六年级数学《正比例》教案

时间:2024-07-08 22:49:43 昌升 数学教案 我要投稿

六年级数学《正比例》教案(精选20篇)

  作为一名优秀的教育工作者,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!下面是小编收集整理的六年级数学《正比例》教案,希望能够帮助到大家。

六年级数学《正比例》教案(精选20篇)

  六年级数学《正比例》教案 1

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  教学重难点:正比例的意义以及判断两种相关联的量是不是成正比例。

  教学准备:教学光盘

  教学预设:

  一、导入新课

  1、谈话:老师准备去水果超市买一些苹果,已知苹果每千克的单价是6元,如果我准备买1千克,你能求出什么?(总价)

  2、出示表格

  已知苹果每千克的单价是6元

  根据学生的回答将表格填写完整。

  提问:如果买( )千克,总价( )元 ……;

  观察表格,你们发现了什么?(当学生回答:买的千克数越多,总价就越高)

  师小结:像这样一种量变化,另一种量也随着变化,我们就把这两种量叫做相关联的.量[板书:两种相关联的量]

  在这里——“买的千克数”和“总价”就是两种相关联的量。

  二、探索新知

  (一)体会两种相关联的量

  1、出示例1表格

  2、提问:这张表格中的两个量是否相关联?

  学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)

  (二)探索两个变量之间的关系

  1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?

  启发学生从“变化”中去寻找“不变”。

  学生可能会从不同的角度去寻找规律。

  2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。

  如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。

  3、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?

  路程

  根据学生的回答,教师板书关系式:时间 = 速度(一定)

  4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

  (板书:路程和时间成正比例)

  反问:在什么条件下行驶的路程和时间呈正比例?

  三、教学“试一试”

  1、要求学生根据表中的已知条件先把表格填写完整。

  2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。

  3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  四、抽象表达正比例的意义

  1、引导学生观察上面的两个例子,说说它们有什么共同点。

  2、启发学生思考:如果用字母x和分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书关系式/x=(一定)

  五、巩固练习

  1、完成第63页的“练一练”。

  先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?

  2、做练习十三第1~3题。

  第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。

  第2题先让学生独立进行判断,再指名说判断的理由。

  第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。

  填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。

  六、全课小结

  通过这节课的学习,你有哪些收获?

  七、课堂作业:

  完成补充习题的相关练习

  补充练习:

  1、判断下面每题中的两种量是不是成正比例,并说明理由。

  ①每小时织布米数一定,织布总米数和时间。

  ②每人树植棵数一定,参加植树人数和植树总棵数。

  ③订阅《中国少年报》的份数和钱数。

  ④小新跳高的高度和他的身高。

  ⑤长方形的宽一定,它的面积和长。

  2、选择。

  a和b相关联的两种量,下面哪个式子表示a和b成正比例?

  六年级数学《正比例》教案 2

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。 (课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的'钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。+

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7

  六年级数学《正比例》教案 3

  教学内容:P50第3——8题,正反比例关系练习。

  教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

  教学过程:

  一、揭示课题

  二、基本知识练习

  1、正、反比例意义

  提问:什么叫正比例关系,什么叫反比例关系?用字母式子怎样表示正、反比例的关系?判断成正比例或反比例关系的关键是什么?

  2、练:950第4题。

  先说出数量关系式,再判断成什么比例?

  三、综合练习

  1、练习:P50第5题

  想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

  口答并说说怎样想的。

  2、做练习十二第6题、第7题

  第7题评讲时追问:在一个乘法关系式里,什么情况下某两个数成反比例:什么情况一某两个数或正比例?

  3、做第8题

  提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

  四、延伸练习

  下面题里的'数量成什么关系?你能列出式子表示数量之间的相等关系吗?

  1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

  2、某工厂3小时织布1800米,照这样计算,8小时织布X米。

  五、课堂

  通过这节课的练习,你进一步认识和掌握了哪些知识?

  六、作业

  《练习与测试》P25第五、六题。

  六年级数学《正比例》教案 4

  教学内容:

  成正比例的量

  教学目标:

  1、使学生理解正比例的意义,会正确判断成正比例的量。

  2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  教学重点:

  正比例的意义。

  教学难点:

  正确判断两个量是否成正比例的关系。

  教具准备:

  媒体课件

  教学过程:

  一、揭示课题

  1、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你能举出一些这样的例子吗?

