【热门】五年级上册数学教案
作为一名教职工,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么教案应该怎么写才合适呢?下面是小编整理的五年级上册数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
五年级上册数学教案1
平均数的初步认识
教学目标:
1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。
2、能正确列式解答“求平均数”问题。
教学重点难点:初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。
教学过程:
一、引入
1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?
二、新授
1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。
刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。
生:用4来表示……; 用5来表示……。
师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?
生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……
师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的.也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?
遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。
2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。
第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。
师:你觉得用几来代表他1分钟的水平呢?
生:计算,是4。
师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。
生:3+7+2=12个 12÷3=4个(板书算式)
生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)
师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)
我们说,4是3、7、2这3个三个数的平均数。
那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?
生:他投了3次,所以4是3、4、5的平均数。
师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?
师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)
3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?
师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。
老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。
老师第四次投中了1个。我赢了还是输了?算一算。
如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?
三、练习
1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……
不然移多补少补给谁去呢?
2、平均身高160,但不是人人都160,排在中间的人一定是160吗?
3、平均水深才110,所以以他140的身高肯定淹不死,是吗?
生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。
出示水下图片。
师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?
4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?
5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20xx年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。
四、总结
五年级上册数学教案2
教学内容:
教科书第18页例4和做一做
教学目标:
1、会归纳总结除数是小数的小数除法的计算方法,能比较熟练地计算除数是整数的小数除法;
2、能根据乘除法之间的关系进行验算,提高计算的正确率;
3、养成良好的计算、验算习惯。
教学重点:
掌握小数除以整数的计算方法,你能正确计算
教学难点:
特殊情况的小数除以整数的算法
教学过程:
一、复习引入
1、口算
2。4÷2 4。8÷6 9。09÷9
8。24÷8 6÷5 1÷5
2、填空,并说出为什么?
(复习乘除法之间的关系,为下面学习验算做好准备)
3、列竖式计算(生板演)
(1)7。44÷4(2)7。44÷8
(3)102÷24(4)4。551÷5
四道逐渐变难
二、探究新知
1、在评价学生的计算结果中帮助学生学会归纳和总结。
师:通过刚才的解题,你能说出小数除以整数是怎么除的吗?
学情预设:学生有的会把步骤在说一遍,有的会讲出前面“被除数的整数部分不够除”和“除到被除数的小数末尾还有余数”两种特殊情况的小数除以整数的`算法,教师一一给与肯定。
师:做小数除以整数还有什么要提醒大家的?
四人小组讨论并归纳
学情预设:生根据小数乘法经验说出转化乘整数除法去除;商的小数点要和被除数的小数点对齐;哪一位不够商1就商0,然后继续除。如果除到被除数的末尾仍然有余数,要添0后再除。
课件出示补充。
2、在暴露计算错误的过程中引导学生学会验算。
(1)师:为了保证我们的计算正确,怎么办?——验算
验算是一种很好的学习方法和习惯,怎样验算黑板上面的小数除法呢?
学情预设:生根据整数除法经验能说出用乘法验算除法,或估算一下,或用被除数除以商等。
师:四人小组,一人选一道进行验算,算完在组内说说你是怎么想的?
(2)门诊台
课件出示。
小结:用估算能知道计算有没有错;用乘法或再除一遍的方法能保证计算正确
三、巩固练习
1、小马虎也做了两道题,请同学们看看他做对了吗?如果不对应该怎么订正?
37。8÷6=63 7。4÷5=1。4……4
2、计算并验算
43。5÷29 18。9÷27
1。35÷15 207÷45
3、书第20页:7、8题
四、课堂小结
说说小数除以整数的计算法则,有什么要提醒大家的?
