明

  复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”。而是担负着查缺补漏、系统整理和巩固发展的任务。所以,要让每个学生都积极参与复习,在轻松、平等、和谐的氛围中学习,让学生在独立思考、合作交流、活泼愉悦的过程中“温故而知新”。

  1.以学生自主学习为主。

  这部分知识比较多、散,但难度不大,所以让学生先独自整理,再汇报交流。这样就让学生逐渐地形成了自己的知识体系,也能更好地理解和掌握所学知识,同时在梳理知识的过程中养成反思的意识和习惯,形成归纳总结能力。

  2.梳理知识与做习题相结合。

  汇报交流中,老师出示相应的习题加以检验,以便让学生相互学习,查缺补漏,夯实自己的知识基础,形成基本能力。

  课前准备

  教师准备PPT课件

  教学过程

  导入新课

  交代本节课的复习内容。

  师:同学们,这节课我们结合教材习题,复习与分数有关的知识。

  整理复习

  引导学生构建分数知识框架。

  1.回忆与分数有关的知识有哪些?独自整理,组内交流。(师巡视,有针对性地进行指导)

  2.全班汇报,补充交流。(师举例辅助并检验)

  梳理的知识如下:

  (1)分数的意义。

  ①观察下图,理解什么是分数,什么是分数单位。

  ②分数可以分为哪几类?

  分数

  (2)分数与除法的关系。

  ①根据下面的式子,说一说分数和除法之间有着怎样的联系和区别。

  =13÷42

  ②根据学生汇报整理分数与除法的'关系。(课件出示)

  分数与除法的关系

  联系

  区别

  分数

  分子

  分数线

  分母

  是一种数,也可看作两个数相除

  除法

  被除数

  除号

  除数

  是一种运算

  (3)复习分数的基本性质。

  联系分数与除法的关系以及商不变的规律来理解分数的基本性质。

  分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。

  (4)结合复习约分。

  ①把一个分数的分子、分母同时除以它们的公因数,分数值不变,这个过程叫作约分。

  ②约分的步骤:找出分子和分母的最大公因数;利用分数的基本性质,分子、分母同时除以它们的最大公因数。

  ③约分的目的:把分数约成最简分数。

  (5)结合和、和复习通分。

  ①把分母不相同的分数化成和原来分数相等,并且分母相同的分数,这个过程叫作通分。

  ②通分的两个要点:和原来分数相等;分母相同。

  (6)结合○和○复习比较分数的大小。

  ①同分母分数相比较:分子越大,分数越大;

  ②同分子分数相比较:分母越小,分数越大;

  ③分子、分母都不相同的分数相比较的方法。

  方法一:先把两个分数化成分母相同的分数,再比较大小。

  方法二:先把两个分数化成分子相同的分数,再比较大小。

  补充知识点:通分一般以最小公倍数作分母。

  (7)先想一想分数加减法应该怎样计算,再计算下面各题。

  人教版五年级上册数学教案 6

  【学习内容】

  方格纸上的图形旋转变换(教材第84页例2、3,第85~86页练习二十一第4~6题)。

  【教学目标】

  1、进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90°。

  2、让学生初步学会运用对称、平移和旋转的方法在方格纸上设计图案。

  3、让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。

  【教学重点、难点】

  理解、掌握在方格纸上旋转90°的特征和性质。

  【教学过程】

  二次备课

  【复习导入】

  1、要想把旋转现象描述清楚,应该怎么说?

  2、钟表上分针从12转到6,转了多少度?这时时针转了多少度?

  【新课讲授】

  1、探索旋转图形的特征和性质。

  (1)教师用课件出示教材第84页例2三角形绕点O顺时针旋转90°的图形。

  教师:刚才观察三角形的`旋转过程你发现了什么?你怎样判断三角形是绕点O顺时针旋转了90°?

  组织学生观察,并在小组中交流讨论。

  (2)三角形旋转后,三角形有什么变化?

  教师再次演示风车旋转的过程,让学生观察。然后组织学生在小组中交流讨论并汇报。(教师注意引导)

  小结:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点O顺时针旋转了90°,而且,每条线段,每个顶点,都绕点O顺时针旋转了90°。

  (3)揭示旋转的特征和性质。

  教师:从画面中,我们能清楚地看到三角形旋转后,位置都发生了变化,那什么是没有变化的呢?

  (①三角形的形状没有变;②点O的位置没有变;③对应线段的长度没有变;④对应线段的夹角没有变。)

  如果我们将三角形在旋转后的基础上,继续绕点O顺时针旋转180°,那么三角形应该转到什么位置?

  2、学习画出旋转后的图形。

  (1)教师出示教材第84页例3。

  教师:怎样画出三角形绕O点顺时针旋转90°后的图形呢?

  组织学生先在小组中讨论交流:是怎样旋转的?应该怎样画出旋转后的图形?