  在教师的指导下,学生会举出一些简单的例子,如

  (1)班级人数多了,课桌椅的数量也变多了;人数少了,课桌椅也少了。

  (2)送来的牛奶包数多了,牛奶的总质量也多了;包数少了,总质量也少了。

  (3)上学时,去的速度快了,时间用少了;速度慢了,时间用多了。

  (4)排队时,每行人数少了,行数就多了;每行人数多了。行数就少了。

  2、这种变化的量有什么规律?存在什么关系呢?今天,我们首先来学习成正比例的量。板书:成正比例的量

  二、探索新知

  1、教学例1

  (1)出示例题情境图。

  问:你看到了什么?生

  杯子是相同的。杯中水的高度不同,水的体积也不同,高度越高体积越大;高度越低,体积越小。

  (2)出示表格。

  高度/㎝ 2 4 6 8 10 12

  体积/㎝3 50 100 150 200 250 300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25㎝2。

  板书

  教师:体积与高度的比值一定。

  (2)说明正比例的意义。

  ①在这一基础上,教师明确说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的.体积和高度的比值一定。

  像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  ②学生读一读,说一说你是怎么理解正比例关系的。

  要求学生把握三个要素

  第一,两种相关联的量;

  第二,其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

  第三,两个量的比值一定。

  (三要素可再省略:

  1、相关联。

  2、同时变化。

  3、比值一定。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:Y/X=K(一定)

  (4)想一想

  师:生活中还有哪些成正比例的量?

  学生举例说明。如

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  2、教学例2。

  (1)出示表格(见书)

  (2)依据下表中的数据描点。(见书)

  (3)从图中你发现了什么?

  这些点都在同一条直线上。

  (4)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  生:175㎝3。

  ②体积是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  生:水的体积是350㎝3,相对应的点一定在这条直线上。

  (5)你还能提出什么问题?有什么体会?

  通过交流使学生了解成正比例量的图像特征。

  3、做一做。

  过程要求

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  比值表示每小时行驶多少千米。(速度)

  (2)表中的路程和时间成正比例吗?为什么?

  成正比例。理由

  ①路程随着时间的变化而变化;

  ②时间增加,路程也增加,时间减少,路程也随着减少;

  ③种程和时间的比值(速度)一定。

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?指导学生估算的方法

  (5)你还能提出什么问题?

  4、课堂小结

  说一说成正比例关系的量的变化特征。

  学生回答成正比例的理由时,语言表述不清楚,要注意引导学生按照正比例中的三要素来回答

  三、巩固练习

  完成课文练习七第1~5题。

  练习补充,可以从中挑选有关正比例的练习,其它可等学习反比例后再做。

  六年级数学《正比例》教案 5

  教学内容

  教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

  教学目标

  1、使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

  2、通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  3、通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

  教学重点

  认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

  教学难点

  理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

  教学准备

  教具:多媒体课件。

  学具:作业本,数学书。

  教学过程

  一、联系生活,复习引入

  (1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

  (2)揭示课题。

  教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

  教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。

  二、自主探索,学习新知

  1、教学例1

  用课件在刚才准备题的表格中增加几列数据,变成表。

  教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。

  教师根据学生的回答将表格完善,并作必要的板书。

  教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。

  板书:相关联

  教师:你们还发现哪些规律?

  学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:

  教师:水费除以用水量得到的单价相等也可以说是水费与用水量的'比值相等,也就是一个固定的数。

  板书:

  2、教学试一试

  教师:我们再来研究一个问题。

  课件出示第52页下面的试一试。

  学生先独立完成。

  教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?

  教师根据学生的回答归纳如下:

  表中的路程和时间是相关联的量,路程随着时间的变化而变化。

  时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。

  路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)

  3、教学议一议

  教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?

  引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。

  教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。

  4、教学课堂活动

  教师:请大家说一说生活中还有哪些是成正比例的量。

  三、夯实基础,巩固提高

  (1)完成练习十二的第1题。

  教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?

  学生独立思考,先小组内交流再集体交流。

  (2)完成练习十二的第2题。

  四、全课小结

  教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?

  六年级数学《正比例》教案 6

  教学内容:

  1、本节课在教材中的地位:本节教材是在比和比例的基础上进行教学,着重使学生理解正比例的意义。正比例与反比例是比较重要的两种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它们解决一些含正、反比例关系的实际问题。同时通过这部分内容的教学,可以进一步渗透函数思想,为学生今后的学习打下基础。

  2、学生已有的知识经验基础:比和比例的有关知识,常见的数量关系(常见的数量关系是学生理解正、反比例意义的重要基础)而新教材没有都将常见的数量关系形成关系式,也增加了这节课的教学难度。让学生有画折线统计图的经验,所以基本能自己动手画出正比例关系的图像。

  教材分析:

  对比新旧教材,我们不难发现新教材在保留原来表格的基础上取而代之的是两种量的变化有什么规律?”这一个更开放、更具挑战性的问题。这一问题更能提供让学生有足够研究的空间与思维想象的空间,以及创造性的培养。旧教材中的3个小问题实际上就是正比例概念的三层含义(两个量必须相关联;一种量随着另一种量的变化而变化;相关联的两个量的比值一定)。旧教材这样编排的目的是让学生带着这3个问题观察表格,发现表格中的两个量的变化规律。虽然这样的编排能让学生明确观察方向,少走弯路,及时的发现变化规律,但是这样的数学学习体现不了学生学习的自主性,学生只是按照教师的指令在行动。而新教材的编排目的是让学生自己去发现规律,体现了以学生为主体的教学理念,如何更好的组织、引导学生在没有3个小问题的帮助下也能发现其中的变化规律呢?新教材的这一变化对我们一线教师提出了更高的要求。因此深入研读教材,理解教材编写意图,准确把握教学目标,是有效完成这节课的前提。教材精简了例题,教材不再对研究的过程作详细的引导和说明,只是提供观察研究的素材与数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程。