五年级上册数学教案3
1、通过“打电话”的情境,体会生活中存在着需要用除数是小数除法去解决的问题,进一步体会数学与生活密切联系。
2、利用已有知识,经历探索除数是小数的小数除法的计算方法的过程,体会转化的数学思想。
3、正确掌握除数是小数的小数除法案的计算方法,并能解决有关的实际问题。
正确掌握除数是小数的小数除法案的计算方法能解决有关的实际问题。
教学方法及学生活动设计
个性调整
教学重点教学难点教学环节
问提问生活中有哪个同学一、创设情创设“打电话”的情境,
有打长途电话的经验。境
1、出示文主题图,让学生说一说图的.意思,并讨论如何解决“谁打电话的时间长”的问题。
二、自主探2、组织学生探索如何计算4.83÷0.7和45÷7.2的究,创建数得数时,在探索之前,先引导学生比较这两个算式
和前面学习的小数除法有什么不同,使学生体会到学模型
如果除数变成整数就好了,引导学生把新的知识转
化为已有的知识。不同的学生会有不同的想法,但都是要把被除数和除数扩大相同的倍数,使除数变
成整数,再按照小数除以整书的方法进行计算。1、试一试:其中37。1÷0。53和8。4÷0。56被除
三、巩固数和除数同时扩大100倍后,被除数末尾需要补0,与应用2。7÷7。5被除数和除数同时扩大10倍后,被除数
比除数小,商的整数部分需要补0,在练习后反馈时要引起学生的注意。
2、练一练/1,2,3——补充练习:
1、把下面各题变成除数是整数的除法:4.68÷1.2=□÷122.38÷0.34=
□÷□5.2÷0.325=□÷325161÷0.46=□÷□2.笔算。6.84÷0.91225.84÷1.799.6÷41.5
220.5÷147
3
4
一、创设情境二、自主探究,创建数学模型三、巩固与应用
呈现中国银行20xx年3月公布的关于外币和人民币之间的比率。
首先引导学生进行解答。由于货币的最小单位一般是“分”,以“元”为单位时第三位小数没有意义,所以一般需要保留两位小数,因此学生将体会到求积,商近似值在生活中的应用。
1、试一试,可以让学生用计算器算出得数,然后根据得数按要求用四舍五入法求出近似值。2、练一练:P71/1,2,3,4
第1题:这是人民币和港币的兑换,12.5÷1。07,
四、总结。超过了11元港币;也可以用兵1×1.07,不到本世
纪末2元,因此11元港币不够。
第2题:这是人民币和日元的兑换,要注意的是:5000×7.09所得到的近似值还需要去乘100.第3题:这是欧元换人民币,5000×9.15=45750元不需要近似值.
根据学生的练习情况进行小结.
五年级上册数学教案4
教材类型:苏教版所属学科:数学
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
4.增长学生的自然知识,产生热爱自然,享受自然的情感。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸、卡片等。
教学过程:
(一)游戏导入,感受生活中的相反现象。(放在课前)
1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄式度(零下10摄式度)。
2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的`准备。下面就请大家一起和我走进天气预报。(天气预报片头)
(二)教学例1
1.认识温度计,理解用正负数来表示零上和零下的温度。
⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。
那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
问:好,现在你能看出南京是多少摄式度吗?
学生交流:是0℃。
师:你是怎么知道的?(那里有个0,表示0摄式度)。
没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。
谁来温度计上表示出0℃。
⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)
上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。
⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)
北京又是多少摄式度呢?
与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)
你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)
你能在温度计上拨出来吗?
⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)
师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?
香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。
哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。
西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?
⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)
指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?
谁能在温度计上拨出11℃?谁来拨-1℃?
小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。
五年级上册数学教案5
第一课时
一 教学内容
异分母分数加、减法
教材第110 一112 页的内容及第113 页练习二十二的第1 一4 题。
二 教学目标
1 .让学生经历异分母分数加、减法的计算方法的探究过程,认识将旧知识转换成新知识是获得知识的重要途径。
2 .掌握异分母分数加、减法的一般计算方法和验算方法,会正确地进行计算和验算。
3 .通过学习回收有用垃圾的计算,唤起学生的环保意识。
三 重点难点
掌握异分母分数加、减法的一般计算方法。
四 教具准备
多媒体课件。
五 教学过程
(一)谈话导入
两周前,老师布置了一项调查、收集资料的作业:调查自己生活的社区主要有哪些生活垃圾?每种垃圾大约占生活垃圾的几分之几?哪些垃圾可以作为有用资源回收?同学们可以以生活的社区为单位分组进行调查,并将调查结果在下表中:
(二) 教学实施
1 .交流调查情况,并提出问题。
请学生将课前调查的情况进行交流,触发联想,让异分母分数加、减法的教学融人环境教育中。然后老师把某个小组调查好的一份统计表用投影仪显示出来。如下表:
老师:我们知道纸张和废金属是垃圾回收的主要对象,它们在生活垃圾中共占几分之几呢?