  学生汇报时可能会说出:

  ①先画出点A′,OA′垂直于OA,点A′与O的距离是6格;

  ②再用同样的方法画出点B′;

  ③然后把点OA′,OB′,A′B′连接起来。

  (2)组织学生在课本上画一画,然后相互交流检查。

  3、完成第83页“做一做”。

  4、完成课本第84页下面的“做一做”。

  先放手让学生独立画。再全班汇报交流,最后教师小结。结合生活中的数学介绍旋转在生活中的应用。

  【课堂作业】

  1、完成课本第84页“做一做”。

  2、完成第85~86页练习二十一第4~6题。

  (1)第3题让学生综合运用所学的有关对称、平移和旋转变换的知识进行判断,注意让学生感受数学的美,体会图形变换在现实生活中的应用。

  (2)第4题练习时,可以放手让学生设计,再进行交流,要让学生在动手实践中,进一步理解旋转的特点和性质,体会旋转所创造的美。

  3、完成练习二十二第1~3题。

  【课堂小结】

  同学们,通过这节课的学习活动,你有什么收获?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第2课时欣赏与设计

  变换旋转90°时,中心点的位置不变,其他部分都以相同的方向旋转90°旋转后的图形与旋转前的图形只是位置发生了变化,大小不变,对应线段长度不变。

  人教版五年级上册数学教案 7

  教学目标

  1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

  2.知道100以内的质数,熟悉20以内的质数。

  3.培养学生自主探索、独立思考、合作交流的能力。

  4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

  教学重难点

  质数、合数的意义。

  教学工具

  多媒体课件

  教学过程

  【复习导入】

  1.什么叫因数?

  2.自然数分几类?(奇数和偶数)

  教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

  【新课讲授】

  1.学习质数、合数的概念。

  (1)写出1~20各数的.因数。(学生动手完成)

  点四位学生上黑板板演,教师注意指导。

  (2)根据写出的因数的个数进行分类。(填写下表)

  (3)教学质数和合数概念。

  针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

  教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

  如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)2.教学质数和合数的判断。

  判断下列各数中哪些是质数,哪些是合数。

  17 22 29 35 37 87 93 96

  教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

  质数:17 29 37

  合数:22 35 87 93 96

  3.出示课本第14页例题1。

  找出100以内的质数,做一个质数表。

  (1)提问:如何很快地制作一张100以内的质数表?

  (2)汇报:

  ①根据质数的概念逐个判断。

  ②用筛选法排除。

  ③注意1既不是质数,也不是合数。

  【课堂作业】

  完成教材第16页练习四的第1~3题。

  课后小结

  【课堂小结】

  这节课,同学们又学到了什么新的本领?

  学生畅谈所得。

  课后习题

  (1)所有的奇数都是质数。( )

  (2)所有的偶数都是合数。( )

  (3)在1,2,3,4,5,…中,除了质数以外都是合数。( )

  (4)两个质数的和是偶数。( )

  (5)在自然数中,除了质数以外都是合数。( )

  (6)1既不是质数,也不是合数。( )

  (7)在自然数中,有无限多个质数,没有最大的质数。( )

  板书

  一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

  一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

  人教版五年级上册数学教案 8

  【教学目标】

  1、知识与技能目标:使学生理解并掌握长方体的体积计算方法,能运用长方体的体积计算公式求出长方体物体的体积。培养学生的归纳、抽象概括能力。

  2、情感目标:培养学生学习数学的兴趣,使学生热爱数学,提高学生的问题意识,增强学生应用数学的意识,使学生学会与人交往与人合作。

  3、价值目标:使学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决一些简单实际问题。

  【设计思路】

  《数学课程标准》中强调要让学生“人人学习有用的数学,”“把数学作为人们日常生活中交流信息的手段和工具,”“重视从学生的生活经验和已有知识中学习数学和理解数学。”“要让学生体会数学与生活的联系,初步学会运用所学的数学知识和方法解决生活中简单的实际问题。”因此在教学设计上我们应从学生已有的生活经验和认知水平出发,善于挖掘数学中的生活原型,选择学生熟悉的身边生活事例作为教学资源,作为学生研究实践的“源”,大胆尝试使用分组实践操作的教学方法,为学生提供动手实践的机会,最大限度地激发学生参与学习过程,以“动”促“思”,改变传统的班级授课模式,使学生享受到学习的快乐,领悟到知识的情趣。

  【课前准备】

  每组准备一个盒装牛奶的箱子,一盒牛奶,12个1立方厘米的小正方体,一张学习记录卡。

  【教学流程】

  一、挖掘生活原型,创设问题情境。

  1、先让学生猜一猜一个箱子最多能装多少盒牛奶?

  2、通过摆一摆验证自己的猜测。

  3、撕开被教师事先封住的标签,再次验证猜与摆的结果。

  4、还有其它方法能算出一个箱子最多能装多少盒牛奶吗?如果要算出一车能装多少箱牛奶,也这样把整箱的牛奶搬到车上摆一摆吗?

  [策略建议:数学来源于生活,生活中存在的实际问题易激发学生对知识探索的必需性与迫切性,也更能让学生体会生活中处处有数学,体会数学与生活的联系。学生摆放牛奶的方式可能不尽相同,结果可能也不相同,教师都应给予肯定,因为这一环节的设计除了创设探究新知的问题情境,并为后面推导长方体的体积计算公式作了铺垫。]

  二、引导动手实践,自主探索新知。

  (1)、步步设疑,层层推进。

  先让学生说说还有什么其它的方法可求出一箱能装多少盒牛奶,学生如果说出可用体积计算这种方法,教师追问“你是怎么知道的?”对学生的回答给予适当的评价后,继续追问“为什么长方体的体积等于长乘宽乘高呢?”