  设计理念:

  教材的改动是为了让学生自己去发现寻找出表中的规律,而不是像原来那样按照事先设计好的问题去回答。但是如果一开始马上放手让学生去寻找规律,学生会感到盲目,不知从何入手,那势必会造成合作学习的低效。新课程标准在修改稿中指出:数学活动是师生共同参与、交往互动的过程。有效的数学教学活动是教师教与学生学的统一,学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,带着问题动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。基于以上对教材内容的分析,因此,在教学中,我主要体现以下几个方面

  1、努力为学生创设充足的观察,分析、思考,探索、交流与合作的时间和空间,使学生真正理解和掌握成正比的量的特征、初步渗透函数思想,得到必要的数学思维训练,获得广泛的数学活动经验。充分体现学生是数学学习的.主体,教师是数学学习的组织者与引导者。

  2、努力实现扶与放的和谐统一,共同构建有效课堂。学生能自己解决的决不包办代替:学生可能完成的,充分相信学生,发挥自主探索与合作交流的优点,让学生有一个充分体验成功展示自我的舞台;学生有困难的,给予适当引导,拒绝无效探究,提高课堂效率。

  教学目标:

  基于对教材的理解和分析,我将该节课的教学目标定位为

  1、帮助学生理解正比例的意义。用字母 表示变量之间的关系,加深对正比例的认识。

  2、通过观察、比较、判断、归纳等方法,培养学生用事物相互联系和发展变化的观点来分析问题,使学生能够根据正比例的意义判断两种量是不是成正比例。

  3、学生在自主探索,合作交流中获得积极的数学情感体验,得到必要的数学思维训练。

  重点难点:

  理解正比例的意义。

  重难点处理

  学生能在具体的情景中理解和体会成正比例的量的规律,但要他们用很专业的数学语言来描述,还是比较困难的,对于六年级的学生来说,语言的表达能力,组织能力,归纳能力有限,考虑问题也有局限性。不管是哪个层次的学生都或多或少存在着,当他们将各自的想法整合起来,基本能得出较为完整的结论。比如,什么叫两种相关联的量,学生也很难得出,也没有探究的价值,所以由教师直接讲授,而对于他们之间的规律,则由学生自己来随意表述,当他们将各自的想法整合起来,通过共同归纳、概括,合作交流,得出较为完整的结论时,能让学生深深体会到自己的价值和合作学习的高效。

  教学过程:

  说教学策略和方法,引入新课。

  首先提供情景素材,接下来教师引导,培养学生自己发现问题的能力,学生自主探究成正比例的量这个环节分为了四层:观察—讨论―—再观察—再讨论,一环扣一环教学,分小组合作交流让学生充分参与,学生在反复观察、思考,讨论、交流的过程自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  本环节将书中的表格分两层呈现,首先出示表格,让学生观察,研究变量,感受是一种量变化,另一种量也随着变化,这量种量是两种相关联的量。接着引导学生研究定量,出示表格1、表格2,让学生计算正方形的周长、面积,让学生体会周长和边长的比值相等、面积与边长的比值不相等。感受变量、常量,此时可能部分同学还是模糊的,所以进一步让学生自己讨论:周长和边长这两种变化的量具有什么特征?面积和边长两种变化的量又具有什么特征?学生讨论汇报后,可引导学生归纳:正方形的周长、面积都随着边长的变化而变化,它们是两种相关联的量;边长增加、周长(面积)也增加,周长(面积)降低、边长减少,但周长和边长的比值总是一定的,而面积与边长的比值不是相等。所以,周长与边长能成正比例,面积与边长不成正比例, “周长、边长”之间的这种关系,从而自主归纳出成正比例的量的特征,在此基础上让学生自学:这里的周长和边长是成正比例的量,周长和边长成正比例关系。仅有例题的首次感知还不能形成正比例的概念,增加一个与例题不同的情景素材,为学生进一步积累感性认识。如果说例1是在老师的引导下完成,补充做一做就应该放手,让学生独立经历正比例关系的判断过程,再次感知正比例关系。学生能够列举出生活中成正比例的量的例子是学生是否真正掌握成正比例的量的特征的一个重要依据,学生能说出更好(估计优生部分可以,但不能说出这时也不必追问,教师接着引导学生用字母式y/x=k(一定),加深对正比例的认识。

  最后,通过练习让学生来巩固今天的新知,由于很多的练习都渗透到了新授的教学过程中,因此,练习的设置较少,重点是让学生在正反例的对比中,加深学生对概念的理解。

  六年级数学《正比例》教案 7

  教学要求:

  1、使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据正比例的意义判断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学重点:

  认识正比例关系的意义。

  教学难点:

  掌握成正比例量的变化规律及其特征。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课。

  上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

  二、自主探究:

  1、教学例1

  出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让学生观察表里两种量变化的数据,思考:

  (1)表里有哪两种数量,这两种数量是怎样变化?

  (2)长方形的面积随着那种量的变化而变化的?你能看出它们变化的特点吗?