请学生列出算式: + =
2 . 探讨" + "的算法。
(1) 尝试计算" + "。
老师巡视,然后将学生中的几种不同算法列举在黑板上。
① + = + = =
② + = + =
③ + = = =
( 2 )集体。
让学生分别对上述三种计算方法进行。达成共识:第一种算法正确,但不简便。将 和 通分时,没有找10 和4 的最小公倍数,而是找它们的公倍数,所以计算时数据较大,结果还要约分。第二种算法既正确又简便,先找10 和4 的最小公倍数,通分后再相加;第三种算法不对,算理错了。两个分数的单位不同,一个是 ,一个是 ,单位不
同的两个分数是不能直接相加的。老师用图加以说明:
( 3 )归纳异分母分数加法的计算方法。
在集体的基础上,老师用课件动态显示 + 的计算的过程,边演示边说明:由于10 和4 的最小公倍数是20 ,所以把圆平均分成20 份,这样 变成 , 变成 ,所以 + = + 。
老师:通过计算 + ,谁来说一说分母不同的两个分数怎样相加?
在学生归纳的基础上,老师请学生打开教材第110 页,让学生将自己表述的语言和教材上的文字语言进行对照,学会用简明扼要的语言归纳异分母的分数加法的计算方法。
3 .教学教材第111 页例1 的第(2 )题。
( 1 )由验算引人异分母分数减法。
请学生完成教材第112 页"做一做"的第2 题。先做左边的两道小题。
- = ( ) - = ( )
学生利用已有经验验算,方法有两种:一种重算法(将原式再算一遍);一种逆算法,逆算关系有两种,学生多数会用此法验算。
① 利用关系式"减数+差=被减数"。
因为 + = = ,所以原式计算正确。
因为 + = ≠ ,所以原式计算错误。
② 利用关系式"被减数一差=减数"。
因为 - = - = ,所以原式计算正确;
因为 - = - (结果为负数),所以原式计算错误。
学生完成后,集体讲评。利用实物投影将上述两种不同的验算方法展示出来,然后请学生表达计算的过程。当学生说到利用关系式"被减数一差=减数"进行验算时,着重让他们说一说 - (先通分,将 化成 )。
在学生说算法的基础上,老师引导归纳:异分母分数相减,也是先通分再相减。
( 2 )归纳异分母分数加、减法的计算方法。
再让学生完成教材第112 页"做一做"的第2 题中右边两道小题。
老师:"你会验算右边两道小题吗?请试一试。"学生独立完成。老师巡视指导。请两名学生上台板演验算过程。集体反馈时,先请板演的学生说一说,用什么方法验算,然后请用"和一个加数"的'方法进行验算的同学说一说,如何计算是 - 和 - 。引导学生把异分母分数加法的计算方法迁移到减法中去。
老师:通过计算 + 、 - 等算式,你能归纳出异分母分数加、减法的计算方法吗?让学生自己归纳,然后在全班交流,最后老师。异分母分数加、减法的计算方法是:先通分,然后按同分母分数加、减法的计算方法进行计算。
( 3 )说明分数加、减法的验算方法。
老师指着学生验算的4 道题目,提问:分数加、减法的验算方法主要有哪些?它与整数加、减法的验算方法相同吗?
4 .完成教材第111 页例1 的第(2 )题。
学生独立完成,请学生板演,集体订正书写过程。
5 .完成教材第112 页"做一做"的第1 题。
学生独立完成,注意每道题中两个分母的特征,是特殊关系的直接找出最小公倍数。
6 .完成教材第112页练习二十二的第1 一4 题。
独立完成,集体交流、订正。
四)思维训练
1 .先计算下面各题,然后找出规律。
+ + = + + + = + + + + =
应用上面的规律,直接写出下面式题的得数。
+ + + + + + =
2 .想一想,哪两个异分母分数相加的和是 ?