  [策略建议:在让学生用其它方法求出一箱能装多少盒牛奶时,学生可能还不同的方法,教师都应给予肯定,并可让学生反思其所提方法的可行性。如果学生都不知道长方体的体积计算公式,教师可让学生进行猜测:长方体的体积和什么有关系?]

  (2)、实践操作,合作交流。

  1、介绍学具,并提出操作要求。

  ①这些是边长1厘米的小正方体,它的体积是多少?

  ②2个这样的小正方体拼成一个长方体,这个长方体的体积是多少?

  ③4个这样的小正方体拼成一个长方体,这个长方体的体积是多少?

  ④12个呢?

  ⑤能用这些小正方体能摆成一个长方体吗?动手摆一摆,并把所得的数据填在学习卡中。

  2、小组合作,交流汇报。

  ①一共用了几个小正方体?

  ②摆成的这个长方体的体积是多少?

  ③是怎么摆的?

  ④摆成的这个长方体的长是多少?宽是多少?高是多少?

  ⑤还有不同的摆法吗?

  ⑥从摆的过程和结果中,你发现了什么?

  3、归纳概括,推导公式。

  ①用12个小正方体可以摆成几种不同的长方体?

  ②这些长方体的形状不一样,可它们的`体积怎样?为什么?

  ③长方体的体积就等于什么?(所含的体积单位的数量)

  ④长方体所含的体积单位的数量怎么计算?(每排的个数×每层的排数×层数)

  ⑤每排的个数就是长方体的(长),每层的排数就是长方体的(宽),一共摆几层就是长方体的(高)。

  ⑥长方体所含的体积单位的数量等于(长×宽×高),长方体的体积就等于(长×宽×高)。

  ⑦如果用V表示体积,用a表示长,用b表示宽,用h表示高,长方体的体积可以写成(V=abh)。

  [策略建议:在让学生交流汇报各组操作的结果时,教师应为学生提供足够的空间与时间,让学生畅所欲言,尽情地展现自我,把各种不同的摆法呈现出来,再从中发现规律,归纳概括。在引导学生推导公式时,应尽量让学生自己归纳,概括,推导,教师只是引导,点拨,不能一手包办。长方体的体积公式的推导比较抽象,教师应尽可能地运用多媒体技术,结合课件的展示,让学生更直观形象地理解长方体的体积公式。]

  三、应用数学知识,解决生活问题。

  1、根据教师所提供的长、宽、高的数据,运用长方体的体积计算公式求出一盒牛奶的体积。

  2、用体积计算的方法求出一箱能装多少瓶牛奶。(测量结果取整厘米数)

  3、据调查显示,泉州地区每天大约要消费3万盒伊利牛奶,一辆长2.5米,宽1.6米,高1.8米的卡车一次能运完吗?

  [策略建议:在第2个练习中,学生的计算结果会出现误差,可让学生质疑,为什么为出现这样的情况?引出容积与体积的差别,但不出现容积这一概念,为后面容积的教学设下伏笔。在第3个练习中,学生解决问题的策略可能不尽相同,教师应鼓励学生用不同的方法解决问题,体现解决策略的多样性。]

  人教版五年级上册数学教案 9

  教学目标

  使学生进一步理解和掌握比例的基本性质,知道什么叫做解比例,掌握解比例的方法,并运用解比例的方法解决简单的问题。

  教学重点:

  进一步掌握和理解比例的基本性质。

  教学难点:

  掌握解比例的方法。

  教学过程

  一、复习准备

  1、比例的意义是什么?比例的基本性质呢?

  2、运用比例的意义和比例的`基本性质,判断下面哪一组中的两个比可以组成比例。

  3:4和1.5:2 1/4 :1/3和9:12 72:8和1.2:0.13 3:8和12:32

  二、导入新课

  今天我们要学习的知识——解比例

  三、1、教学例2

  这样知道比例中的任意三项,求另外一个未知项叫做比例,同学们能运用原来学习的知识求出3:8=15:x中x的值吗?

  学生讨论交流后,并让学生自己介绍这种解法的思路,请其他学生补充完。

  2、教学例2

  这道题和例2相比,有哪些地方不同?想一想,怎样解?学生讨论解答。“做一做”第2题中的比例。

  四、巩固练习

  学生独立完成练习十四第1题。

  创意作业:

  如果5a=3b,你能写出尽量多的比例式吗?并用含a的式子表示出b。大家来比赛谁找的多。

  人教版五年级上册数学教案 10

  教学内容:

  苏教版国标本数学第九册第28~29页的例1、例2及相应的“试一试”“练一练”,完成练习五第1~5题。

  教学目标:

  1、使学生在现实情境中,初步理解小数的意义,学会读、写小数,体会小数与分数的联系。

  2、使学生在老师的带领下经历小数意义探索的过程,积累数学活动的经验,进一步培养学生的数感和观察、比较、抽象、概括能力。

  3、使学生在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的信心。

  教学重点:在实际环境中理解小数的意义,会读写两三位小数。

  教学难点:抽象概括出小数的意义。

  教学过程:

  一、复习导入

  出示;例1的情境图,提问:你知道例题中的这些数都是些什么数吗?(小数)哪一个是你比较熟悉的?