  (3)分别找出面积与款项对应的数,面积与宽的比各是几比几?比值各是多少?

  引导学生进行讨论,得出:

  (1)表里的两种量是长方形的宽与面积(长与面积)。宽与面积(长与面积)是两种相关联的量,(板书:两种相关联的量)面积随着宽(长)的变化而变化。

  (2)宽(长)扩大,面积也扩大;宽(长)缩小,面积也缩小。

  (3)可以看出它们的变化规律是:面积与宽(面积与长)比的比值总是一定的。(板书:面积和宽比的比值一定)因为面积和宽(面积与长)对应数值比的比值都是5(2)。提问:这里比值5(2)是什么数量?谁能说出它的数量关系式?板书:面积/宽=长(一定)面积/长=宽(一定)想一想,这个式子表示的是什么意思?(把上面板书补充成:长一定时,面积和宽比的比值一定宽一定时,面积和长比的比值一定)

  2、教学例2

  出示例2。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?你是怎样发现的`?你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成单价一定时,总价和数量比的比值一定)

  3、概括正比例的意义。

  (1)综合例1、例2的共同点。

  提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

  (2)概括正比例关系的意义。

  像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第95页最后连个自然段。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢?指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子=k(一定)来表示。

  4、教学例3学生看书自学,小组讨论,集体交流。

  (1)数量与时间是不是两种相关联的量?

  (2)数量与时间有什么关系?他们的比值是谁?比值是不是不变的?

  (3)判断数量与时间是不是成正比例?

  5、完成97页练一练。

  三、巩固练习

  1、(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

  2、做练习十一第1题。

  让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的正比例的意义,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

  3、下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

  一种苹果,买5千克要10元。照这样计算,买15千克要30元。

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?关键是列出关系式,看是不是比值一定。

  五、家庭作业

  练习十一第2~6题。

  六年级数学《正比例》教案 8

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1、完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2、完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3、完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的比值,再作判断。(行驶75千米的耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的'价值。

  4、完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  六年级数学《正比例》教案 9

  教学目标:

  1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

  2、通过练习,巩固对正比例意义的认识。

  3、情感、态度与价值观:初步渗透函数思想。

  重点难点:

  能根据数量关系式或图象判断两种量是否成正比例。

  教学准备:

  投影仪。

  教学过程:

  一、新课讲授

  教学第46页内容。

  教师出示表格(见书),依据表中的数据描点。(见书)

  师:从图中你发现了什么?

  生:这些点都在同一条直线上。

  看图回答问题

  ①如果铅笔的数量是7支,那么铅笔的总价是多少?

  ②总价是4.0的铅笔,数量是多少?

  ③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

  二、练习讲授

  1、基本练习。

  (1)投影出示教材第49页第1题。

  教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

  教师要求学生从两个方面说明为什么成正比例。

  a、电是随着用电量的增加而增加;

  b、电费与用电量的比值总是相等的。

  师生共同订正。

  (2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

  ①出示下表,填表。

  一列火车行驶的时间和路程

  ②填表并思考发现了什么?

  ③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

  ④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

  ⑤用式子表示它们的关系:路程÷时间=速度(一定)。

  教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

  2、指导练习。

  (1)完成教材第49页第2题。

  (2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的.,上台在投影仪上展示估计的思维过程。

  (3)解决教材49页第4题:

  ①投影出示书中的表格,引导学生观察表中的数据。

  ②组织学生在小组中合作探究。

  三、课堂作业

  1、根据x和y成正比例关系,填写表中的空格。

  2、看图回答问题。

  (1)在这一过程中,哪个量没变?

  (2)路程和时间有什么关系?

  (3)不计算,从图中看出4小时行驶多少千米?

  (4)7小时行驶多少千米?

  课堂小结:

  教师:判断两个相关联的量成正比例的三个要素是什么?

  通过这节课的学习,你有什么收获?

  课后作业:

  完成练习册中本课时的练习。

  板书设计:

  正比例图像

  图像:一条过原点的直线。

  六年级数学《正比例》教案 10

  教学要求

  1、理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养同学们用发展变化的观点来分析问题的能力。

  3、培养同学们概括能力和分析判断能力。

  教学重点

  理解正比例的意义。

  教学难点

  引导同学们通过观察、发现思考两种相关联的量的变化规律。

  教学过程

  一、复习

  1、已知路程和时间,求速度?

  2、已知总价和数量,求单价?

  3、已知工作总量和工作时间,求工作效率?

  二、新知

  1、教学例1

  投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6

  (1)出示下表,填表

  一列火车行驶的时间和路程:

  时间

  路程

  填表,思考:再填表中你发现了什么?

  点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

  根据计算,你发现了什么?

  指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

  用式子表示他们的`关系是:路程/时间=速度(一定)(板书)

  (2)教师小结:

  同学们通过填表交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

  (3)抽象概括正比例的意义。

  ①比较例1、例2,思考并讨论:这两个例题有什么共同点?