+ =
(五)课堂
本节课我们研究了异分母分数加、减法的计算方法。一般情况下,计算异分母分数的加、减法时,先通分,转化成同分母分数的加、减法,然后按同分母分数加、减法的计算方法进行计算。注意在通分时,为了计算简便,应选择分母的最小公倍数作公分母。
五年级上册数学教案6
教材说明
综合应用“量一量找规律”是在完成了第四单元“简易方程”的教学之后安排的,旨在让学生综合运用所学的测量、统计和方程等方面的知识,通过动手操作揭示事物之间的内在规律,激发学生学习数学的兴趣,在培养学生实践能力的同时培养学生归纳推理的思维能力。
“量一量找规律”活动由以下四部分组成。
1.自制实验工具。
学生在充分理解方程意义的基础上,利用皮筋、木棒、盘子和细绳等材料小组合作制作一个简易秤。具体的做法是用细绳将盘子拴住做成一个托盘,然后用皮筋分别将托盘和木棒拴住。
2.收集实验数据。
学生利用自制的简易秤,依次称量1本、2本、3本等不同数量的课本,在统计表中记录称量的课本数和相应的皮筋总长度,并计算出每增加一本书皮筋伸长的长度。
3.分析数据。
引导学生观察统计表中的信息,并根据表中的数据绘制折线统计图,启发学生讨论从统计图表中能够获得哪些信息。
4.根据统计结果归纳推理。
根据统计图表的结果小组合作探究皮筋长度和课本数二者之间存在的规律及此规律适用的范围。
整个活动不仅使学生经历从收集实验数据、数据、制成统计图表到根据统计结果推理事物之间内在本质关系的全过程,而且促使学生进一步体验运用所学知识探究未知事物的乐趣。
教学建议
1. 这部分内容可用1课时进行教学。
2. 这个活动是一个操作性很强的活动,教学时可采用小组合作的形式放手让学生尝试,充分调动学生自主探索的积极性,教师只在关键处予以一定的引导和点拨。
3.在制作实验工具部分,教师可提前布置学生准备制作材料,并引导学生思考:对制作简易秤使用的橡皮筋和木棒有什么具体要求,启发学生选择弹性较好的橡皮筋,至少在称量6本数学书时不会超出弹性限度或发生永久变形;选择的木棒要尽量做到长度适中、粗细均匀,在称量时不会弯曲、变形。此外,拴盘子时要注意拴的角度和拴绳的长度,使托盘在称量时保持水平、稳定。当然,教师也可根据情况灵活安排,如可用弹簧来代替橡皮筋,在制作时用铁钩等代替木棒达到称量的目的。
4.在收集实验数据部分,教师可在实验之前要求学生先明确书本第77页中统计表中要求采集的信息,并引导学生讨论测量过程中应该注意的事项。例如,要明确测量的.起点和终点;测量皮筋长度时要等橡皮筋和秤盘均处于稳定状态时再测;称量时要设法使木棒保持水平……这样得到的数据误差较小。具体实验的实施可采取小组分工合作的形式。
5.在分析数据部分,教师根据统计表绘制出折线统计图,引导学生仔细观察统计图表,想一想统计图表呈现的特点,并讨论它们传达出的信息。然后,对应统计图表,请小组同学互相说一说:“如果要称量7本书,皮筋会伸长多少?8本呢?10本呢?”
6.在根据统计结果归纳推理部分,老师引导学生思考皮筋长度和课本数二者之间存在的规律,向学生初步渗透函数的。如果有的小组实验数据与理论上y=a+bx(a代表皮筋原长,b代表每增加一本书皮筋伸张的长度)的关系存在一定误差,老师可引导学生分析原因,也可向学生客观说明。
7.在学生出二者之间存在的规律后,老师还可进一步启发学生思考“如果要称量的课本越来越多的话,皮筋会发生什么变化”,帮助学生理解上述二者的关系均是建立在皮筋的弹性限度之内的,反之,二者的关系不存在。
五年级上册数学教案7
教学内容:
课本第21页。
教学目标:
1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积
2、能运用所学知识解决生活中组合图形的实际问题。
3、自主探索,合作交流。培养学生认真思考,团结协作的能力。
4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
教学重点:
探索并掌握组合图形的面积计算方法。
教学难点:
理解并掌握组合图形的组合及分解方法。
教学准备:
课件
教学过程:
一、创设情境,激趣导入。
1、同学们,我们已经学习了哪些多平面图形?
导学要点:
请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。
2、感知:组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。
板书:组合图形的面积
二、小组合作探究
1、出示前置性作业小组交流
复习
(1)说说你学过哪些平面图形?
(2)说说这些图形的面积计算公式?
2、自学21页的例10
(1)导学单
1)小组合作将组合图形分成我们学习过的图形。说说你的分法,你是怎样想的'?
2)尝试计算每个图形的面积。
3)思考:组合图形的面积是怎样计算出来的?
导学要点:
(1)分割法:将整体分成几个基本图形,求出它们的面积和。
(2)添补法:用一个大图形减去一个小图形求出组合图形的面积。
师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。
(2)小组交流
1)从例题中我们可以看出,同一个组合图形,我们可以运用怎样的方法来解决?
2)由于方法不同,我们计算组合图形的方法有什么不同?
3)求组合图形面积时关键是做什么?