  请你以0.3为例说说对小数有了哪些认识?根据回答相应板书。

  小结:我们已经认识了像这样的小数,从今天起我们要继续学习小数的有关知识。今天这节课我们要学习小数的意义和读写方法。(揭示课题)

  【设计意图】

  新课美国心理学家奥苏贝尔曾说:影响学生学习最重要的因素是学生已知道了什么。为了激活学生已有的知识经验,我直接利用出示的例1图,让学生回顾旧知,为学习新知做好铺垫。学生回答完后,我借机谈话揭示同时板书课题。这样复习的原因是因为学生在相隔一段时间之后再学小数,原有知识可能遗忘,利用复习能很好地发挥这些知识对将要学习的新知的迁移作用,为学生的学习提供发展的支点。同时用学生熟悉的情景作为学习的素材,可以唤起学生的生活经验,同时体会到小数在生活中的应用之广。

  二、1、例1教学

  提问:你能根据题目的要求用“角”或“分”作单位,说出一个信封和本练习簿的价钱吗?

  指名回答问题。注意学生回答问题时要完整。

  橡皮的单价0.3元是3角;信封的单价是5分,练习簿的单价是4角8分或48分。

  2、教学小数的读法:

  谈话:信封的单价是5分,表示5分的这个小数你会读吗?那这个小数呢(0.48)那你知道像这样的小数怎么读吗?

  0.05 读作: 零点零五 0.48 读作: 零点四八

  引导学生总结读整数部分为0的小数的方法:读的时候从左往右依次读出各位上的数。

  3、初步感受两位小数的含义。

  想一想:0.3元是几分之几元?也就是?0.05元是1元的几分之几?0.48元呢

  小组讨论交流。

  0.3元是1元的十分之三。为什么?

  0.05元是1元的百分之五。提问:为什么?(1元=100分,1元平均分成100份,1份是1分,1分就是1元的 ;0.05元是5分,是5个 ,也就是1元的 。)

  根据上面的思路,让学生说明0.48元是1元的 。

  (1元=100分,1元平均分成100份,1份是1分,1分就是1元的 ;0.48元是48分,是48个 ,也就是1元的 。)

  板书:

  【设计意图】对于例1我准备安排两个层次的学习活动,来引导学生感知两位小数的含义。

  第一层次,让学生用“角”和“分”作单位说出橡皮、信封和练习簿等物品的价钱。通过“说”,激发学生已经积累的有关小数的知识经验,引起学生进一步探索的心理需求。同时适时的引导学生试读小数并初步掌握两位小数的读写方法。主要是利用学生的已有经验,鼓励学生大胆尝试读写两位小数,培养学生类推知识的能力。

  第二层次,利用学生对元、角、分关系的已有认识,分别介绍把1分、5分和4角化8分改写成以元作单位的分数和小数的方法,引导学生初步感知两位小数的含义。 同时通过板书与提问渗透对单位1的初步感知。

  4、出示例2

  (1)认识两位小数

  A、理解:1厘米是 米, 米可以写成0.01米。

  指名理解1厘米为什么是 米。

  (1米=100厘米,1米平均分成100分,1份就是1厘米,1厘米也就是1米的 ,就是 米。)

  B、用米为单位的`分数和小数分别表示4厘米与9厘米。

  学生回答并说名理由。

  C、观察板书:

  这三个分数都是什么样的分数?(百分之几的分数)这三个小数呢?(两位小数)

  你发现了什么?

  引导学生知道两位小数都表示百分之几。

  (2)认识三位小数

  A、理解:1毫米是 米, 米可以写成0.001米。

  指名理解1毫米为什么是 米。(1米=1000毫米,1米平均分成1000分,1份就是1毫米,1毫米也就是1米的 ,就是 米。)

  B、用米为单位的分数和小数分别表示7毫米与15毫米。

  学生回答并说名理由。

  【设计意图】通过例2的教学让学生进一步体会两位小数与三位小数的含义。因为已有例1的知识基础,在例2的教学时,我首先让学生通过米尺共同讨论怎样用“米”作单位表示1厘米的长度,明确因为1厘米是1米的1/100,也就是1/100米。所以写成小数是0.01米。然后让学生独立写出表示4厘米和9厘米的分数和小数,并要求学生们说明思考过程,进一步突出两位小数表示百分之几的含义。最后我会这样问学生:以米作单位的两位小数表示1米的百分之几,以同样的方法教学例3,同时再次初步感知单位1。

  C、观察板书

  米 米 米

  0.001米 0.007米 0.015米

  这三个分数都是什么样的分数?(千分之几的分数)这三个小数呢?(三位小数)

  你发现了什么?