  ②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

  ③看书,进一步理解正比例的意义。

  六年级数学《正比例》教案 11

  教学内容:P62~P63页的例1及相应的“试一试”“练一练”。完成练习十三第1~3题。

  教学目标:

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、让学生进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重难点:

  重点:结合实际情境认识成正比例量的特点,加深对正比例量的理解。

  难点:能跟据正比例的意义判断两种相关联的量是否成正比例。

  教学准备:课件

  课时安排:第一课时

  课前设计:

  一、导入。

  谈话:通过将近六年的数学学习,我们已经了解了一些数量之间的关系,例如行程问题中速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点,更深入地研究数量之间的关系,什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

  二、教学例1

  1、出示例1的表格。提问:表中列出了哪两种量?(板书:时间和路程)观察表中的.数据,哪一种量的变化引起了另一种量的变化?你是怎么看出来的?

  指名回答。

  谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)“关联”是什么意思?为什么说路程和时间是两种相关联的量?

  2、我们已经知道路程和时间是两种相关联的量。还要进一步研究,这两种量的变化有什么规律?

  3、仔细观察表中的数据,这两种量在变化中有没有什么不变的规律呢?现在小组内讨论,再在班内交流。(有的学生可能会发现两种量中所对应的两个数的比值不变)

  提问:观察这些比值,你发现了什么?这个比值80表示什么?(速度)你能用一个式子来表示上面的规律吗?根据学生回答,板书:=速度(一定)

  4、讲述:通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值一定(也就是速度一定)。具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例;行驶的路程和时间成正比例的量。(板书:路程和时间成正比例,路程和时间是成正比例的量)

  5、谈话:这就是这节课我们所学习的正比例。(板书课题)请阅读课本第62页的一段文字,各自默读,边读边画。

  再指名读。提问:你能读懂吗?

  在这题中,哪个量和哪个量是成正比例的量?同桌互相说一说为什么时间和路程是成正比例的量,并在全班交流。

  三、教学“试一试”

  1、出示“试一试”,学生自由读题。

  2、要求学生根据已知条件把表格填写完整。

  3、学生根据表中数据,先尝试独立完成表格。下面的四个问题,然后和同桌交流。

  4、全班交流。板书:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

  5、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

  四、用含有字母的式子表示正比例关系。

  1、比较例题和“试一试”的相同点。

  提问:观察上面的两个例子,它们有什么相同的地方呢?

  2、谈话:如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

  谈话:这是正比例关系式表达式,对这个式子要这样理解:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

  五、巩固练习

  1、完成第63页“练一练”。

  学生独立思考并作出判断,要用完整的语言说出判断的理由。

  2、完成补充习题。

  一辆自行车在公路上行驶,行驶的时间和路程如下表。

  时间/时123456……

  路程/千米355060708590……

  这辆自行车行驶的时间和路程是相关联的量吗?成正比例吗?为什么?

  先独立思考,再和同桌说一说。

  全班交流,并讨论:成正比例的量必须符合哪些条件?

  3、完成练习十三第1题。

  (1)学生按题目要求尝试独立完成。

  (2)全班交流,重点让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

  4、完成练习十三第2题。

  (1)让学生独立判断,并说明理由。

  (2)谈话:如果去掉“同一时间”这个前提,物体的高度和影长还成正比例吗?

  5、完成练习十三第3题。

  (1)说一说:将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

  (2)画一画:在书上画出放大后的图形。

  (3)算一算:算出每个图形的周长和面积,并填在表中。

  (4)讨论表格下面的两个问题。谈话:两种量若要成正比例必须是相关联的量,但相关联的量不一定成正比例,只有当两种相关联的量的比值一定时,它们才成正比例。

  六、全课。

  提问:通过这节课的学习,你有什么收获?

  板书设计

  认识成正比例的量

  时间和路程路程和时间是两种相关联的量。

  路程和时间成正比例,路程和时间是成正比例的量。

  总价和数量是相关联的量。

  六年级数学《正比例》教案 12

  教学内容

  正比例的意义。

  教学目的

  使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。

  教学重点

  正比例的意义。

  教学难点

  正比例的判断。

  教具准备

  小黑板、投景影片

  教学过程:

  一、 复习

  根据下面各题,先口答列式及得数,后说数量关系式。

  1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?

  2、 一种布,买3米共要27元,平均每米布多少元?

  3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?

  师据学生回答板书如下:

  路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率

  二、引新

  我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)

  三、新授

  1、 教学例1。一列火车行驶的时间和所行的路程如下表。

  时间(时) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  (1) 引导学生观察上表内数据。

  (2) 边观察边思考下面问题:

  (1) 表中有哪几种量?这两促量有没有关系?

  (2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)

  (3) 引导学生分析这两种相关联的量的变化有什么规律?

  (1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:

  90/1=90 360/4=90 540/6=90

  (2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)

  (3)师:它们之间的关系可以用式子表示

  路程/时间=速度(一定)

  (4) 小结。

  时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的`比的比值总是一定的。

  2、 教学例2

  (1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

  数量(米) 1 2 34 5 6 7

  总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

  (2)引导学生观察上表内的数据。

  (3) 回答下面风个问题:

  表中有哪两种量?这两种量有关系吗?为什么?