导学要点:
(1)要根据原来图形的特点进行思考。
(2)要便于利用已知条件计算简单图形的面积。
(3)可以用不同的方法进行割补。
(3)全班交流
1)学生举例并解答(前置作业我的例子)
2)结合学生自己举的例子解答讲解。
三、应用新知,解决问题
1、课本第21页练一练
(1)生独立计算。
(2)生展示思路。
点拨:
计算组合图形的面积的基本策略:把原来的图形先分割成几个基本图形,再求这几个基本图形的面积只和;或者先把原来的图形拼补一个基本图形,再求相关基本图形面积之差。
2、课本第23页练习四第1题前两题。
点拨:
(1)引导说说第一个图形梯形的上下底和高各是多少?是怎样看出来的?
(2)引导说说第二个图形三角形的底是多少厘米?是怎样看出来的?
3、课本第23页练习四第二题
点拨:
引导说说组合图形面积的计算方法。
四、课堂总结
通过这节课的学习,你学到了什么知识呢?
教学反思:
五年级上册数学教案8
教学内容:
第10页例6及后做一做、练习二1—3题。
教学目标
1.知识与技能:掌握用“四舍五入法”取积的近似数。
2.过程与方法:让学生应用迁移的方法来求积的近似数。
3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。
教学重点
学生能用“四舍五入法”取积的近似数。
教学难点
学生能根据实际需要正确求积的近似数。
教学过程:
一、复习.
1、口算:0.8×40.32×40.8×12.57.8×0.01
3.2×0.20.08×0.089.3×0.014.8-0.48
2、把下面各数精确到百分位。
0.256≈ 12.889≈ 40.00001≈
二、新授
1.教学教材第10页例题6.
(1)出示例题6:
(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?
(3)生尝试练习。
(4)抽生板演:0.049×45≈2.2(亿个)
0.049
× 45
245
196
2.205
(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)
①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)
②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)
(6)小结:当我们求出的.积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。
三、练习
1、完成第10页“做一做”。
生完成在练习本上,抽生板演,并说出四舍五入的方法。
2、课堂作业:第13页练习二1、2、3题。
五年级上册数学教案9
教学目标:
知识技能目标: 知道字母能表示什么,能用字母表示出简单问题中的数量关系,通过生活实例,使学生初步感受到用字母表示数的作用和优点,数学教案-用字母表示数。
过程与方法目标:体会字母表示数的意义,形成初步的符号感;
情感与态度目标:在激发学生求知欲和好奇心、感受数学符号的简洁美的同时,体会到合作与成功的快乐,由此激发其更加积极主动的学习精神和探索勇气。
本课重点:用字母表示数和简单的数量关系。
本节课的关键是让学生理解用含有字母的式子表示数量的意义,从中体会它的优越性,但由于学生是第一次接触没有具体数字的数量,因此把文字语言转化为符号语言是本节课的`难点。
教学过程:
一、
师:同学们,我们来轻松一下好吗?(课件反复播放ABC英文歌曲。学生跟着唱)
师:刚才的唱的内容是什么?(英文字母歌)
师:谁能来说说我们生活中还有哪些地方用到字母? (生答)
师:是呀,字母在我们生活中有许多广泛的应用,刚才所说,在音乐简谱中它表示音高,在车牌号上可以表示一个地区……同样,在数学学习中也常常用字母来表示数量,这节课我们就来研究怎样用字母和含有字母的式子表示数量。(板书课题:用字母表示数)
二、
1、师:瞧大屏幕,老师给大家带来了两个盒子,一个装着乒乓球,另一个装着羽毛球。又知道“羽毛球比乒乓球多3个”,问:你来猜猜看,盒子里的羽毛球和乒乓球各有几个?
(课件出示两个分别写着“羽毛球”和“乒乓球”的盒子再出示“已知羽毛球比乒乓球多3个”这个条件。)
(根据学生的回答在黑板上填表)
乒乓球个数
羽毛球个数
师:我们已经猜出了5种可能性,还有其他可能吗?(有)那我们用省略号来表示剩下的可能性,好吗?
师:如果我们刚才继续猜下去,这两种球的个数能猜得完吗?那可怎么办?谁能够想出一个简单的法子来表示呢?
生汇报,师板书。如:乒乓球:a 羽毛球:a+3
还可以怎样表示? 羽毛球:a 乒乓球: a-3
师:请同学们思考:a+3中,a 表示什么?a+3 表示哪一个量?
a-3 中,a 表示什么?a-3 表示哪一个量?