  引导学生知道三位小数都表示千分之几。

  5、思考:

  观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。

  小结:通过刚才的研究,我们知道分母是10,100,1000……的分数都可以用小数表示,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  【设计意图】《数学课程标准》指出,抽象的数学知识应建立在形象的感知之上。所以在例1、例2已有的感性基础上,我会引导学生比较例1和例2中每组的分数和小数,启发他们用自己的语言描述对小数的理解,初步抽象出小数的意义。最后师生共同总结出小数的意义,并强调一个小数的小数部分含有几个数位,这个小数就是几位小数。

  6、试一试:

  学生自主练习,进一步体验分数和小数的联系和意义。

  7、练一练:

  学生自主填空,交流时注意让学生根据小数的意义进行说明。

  人教版五年级上册数学教案 11

  一、教学内容分析

  这部分内容是在学生学习了整数除法和小数意义的基础上进行教学的。除数是整数的小数除法即使小数除法的起点又是基础。因为除数是小数的小数除法都要转化为除数是整数的小数除法,教材创设的情景贴近现实生活,提出教学问题哪个商店的牛奶便宜。引导学生研究,在交流时,尊重学生个体差异,突出本节课的重难点内容。

  二、教学目标

  知识与技能:理解小数除法的意义,掌握小数除以整数的计算方法。

  过程与方法:能在情境中观察信息,发现问题,解决问题,在观察中感受小数除法与整数除法的异同。

  情感态度与价值观:经历小数除以整数计算方法的探索过程,体验并获得成功的乐趣。

  三、学习者特征分析

  本班学生基础薄弱,对于新知识接受较慢。课前预习要求学生复习之前学习的整数除法和小数意义。

  四、教学过程

  一、复习导入

  老师以提问的形式帮助学生快速进入状态,顺便复习之前学习的内容,为新知识做好准备。什么是小数的意义?小数的`加,减,乘法的计算方法?指明学生回答,引出课题,板书课题——精打细算

  二、探索新知

  出示情景图片,学生仔细观察,发现什么数学信息,能提出什么数学问题,如何解决问题。

  问题:哪家牛奶便宜?

  学生进行讨论交流,汇报交流结果

  法一:元角换算

  11.5=115角

  115÷5=21角

  21角=2.3元

  法二:逐步法

  11.5元=10元+1.5元

  10元÷5=2元

  1.5元=15角

  15角÷5=3角

  3角=0.3元

  2元+0.3元=2.3元

  三、比较竖式体会计算方法

  前两种方法都很好计算出答案但是太过于繁琐,我们来学习简洁一点的计算方法。

  四、尝试小结计算方法

  小数除法的计算方法与整数除法的计算方法相同。

  五、再探竖式,确定方法,总结不同

  六、课堂小结

  小数除法的意义:两个乘数的积与其中一个乘数,求另一个乘数的运算。

  七、教学评价

  自我评价,同坐互评。今天学习如何,内容掌握如何。

  八、教学反思

  本节课的重点是小数除以整数的计算方法,在课堂上我以学生学过的整数除法来引导学生思考,体会两者之间的相同和不同,一步步引导学生总结出计算方法。

  人教版五年级上册数学教案 12

  预设目标:

  使学生认识弧、圆心角和扇形。

  教学重难点:

  使学生认识弧、圆心角和扇形。

  教学过程:

  一 、复习:

  1、一个圆的周长是18.84厘米,这个圆的面积是多少厘米?

  2、一个环形花坛的外圆半径是5米,内圆半径是2米,它的面积是多少平方米?

  二、新课

  1、认识弧

  教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线画A、B两点间的部分。(出示小黑板)

  教师:请同学观察一下,这两点间的实线部分是在什么上画出来的?接着指出:圆上A、B两点之间的部分叫做弧,读做“弧AB”。然后让学生在练习本上先画一个虚线圆,再画一段弧,并让学生说一说什么是弧。

  2、认识扇形

  教师可在上面作图的基础上,用彩色粉笔画出半径0A、0B和弧AB(如书上右图)。指出:一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。并用彩色粉笔把扇形部分涂上色。强调涂色部分就是扇形,让学生也在练习本上画出扇形。

  教师:我们看到扇形是由两条半径和一条弧围成的,谁能说一说扇形中三角形有什么不同?使学生认识到:三角形是由三条线段围成的,而扇形中有一条不是线段是弧,这条弧是圆的一部分。

  3、认识圆心角。

  教师在上面右图的基础上标出∠1,指出:像∠1这样,顶点在圆心上的'角叫做圆心角。使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的顶点在圆心上。教师可以在黑板上画出几个角,让学生判断哪些是圆心角。

  教师接着在黑板上画一个圆,在圆上分别画出圆心角150度、30度、45度的扇形,使学生明确:在同一个圆上,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越小。

  4、课堂练习:

  做练习四的第1—3题

  创意作业:自己画一个扇形,标出圆心角的度数,半径。

  人教版五年级上册数学教案 13

  教学内容

  P44-P46例1-例3做一做,练习十第1-3题

  教学目标

  1、使学生理解用字母表示数的意义和作用。

  2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。

  3、使学生能正确进行乘号的简写,略写。

  教学重点

  理解用字母表示数的意义和作用

  教学难点

  能正确进行乘号的简写,略写。

  教学过程

  一、初步感知用字母表示数的意义

  教学例1。

  1、投影出示例1(1):

  引导学生仔细观察两行图中,数的排列规律。

  问:每行图中的数是按什么规律排列的?(指名口答)

  2、学生自己看书解答例1的(2)、(3)小题

  提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)

  师:在数学中,我们经常用字母来表示数。

  问:你还见过那些用符号或字母表示数的例子?