  这两种量是怎样变化的?

  它们的变化有什么规律?

  相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

  (4) 小结。

  花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

  3、 概括正比例的意义及关系式。

  (1) 比较上面的例1和例2,它们有什么共同点?

  (2) 判断成正比例量的方法:是什么?

  (3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  六年级数学《正比例》教案 13

  教学目标:

  1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。

  2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学重难点:进一步认识正、反比例的意义,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。

  教学准备 :实物投影

  教学预设:

  一、概念复习:

  1、提问:怎样的两个量成正、反比例?

  根据学生回答板书字母关系式。

  二、书本练习:

  1、第9题。

  (1)观察每个表中的数据,讨论前三个问题。

  要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。

  (2)组织学生讨论第四个问题。

  启发学生根据条件直接写出关系式,再根据关系式直接作出判断。

  2、第10题。

  (1)看图填写表格。

  (2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。

  要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。

  (3)启发学生运用有关比例尺的知识进行解答。

  3、第11题。

  填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。

  4、第12题。

  引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。

  5、第13题。

  让学生小组进行讨论,教师指导有困难的学生。

  三、补充练习

  1、对比练习:判断下列说法是否正确。

  (1)圆的周长和圆的半径成正比例。( )

  (2)圆的面积和圆的半径成正比例。( )

  (3)圆的`面积和圆的半径的平方成正比例。( )

  (4)圆的面积和圆的周长的平方成正比例。( )

  (5)正方形的面积和边长成正比例。( )

  (6)正方形的周长和边长成正比例。( )

  (7)长方形的面积一定时,长和宽成反比例。( )

  (8)长方形的周长一定时,长和宽成反比例。( )

  (9)三角形的面积一定时,底和高成反比例。( )

  (10)梯形的面积一定时,上底和下底的和与高成反比例。( )

  六年级数学《正比例》教案 14

  教学目标:

  1、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例。

  教学重点:

  1、结合丰富的事例,认识正比例。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一、课前预习

  预习书19---21页内容

  1、填好书中所有的表格

  2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

  3、把不理解的内容用笔作重点记号,待课上质疑解答

  二、展示与交流

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  说说你发现的规律。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:

  1、一些人买一种苹果,购买苹果的质量和应付的'钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  5、正比例关系:

  (1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  (2)购买苹果应付的钱数与质量有什么关系?

  6、观察思考成正比例的量有什么特征?

  一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

  (四)想一想:

  1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化情况如下:

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再集体汇报

  在老师的小结中感受并总结正比例关系的特征

  六年级数学《正比例》教案 15

  教学目标:

  1、掌握用正比例的方法解答相关应用题;

  2、通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;

  3、培养学生分析问题、解决问题的能力;

  4、发展学生综合运用知识解决简单实际问题的能力。

  教学重点:掌握用正比例的方法解答应用题

  教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。

  教学过程:

  一、复习:出示课件

  二、谈话导入:

  1、在上新课之前,先考考大家我们的楼房有多么高?

  2、怎样测量它大概的高度呢?

  刚才同学们想出了很多的方法去测量大概高度。今天我们学习一种新的方法──正比例应用题,学完后,我们试着用这种方法去计算楼房的'大概高度。看谁学得最棒。

  三、新课教学:

  先来研究这样一个问题。

  1、出示例1课件

  一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  2、分析解答应用题

  (1) 请一位同学读一读题目

  (2) 这道题要求什么?已知什么条件?

  (3) 能不能用以前学过的方法解答?

  (4) 让学生自己解答,边订正边板书:

  3、激励引新

  这两种方法都合理,还可以有什么方法解答呢?

  学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?

  四、探讨新知

  1、提出问题

  师:请同学们结合课本上的例题,讨论以下问题。

  (1) 题目中相关联的两种量是________和________。

  (2) ________一定,_________和_________成_______比例关系。

  (3) ______行驶的_____ 和 _____的 ________相等。

  2、学生自学例题后小组讨论。

  3、组间交流:小组代表把讨论结果在班内交流

  4、学生尝试解答后评价(指名学生板演)

  5、怎样检验?把检验过程写出来。

  6、概括总结

  (1) 用比例解答应用题与用算术方法解答应用题教师这道题的解法,如果题目中没有要求的,我们采取任何一种方法都可以,但如果题目要求用比例解的,就一定要用

  比例的方法解。

  (2) 明确解题步骤。(板)

  用比例方法解答应用题,具体步骤是怎样的呢?请根据我们所做的例题归纳解题步骤。

  1、分析判断

  2、找出列比例式所需的相等关系

  3、设未知数列等式

  4、求解

  5、检验写答语

  五、练习提高

  1、 变式练习,出示课件

  (1)例题改编

  ① 如果把这道题的第三个和问题改成:“已知公路长350千米,需要行驶多少小时?”该怎样解答?

  ② 让学生解答改编后的应用题,集体订正。

  ③ 小结 :比较一下改编后的题和例1有什么联系和区别?