当a=3、8……时,羽毛球分别是几个?
师结合板书,小结:看来,除了用一个字母表示数量外,我们还可以
用什么方法来表示数量 (含有字母的式子)
2、 那咱们试试看,
一箱苹果重10千克,吃了a千克,现在还有多少千克?
一只足球35元,买x 只,应付多少元?
商店运到g台彩电,总价7200元,每台彩电多少元?
周二温度由26C下降tC后是几摄氏度?
3、用含有字母的式子表示数量关系
师:一个字母只能表示数量,而含有字母的式子不但能表示出数量,而且能表示出数量关系。
独立思考:如果我们用A表示乒乓球的个数,用下面的式子分别表示排球、足球、篮球的个数,你能看得出乒乓球个数与这几种球的个数之间有什么关系吗?
课件出示:A-5 6A A÷2
师小结:看来,含有字母的式子既可以表示数量,也可以表示出数量关系,的确作用很大。
三、尝试解题,自主归纳
1、师:我们就用刚刚学的本领,到超市里去逛逛吧!(课件出示超市情景,镜头特写一些物品的单价)
师:每位同学先一样自己最喜欢的食品。
(师下发购物单、生自主进行)
购物单
名 称
单 价
数 量
总 价(列式计算)
2、交流:
师:(可以投影一些同学的购物单)你买了什么?还有谁也买了()?看这些买()的情况,这些量中,什么变?什么没有变?你能买()的总价用一个式子来表示吗?
师:可以用你喜欢的来表示,小学数学教案《数学教案-用字母表示数》。(……)
师:那么,买()的购物单我们也用不着一张张地看了,谁能用一个算式反咱们全班买()的总价表示出来?表示什么意思?
(生可能会讲同一个字母)
师作补充:一般来讲,在同一个问题里,不同的量要用不同的字母来表示。
这些字母可以是哪些数呢?
一般情况下,我们可以用a、b、c、d……任何一个字母来表示数,但是在一些特殊情况下,某些特定的量常常用特定的字母来表示,如v用来表示速度,t表示时间,s表示路程,而在求面积时,s又用来表示面积。
四、 激发情感,升华新知
1、学到这里,你有什么收获?
2、大家的收获真不小!但如果能很快地解决下面的几个问题的话,陈老师相信大家一定会收获更大!
课件出示练习题:
(一)口答:(1)一辆公共汽车上有46名乘客,在西门站下去A名,
又上来B名,这时,汽车上有( )名乘客。
(2)A的5倍减去4.8的差表示为( )
(3)张师傅每天做A个零件,李师傅每天比张师傅多做8个,
李师傅5天共做()个零件。
(二)师:上星期,我们齐贤镇举行了小学生田径运动会,镇校五年级6个班
组成一支代表队,取得了优异的成绩。这支代表队参加比赛的人数是这样的:(出示课件)
师:从屏幕上你了解到了什么信息?想想看还能用含有字母的式子表示出其他相关的信息吗?可以小组合作完成,看哪组写得快,写得多。
(三)玩一个数青蛙的游戏,好吗?
(课件播放)1只蛤蟆1张嘴,2只眼睛4条腿,1声扑通跳下水;
2只蛤蟆2张嘴,4只眼睛8条腿,2声扑通跳下水;
3只蛤蟆3张嘴,6只眼睛12条腿,3声扑通跳下水;
……
师:你还能继续往下唱吗?能用咱们今天的知识解决它吗?
(n 只青蛙n张嘴,2n只眼睛4n条腿,n声扑通跳下水。
(四)挑战性问题。
师:最后,我们再看一个非常有趣的问题。这个问题,同学们课后解决。
在某地,人们发现蟋蟀叫的次数与温度有如下的近似关系:用蟋蟀1分钟收的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)。
(1)用字母表示该地当时的温度;
(2)当蟋蟀1分钟叫的次数分别是84、105和140时,该地当时的温度约是多少?