  如:扑克牌,行程A、B两地,C大调......

  二、新授:

  1、学习用字母表示运算定律和性质的意义和方法。

  教学例2:

  (1)学生用文字叙述自己印象最深的一个运算定律。

  (2)如果用字母a、b或c表示几个数,请你用字母表示这个运算定律。

  (3)当用字母表示数的时候,你有什么感觉?

  看书45页“用字母表示……”这一段。

  (4)你还能用字母表示其它的运算定律和性质吗?

  请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)

  加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c

  减法的性质:a-b-c=a-(b+c)

  除法的性质:a÷b÷c=a÷(b×c)

  2、教学字母与字母书写。

  引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)

  a×b=b×a(a×b)×c=a×(b×c)

  可以写成:ab=ba或ab=ba(ab)c=a(bc)或(ab)c=a(bc)

  (a+b)×c=a×c+b×c

  可以写成:(a+b)c=ac+bc或(a+b)c=ac+bc

  其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。

  3、教学用字母表示计算公式的意义和方法。

  教学例3(1):

  师:字母不但可以表示运算定律还可以表示公式、及数量关系。

  用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?

  学生先自己试写,然后小组交流,看书讨论。

  问:(1)两个相同字母之间的'乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?

  (2)字母和数字之间的乘号省略后,谁写在前面?

  师强调:a2表示两个a相乘,读作a的平方;

  省略数字和字母之间的乘号后,数字一定要写在字母的前面。

  4、练习:省略乘号写出下面各式。

  x×xm×m0。1×0。1a×63×nχ×8a×c

  教学例3(2):

  学生自学并完成相关练习。两生板演。师强调书写格式。

  课堂练习

  P46做一做1、2题。

  P49练习十:第1-3题

  小结与作业

  课堂小结

  今天你学到什么知识,你体会到什么?(让学生自由畅谈)

  课后追记

  学生还是能够比较好的接受用字母来表示数,但是对于a×a=a2

  和a+a=2a还是要让学生区分好。(从意义上和式子上)

  还有一点就是a2的读法:a的平方

  以上两点是教学中要注意的。

  人教版五年级上册数学教案 14

  教材分析:

  本节课“体积”对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对什么是物体的体积,怎样计量物体的体积,以及体积单位之间的进率为什么是千进位等问题,都不易理解。为此,这部分教材加强了对体积概念的认识。教材主要是让学生在现实生活中的物体观察中感悟到物体占有空间。然后通过实验让学生观察石头占据空间。接着引导学生观察比较电视机、影碟机和手机的大小,说明不同的物体所占空间的大小不同,从而引入体积概念。

  “体积单位”这部分内容教材是通过知识迁移类推引出来的。引导学生由长度单位和面积单位的学习,想到要比较长方体的体积也需要用统一的体积单位。教材介绍了计量体积要用体积单位,常用的体积单位有立方厘米、立方分米和立方米。在此基础上,教材分别说明各体积单位是棱长多长的正方体,然后让学生通过观察和活动,建立这些体积单位的表象。

  学情分析:

  本节课的内容是学生已经学习了长度、面积单位和正方体、长方体认识以及表面积的基础上进行教学的。对于学生在生活中与物体有广泛的接触,所以也积累了一定的生活经验,这都为本节课的学习提供了保障,但学生对体积的概念和体积单位还处于一种模糊的感性认识阶段,因为它将直接影响今后学生对长方体,正方体体积计算的理解和空间观念的正确形成,因此让学生真正理解概念显得特别重要。

  教学目标:

  1.使学生感悟体积的空间观念,建立体积概念。掌握常用的体积单位的意义。学会用体积单位来描述物体的大小。能合理估计物体的体积的大小。

  2.通过观察、思考、探究、交流等学习活动,让学生经历知识的形成过程,体验和感悟空间观念。

  3.让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识。

  重点难点:

  形成体积的概念,理解和掌握常用的体积单位。建立空间观念、形成体积概念。

  教学策略:

  1.运用“新知识”与“已有知识经验”的纵向联系解决知识重、难点。利用数学知识与现实生活密切联系让学生理解抽象的数学知识。

  2.在研究过程中重“操作”与“感受”,以达到培养学生“空间感”的目的。

  3.演示、观察法、小组合作研究法、有价值的接受式学习等。

  教学过程:

  一、实验演示,揭示并理解体积概念

  1、初步感受、认识空间。

  实验一:

  师:同学们好!今天的数学课我们来做几个小实验,看这是一个装满水的烧杯,这是一块石子,如果把石子放入到烧杯中,会有什么现象发生?

  生:水会溢出来。水会冒出来。水会洒出来。石块会下沉。

  师:真的是这样么?我们来看看。(教师动手实验)

  师:水为什么会溢出来?