  例1的条件和问题以后,题中成正比例的关系仍没变,解答的方法出没有改变,只是要设需要行驶的小时数为x,列出的等式是:

  140/2=350/x

  (2)24页做一做:让学生直接用比例知识解答。做完后,请几个同学说一说:你为什么这样列式?

  2、基本练习,出示课件

  3、实践运用

  (1)汇报数据:刚才我们上课时提到怎样测量和计算楼房的大概高度,课前我请几位同学去测得一些数据。现在请这些同学跟我们汇报一下。

  (2)能用这些数据编一道正比例应用题吗?

  (3)小组合作编题

  六、总结

  今天我们学习的是如何用正比例的方法解答以前学过的应用题。解答的步骤怎样的呢?

  七、课后反思

  1、还有部分学生不理解正比例的意义

  2、不会判断是不是成正比例的关系

  3、列出的比例式不是正比例的形式

  六年级数学《正比例》教案 16

  教学内容:教科书94页“练习与实践”的第7~10题。

  教学目标:

  1、使学生进一步理解比的意义和基本性质以及比与分数、除法的关系的理解。

  2、能运用比和比例的知识解决一些简单实际问题,积累解决问题的经验。

  教学重点:

  使学生加深认识比例的意义和基本性质。

  教学难点:

  能判断两个比能能不能组成比例,能比较熟练地解比例。

  教学准备:多媒体

  教学过程:

  一、与反思

  今天我们一起来复习正比例和反比例相关知识。

  怎样判断两种量是否成正比例或反比例关系?

  学生交流

  二、练习与实践

  1、完成“练习与实践”第7题

  让学生先独立完成,再点评。

  2、完成“练习与实践”第8题

  引导学生列举几组对应的数值

  再分析每组中两个数的关系,再判断。

  3、完成“练习与实践”第9题

  第1小题让学生根据图中标出的点的位置算出相应的耗油量与行驶路程的`比值,再作判断。(行驶75千米的耗油量是6升。)

  第2小题让学生在教材的方格图上描点、连线,

  引导学生联系画出的图象判断汽车在市区行驶时,行驶的路程与耗油量成不成正比例。

  体会数形结合在解决问题方面的价值。

  4、完成“练习与实践”第10题

  什么叫比例尺?比例尺有几种类型?举例说说它的意思?(重点是线段比例尺)

  怎样求图上距离?怎样求实际距离

  学生量出的图上距离。

  利用的线段比例尺,求出相应的实际距离

  三、

  通过学习你有什么收获?

  学生交流

  四、作业

  完成《练习与测试》相关作业。

  板书设计

  关于正比例和反比例的复习

  六年级数学《正比例》教案 17

  教学内容:

  教科书第63页的例2,“练一练”和练习十三的第4、5题。

  教学目标:

  1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

  2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

  3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

  教学重点:

  能认识正比例关系的图像。

  教学难点

  利用正比例关系的`图像解决实际问题。

  教学准备:

  多媒体

  教学过程:

  一、复习激趣

  1、判断下面两种量能否成正比例,并说明理由。

  数量一定,总价和单价

  和一定,一个加数和另一个加数

  比值一定,比的前项和后项

  2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

  二、探究新知

  1、出示例1的表格

  根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

  你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

  2、学生尝试画出正比例的图像

  3、展示、纠错

  每个点都应该表示路程和时间的一组对应数值。

  4、回答例2图像下面的问题,重点弄清:

  (1)说出每个点表示的含义。

  (2)为什么所描的点在一条直线上?

  (3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

  借助直观的图像理解两种量同时扩大或缩小的变化规律。

  三、巩固延伸

  1、完成练一练

  小玲打字的个数和所用的时间成正比例吗?为什么?

  根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

  估计小玲5分钟打了多少个字?打750个字要多少分钟?

  2、练习十三第4题

  先看一看、想一想,再组织讨论和交流。要求学生说出估计的思考过程。

  3、练习十三第5题

  先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

  组织讨论和交流

  4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

  根据表中的数据,描出所对应的点,再把它们按顺序连起来。

  同桌之间相互提出问题并解答。

  四、反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

  五、作业

  完成《练习与测试》相关作业

  板书设计

  六年级数学《正比例》教案 18

  一、教学目标

  使学生理解正比例的意义,能根据正比例的意义判断两种量是不是成正比例。

  培养学生用发展变化的观点来分析问题的能力。

  培养学生概括能力和分析判断能力。

  二、教学重难点

  重点:理解正比例的意义。

  难点:正确判断两种量是否成正比例关系。

  三、教学过程

  1、导入

  通过展示一些生活中常见的数量关系,如速度一定时,路程与时间的关系;单价一定时,总价与数量的关系等,引发学生思考,导入新课。

  2、新授

  (1)出示例 1 表格,引导学生观察并思考:表中有哪两种量?一种量是怎样随着另一种量的变化而变化的?