五年级上册数学教案10
教材说明
密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。
整个实践活动分为两个层次:
1.通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。
由于学生已经了解了密铺概念,教材不再给出密铺的概念及图案,而是直接呈现了学生熟悉的6种平面图形(即圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形),并提出问题哪些图形可以密铺。接着,让学生利用附页中的图形,通过小组合作的形式,任选一种图形拼一拼、铺一铺,探索并找出可以密铺、不能密铺(圆形、正五边形)的平面图形,进一步理解密铺的特点。找出可以密铺的平面图形后,再让学生实际铺一铺,在操作的过程中感受密铺,并感受这些图形的特点。
需要指出的是,这里每次密铺的基础图形都是大小和形状相同的同一种平面图形,两种或两种以上平面图形拼接在一起,也能进行密铺,但教材并不做要求。
2.综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。
这部分内容包括三部分:
(1)从实际出发引出问题,让学生从两组瓷砖中任选一组在方格纸上设计密铺图案,体验用数学的乐趣。这里的两组瓷砖,一组由两个形状和大小相同、颜色不同的等腰直角三角形组成,另一组由一个平行四边形和一个直角三角形(一条直角边的长度等于平行四边形长边所在的高)组成,前一组密铺可以是用同一种基础图形将平面密铺,后一组密铺则是用两种基础图形密铺平面。
完成设计的方式,可以由学生在方格纸上画出,也可以由教师准备好相应的图形卡片,让学生拼出。建议学生在画或拼摆密铺图案时,要有序地进行。
(2)综合运用有关密铺、面积等方面的知识,统计自己在方格纸上设计的图案中,每种基础图形一共用了多少块,以及所占的面积,运用所学的知识解决生活中的实际问题,进一步体会数学和现实生活的联系,发展学生解决实际问题的能力。
(3)让学生利用附页中提供的图形,自由地设计密铺图案,这种图案可以由一种或两种基础图形组成(也可以由多种基础图形组成,尊重学生的选择,但不要求),通过学生的.创作及交流,开拓学生的思维,培养学生用几何图形进行美术创作的想像力,让学生体验自己创作的数学美,培养学生学习数学的兴趣及学好数学的信心。
教学建议
(1)这部分内容可以用1课时进行教学。主要是在数学活动中,借助观察、猜测、验证等方式解决问题。
(2)教师可以在课前搜集一些密铺的图案,也可以事先让学生在生活中寻找一些密铺图案,课上展示给大家,以此帮助学生复习已了解的密铺知识,从直观上为学习新内容做好准备。搜集的图案可有多种,如由形状和大小相同的一种基础图形组成的密铺图案,两种或两种以上基础图形组成的密铺图案,不规则图形组成的密铺图案等。呈现图案后,可以引导学生观察,这些密铺图案是由什么基础图形组成的?
(3)教师提出问题如果密铺平面时只用一种图形,比如圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形(同时出示该图形的彩色卡片并贴在黑板上),请你们猜猜看,哪种图形能用来密铺?引导学生进行猜测和想像,然后再通过铺一铺等操作活动进行验证并获得结论。或者先让学生想一想他们见过的哪些图形能够用来密铺平面,教师根据学生说出的图形呈现相应的图形卡片,然后围绕学生说出的图形,让学生以小组合作的形式动手拼摆,找出哪些图形可以密铺,哪些图形不可以密铺,验证自己的猜测是否正确。
(4)学生汇报验证的结果,并让学生任选一种可以密铺的图形铺一铺,上台展示并与大家交流拼的过程,加深学生对密铺的理解以及对图形性质的认识。
(5)在学生了解可以密铺的图形后,教师可以直接提出问题,让学生用密铺的知识设计地砖图案;也可以先请学生说一说,生活中哪里用到了密铺。学生可能会有很多答案,大致包括建筑(地砖、篱笆和围墙)、玩具、艺术(图画)等几个方面,让学生体会数学的广泛应用。然后再让学生任选一组瓷砖,在方格纸上设计新颖、美观的密铺图案。教师在巡视的过程中,让先设计完的学生数一数自己设计的图案中,不同的基础图形分别用了多少块,所占面积是多少。
(6)展示作品过程中,引导学生比一比,看看谁的设计更美观、更有新意,激发学生之间互评作品,在交流中理解并接纳别人较好的方法。
(7)汇报交流之后,让学生进行更开放的设计活动,在活动中充分感受数学知识与艺术的密切联系,经历创造数学美的过程。
(8)要注意,后面的教材中会继续安排有关密铺的内容,例如较复杂些的密铺、密铺的方法等等,因此在这里注意不要拔高要求,如图形能够密铺的条件(同一顶点的各个拼接图形角的和为360)会在中学的教材中介绍,这里就不需要让学生研究。
参考资料:
密铺的历史背景
1619年数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。
1891年苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。
1924年数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。
最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
五年级上册数学教案11
第七单元整数四则混合运算
第2课时整数四则混合运算(不含括号的三步计算)
教学内容:
教材第70—72页
教学目标:
1、学生联系现实问题中的数量关系,理解和掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
2、学生在按顺序进行计算和运用学过的计算解决实际问题的过程中,进一步增强策略意识,感受数学的应用价值,提高解决实际问题的能力。
教学重难点:
掌握不含括号的三步混合运算的运算顺序,并能正确地进行计算。
教学过程:
一、谈话引入
1、谈话:同学们喜欢下棋吗?为了丰富同学们的课余生活,李老师正在体育用品商店为同学们购买中国象棋和围棋呢!我们一起去看看吧!