  生:石头占了水的空间,把水给挤出去了。

  师:这说明石块占了空间。谁再举一个物体占空间的例子?

  生:冰箱占了空间。电视占了空间。

  师:看来物体都占有一定的空间。(板书:物体占空间)

  [设计意图:通过实验一让学生理解物体都是占有空间的,让学生在分析中学会总结。将空间这一概念形象化,具体化,丰富学生的空间表象。]

  实验二:

  1、感知物体所占空间有大小

  师:我们再来做个小实验。这儿有两个同样的烧杯,里面有同样多的水,这还是刚才那块石块,这是铁块,(边说边拿起用细绳拴着的石块)如果将它们分别放入这2个烧杯中,会有什么现象发生?

  生1:水面肯定会上升。

  生2:水面上升的高度不一样。

  生3:水还有可能溢出来。

  师:好,我们就通过实验来验证我们的猜想。(做实验)

  师:水面真的上升了,而且上升高度不同,这又说明了什么呢?

  生:这说明石块和铁块不仅占有空间,而且所占空间还有大小。有的大,有的小。(板书:大小)

  2、揭示并理解体积概念

  师:看来这些物体都占有一定的空间,而且占的空间有大有小。在数学中我们把物体所占空间的大小,叫做物体的体积。(板书课题:体积物体所占空间的大小叫做物体的体积)

  3、齐读概念

  4、举例理解概念

  师:刚才大家提到的冰箱所占空间的大小就是冰箱的体积。谁能像老师这样举个例子?

  生1:电视所占空间的大小就是电视的体积。

  生2:手机所占空间的大小就是手机的体积。

  生3:黑板所点空间的大小就是黑板的体积。

  [设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到“每一样物体所占空间”多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。]

  二、探索常用的体积单位

  1、探究体积相差较多物体体积

  师:刚才,我们比较了物体的体积。接下来我们比较长方体的体积(课件:出示体积相差较多的2个长方体)它们的体积谁大谁小呢?

  生:用眼睛一看就是第一个长方体的体积大。

  2、统一体积单位

  ⑴猜测2个长方体体积大小

  师:那么这2个长方体你们认为哪个体积大?(课件:出示体积相等的2个长方体)

  生1:左边的长方体

  师:为什么你认为是红色的长方体体积大些?

  生:因为左边红色长方体比黄色长方体要宽,也比它的高度高一些。

  师:有这个可能

  生2:右边的那个长方体体积大,因为右边黄色长方体的长较长。

  师:有可能

  生3:我认为它们2个的体积一样大。因为虽然红色比黄色长方体高一些,宽大一些,但2个长方体的长差得较多,所以我认为它们的体积是一样大的。

  师:你注意到了长方体的长、宽、高,真了不起。

  (2)动手操作验证猜想

  师:到底谁说的.对呢?老师也给你们准备了2个长方体学具,桌面上还有什么学具?

  生:

  ①长方体

  ②圆柱体

  ③小正方体

  ④大米

  ⑤绿豆

  ⑥沙子

  师:能否借助手中的学具知道谁的体积大吗?

  生:能

  师:你打算怎样做?

  生1:我把盒子中摆满小正方体,谁装的多谁的体积就大。

  生2:我有大米装满红色长方体,再将红色长方体中的大米倒入黄色长方体,如果有剩余红色长方体体积大……

  师:我们将学具装入长方体盒中,如果盒子的厚度不计,当摆满学具后,这些学具的体积就可以看作是长方体体积。

  (3)小组合作研究,进一步体会统一体积单位的重要性

  师:好,同学们选择喜欢的学具研究一下到底哪个长方体体积大。

  师:谁来说说你们组的结果?你们组用什么学具?结论是什么?(学生到前面具体操作演示汇报)

  生1:2个长方体体积相等。我们小组把沙子先装满红长方体中,再倒入黄色长方体盒中,发现正好,所以2个长方体体积相等。

  生2:这2个长方体体积一样大。我们用的是小正方体,红色长方体盒子中装满了108个,黄色长方体盒中也装满了108个,所以2个长方体体积相等。

  ……

  师:同学们借助手中学具比较出2个长方体的体积,有的用小正方体,有的用长方体,有的用大米,有的用绿豆等等,以后也用这些学具来测量物体的体积方便吗?

  生:太麻烦了,不方便。

  [设计意图:通过学生的大胆猜想激发学生动手操作的欲望,让学生主动参与到有实效性的教育活动中来,带着自己的猜想去验证使学生兴趣盎然,也能够为下一个教学环节使学生清楚地意识到统一体积单位做好铺垫。]

  (4)统一体积单位

  师:看来在比较体积时,要用到统一的体积单位。(板书完整课题:和体积单位)

  师:常用的体积单位之一有立方厘米,棱长是1厘米的小正方体,它的体积是1立方厘米(板书:立方厘米cm3棱长1cm的正方体,体积是1cm3)

  ①师:那1立方厘米究竟多大呢?我们的学具中就有,能找到吗,每个人都把找到的举起来,互相看一看,说一说。

  ②师:闭上眼睛想一想1立方厘米有多大。

  ③师:生活中哪些物体的体积大约是1立方厘米?