  (2)计算相对应的路程和时间的比值,发现比值一定。

  (3)总结出正比例的意义:两种相关联的.量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  3、巩固练习

  (1)出示一些数量关系,让学生判断是否成正比例。

  (2)根据给出的成正比例的关系,填写表格中的空缺值。

  4、课堂小结

  (1)回顾正比例的意义和判断方法。

  (2)强调在判断两种量是否成正比例时,关键要看它们的比值是否一定。

  5、布置作业

  (1)完成课本上的相关练习题。

  (2)寻找生活中还有哪些成正比例的量,并记录下来。

  六年级数学《正比例》教案 19

  一、教学目标

  让学生经历正比例意义的建构过程,通过具体问题认识成正比例的量,初步感受生活中存在很多成正比例的量。

  通过观察、比较、分析、归纳等数学活动,提高学生分析、判断、概括、推理能力。

  培养学生用数学眼光观察生活的习惯,增强学生从生活中学习数学的意识。

  二、教学重难点

  重点:理解正比例的意义,掌握判断两种量是否成正比例的方法。

  难点:通过实例理解正比例的意义。

  三、教学过程

  1、情境导入:

  创设一个购物的情境,展示不同数量的商品及其对应的总价,引导学生观察并思考价格的变化规律。

  2、探究新知

  (1)出示例 2 数据表格,让学生观察并讨论:表中有哪两种量?总价是怎样随着数量的变化而变化的?

  (2)计算总价与数量的比值,引导学生发现比值相等。

  (3)教师讲解:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  3、深化理解

  (1)给出一些实例,让学生判断两种量是否成正比例。

  (2)如果用字母 x 和 y 表示两种相关联的量,用 k 表示它们的比值(一定),正比例关系可以用式子表示为:y = kx 。

  4、巩固练习

  (1)完成教材中的`练习题,巩固正比例的概念。

  (2)让学生自己举例说一说生活中还有哪些成正比例的量。

  5、课堂总结

  (1)回顾正比例的概念和判断方法。

  (2)强调正比例关系中两种量变化的一致性和比值的固定性。

  6、作业布置

  (1)书面作业:完成课后相关习题。

  (2)实践作业:观察生活中还有哪些量成正比例关系,记录下来并与同学交流。

  六年级数学《正比例》教案 20

  教学目标:

  知识与技能:

  使学生理解正比例的意义,掌握正比例的基本特征。

  能够根据正比例的意义判断两种相关联的量是否成正比例。

  掌握用正比例的方法解答相关应用题。

  过程与方法:

  通过观察、比较、分析、归纳等数学活动,发现正比例量的特征。

  提高学生分析、比较、归纳和判断推理的能力。

  情感态度与价值观:

  培养学生从实际生活中发现并探索数学知识和规律的意识。

  感受数学与日常生活的密切联系,增强数学应用意识。

  教学重难点:

  重点:理解正比例的意义,掌握正比例的基本特征。

  难点:能正确判断两种相关联的量是否成正比例,并列出正确的比例式。

  教学准备:

  多媒体课件

  例题及练习题

  学生作业本

  教学过程:

  一、复习导入(5分钟)

  提问复习:

  引导学生回忆之前学过的数量之间的关系,如速度、时间和路程之间的关系。

  提问:什么是相关联的量?它们之间有什么特点?

  引入新课:

  提出问题:当其中一个量变化时,另一个量也按一定规律变化,这种关系在数学上叫做什么?

  引出课题:正比例。

  二、新知讲授(20分钟)

  正比例的意义:

  讲解正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值一定,那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  举例说明:如单价一定时,总价和数量之间的关系就是正比例关系。

  例题分析:

  出示例题:一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地共行驶5小时。甲乙两地之间的公路长多少千米?

  分析:首先确定题目中的两种相关联的量(时间和路程),然后找出它们之间的比值(速度),判断它们是否成正比例关系。

  引导学生用比例的方法解答,并比较与算术方法的异同。

  三、巩固练习(15分钟)

  基础练习:

  完成课本上的例题及“试一试”、“练一练”题目。

  教师巡视指导,个别辅导。

  变式练习:

  改编例题:如果公路长350千米,需要行驶多少小时?

  学生独立解答,并交流解题方法。

  四、归纳总结(5分钟)

  总结正比例的意义:

  强调两种相关联的'量在变化过程中,它们的比值一定。

  指出正比例关系在生活中的应用广泛。

  解题步骤:

  分析判断:确定题目中的两种相关联的量。

  找出比例关系:确定它们的比值是否一定。

  列比例式解答:根据比例关系列出比例式并求解。

  五、布置作业(2分钟)

  完成课本上的相关习题。

  找一找生活中成正比例的例子,并尝试用正比例关系来解释。

  六、课后反思

  检查学生对正比例意义的理解程度。

  分析学生在解题过程中存在的问题,并思考如何改进教学方法。

【六年级数学《正比例》教案】相关文章:

六年级数学《正比例》教案03-06

六年级数学正比例教案11-28

六年级数学《正比例》教案06-20

小学六年级数学《正比例》教案05-07

小学数学六年级下册正比例教案04-11

小学六年级数学正比例教案02-04

六年级数学《正比例》教案精选15篇03-07

六年级数学《正比例》教案(精选16篇)07-01

六年级数学《正比例》教案15篇03-06

六年级数学《正比例》教案15篇05-25