  生:色子、粉笔头、手指的一节。

  ④师:老师手中的这块橡皮的体积大约是多少立方厘米?你是怎么想的?

  生:有6立方厘米大,橡皮的体积就是6立方厘米。

  ⑤师:这个长方体体体积有多大?如果我们还用1立方厘米的小正方体测量它的体积可以吗?

  生:不合适,这个单位有点小了,太麻烦了。

  师:测量时就需要稍大一些的体积单位-----立方分米,用字母这样表示dm3。你用尺子量一量它的棱长是多少?它的体积就是1立方分米。

  (板书:立方分米dm3棱长1dm的正方体,体积是1dm3)

  ⑥师:用双手捧住1立方分米的正方体,然后给同学动手演示一下1立方分米有多大。

  ⑦师:生活中哪些物体的体积大约是1立方分米?生自由回答。

  师:那么刚才这个长方体盒子的体积到底是多少呢?找个同学来摆一个和长方体盒子一样的长方体,看看你有什么发现?(教师亲自拿长方体透明盒子去和学生摆好的比长、宽、高)

  生:体积相等,所以这个长方体体积是24平方分米。

  ⑧师:你有能帮工人叔叔想购买这些木材估计有多少?立方分米能解决么?我们用一个更大的体积单位,你们知道是什么?

  生:棱长是1米的正方体的体积是1立方米。(教师适时板书:立方米m3棱长1m的正方体,体积是1m3)

  ⑨师:1立方米的空间究竟有多大呢?同学们用手演示一下好吗?

  (找6个同学给老师帮忙)

  师:现在我们用12根1米长的木棍,做一个1立方米的空间。大家看一看,你有什么感受?

  生:这占的空间比我想象的大多了。

  ⑩师:下面,我请几名同学用米尺量一下这个正方体的棱长。

  (学生活动动手量)

  师:通过大家共同努力我们认识了体积和体积单位。

  [设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对于体积单位1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式去解读知识和理解概念,体验概念是必要的。只有与现实生活相联系,学生的记忆才是扎实而有效的。]

  三、巩固反馈练习

  (书中练习)图中的长方体都是用棱长是1立方厘米的小正方体拼成的,它们的体积各是多少?(让学生理解一个物体含有多少个体积单位,它的体积就是多少。)

  四、全课小结

  师:如何能求出长方体和正方体的体积呢,下节课我们共同来学习研究,下课!

  人教版五年级上册数学教案 15

  教学目标

  1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

  2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

  教学重点、难点

  1、理解掌握分数与除法的关系。

  2、会对假分数与带分数进行正确互化。

  教学过程

  活动一:创设情境,引导探索。

  师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

  师:同学们愿意帮xxx同学分一分蛋糕吗?

  生:愿意!

  师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

  师:这时,应该把什么看作单位“1”?

  要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

  师:大家拿出练习本来计算这个商是多少?

  生:3(1)

  师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

  即:1÷3=3(1)(个)

  答:每人分得3(1) 个。

  活动二:剪一间,拼一拼。

  师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

  生:想!

  师:出示例2 :把3张饼平均分给我们4个人,每人分得这3张饼的'几分之几呢?

  ①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

  ②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份] ③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几? [课件显示拼好后的3/4个饼]

  ④列一列:怎样用算式表示分饼的数量关系?谁会列式?

  ⑤算一算:师指一名同学板演算式:3÷4= 4(3)(张)

  答:每人分得4(3) 张。

  观察刚才所得结果:

  1÷3=3(1) 3÷4= 4(3)

  讨论、感知关系

  讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

  被除数÷除数= 被除数/除数

  如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

  学生回答,师板书:a÷b= a/b

  师:大家考虑:这里的a和b是否可以是任何自然数?为什么?

  生:不可以,因为这里的b≠0

  师:左侧b≠0,那么右侧的b是否可以是0?为什么?

  师:讨论完后,教师用红色粉笔标上: b≠0

  活动三:总结提升,归纳关系。

  1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

  2、判断:“分数就是除法,除法就是分数”这句话对不对?

  活动四:课堂检测(一)

  1、填空:课本P39试一试1。

  2、用分数表示下面各式的商。

  1÷4= 3÷4= 8÷3= 7÷3=

  1÷7= 13÷4= 5÷2= 4÷9=

  活动五:假分数带分数互化。

  师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

  生:小组讨论思考

  师:以7/3为例讲解,课本P39 T 2、3

  师生共同总结互化方法。

  1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

  2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

  活动六:课堂检测(二)

  课本P40 练一练 的2、3。

  课后作业

  用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

【人教版五年级上册数学教案】相关文章:

五年级上册人教版数学教案02-28

人教版五年级上册数学教案08-01

人教版五年级上册《练习课》数学教案11-20

人教版五年级上册数学教案9篇01-12

人教版五年级上册数学教案10篇02-17

人教版五年级上册数学教案(10篇)02-17

人教版五年级上册数学教案精选10篇03-15

人教版五年级上册数学教案汇编10篇03-15

人教版五年级上册数学教案通用10篇03-10