出示情境图,提问:从图中你知道了什么?这道题要求的问题是什么?
再问:想一想,要求李老师一共要付多少元,要先算什么?请按自己的想法列式解答,并与同学交流。
指名板演,并组织讲评。
提问:如果列综合算式解答这道题,可以怎么列?
根据学生回答板书:12×3+15×4。
2、揭示课题,并板书课题。
二、展开教学
1、教学例1。
启发:你会算这样的三步混合运算式题吗?请同学们先根据例题中的填空想一想,这道算式可以按怎样的顺序计算?再试着算一算。学生尝试计算,教师巡视,并指名板演。
追问:你觉得按这样的顺序计算正确吗?能联系实际问题中的数量关系来说说为什么可以这样算吗?
比较分别计算出两个积与同时算出两个积的两种情况。提问:谁的计算过程更简略一些?
2、教学“试一试”。
(1)出示“试一试”。
谈话:这里还有一道三步混合运算的算式,你能试一试吗?先算出结果,再和同桌说说,你是按怎样的顺序计算的。
学生尝试计算,教师巡视,指名板演。
(2)反馈,说说这道题的运算顺序。
3、引导归纳。
谈话:今天我们学习的三步混合运算,都是不含括号的算式。请同学们想一想,在没有括号的算式里,如果既有乘、除法,又有加、减法,要按怎样的顺序计算?先在小组里互相说一说。
学生交流。
三、练习
1、完成“练一练”。
2、做练习十一第2题。
(1)出示左边一组题,比较一下,它们有什么相同和不同的地方?
(2)学生练习后,试着解释两道题得数相等的道理。
(3)出示右边一组题,让学生先按顺序计算,再和小组里的同学说说这两道题的相同点和不同点。
组织交流。
3、做练习十一第4题。
出示题目,提问:题目的已知条件有哪些,要求的问题是什么?要求合唱组有多少人,要先求什么?要求书法组和美术组一共有多少人,要先算出哪个组的人数?
学生列综合算式解答,并组织反馈。
四、课堂总结
通过这节课的学习,你有什么收获呢?
教学反思:
整数四则混合运算(包括附录部分)
第七单元整数四则混合运算(包括附录部分)
1、不含括号的混合运算(乘法和加、减法的混合运算)
教学目标:
⒈让学生初步理解综合算式的含义,掌握含有乘法和加、减法混合运算的顺序。
⒉通过适当的练习,使学生及时巩固新学的运算顺序,并让学生列综合算式解决一些简单的实际问题,以进一步理解相应的运算顺序。
3。提高学生的计算能力、应用数学知识解决问题的能力。教学重点、难点:
掌握含有乘法和加、减法混合运算的顺序,并进行正确的计算。通过技能的生成解决实际问题。教学准备:例题插图教学过程:一、复习⒈口答列式:
⑴28与32的和是多少?⑵60减去17的差是多少?⑶16乘5的积是多少?
⑷6和8相乘得多少?
⒉列式解答:
出示:每本笔记本5元,买3本这样的笔记本要多少钱?学生在本子上列式。集体订下,说一说这题要求什么?需要知道什么?
二、教学新课⒈教学例题1。
⑴出示例题图:提问:这家文具店出售哪些商品?每件商品的单价分别是多少?
⑵出示问题:小明买了3本笔记本和1个书包,一共用去了多少钱?请同学们试着自己解答。
⑶分析:
提问:你们是怎样解答的?先算什么?再算什么的?提问:15+20中的15表示什么?是怎样得出来的?20呢?提问:要求“一共用去多少钱”,必须要知道什么?
⑷请同学们试着将两道算式合在一起,列出一道综合算式。
⒉教学例2。
⑴出示问题:小红买2盒水彩笔,付了50元,应找回多少元?
⑵请同学们列出综合算式,并想一想综合算式应按怎样的运算顺序计算。
集体订正。提问:算式中50、18、2分别表示什么意思?这个算式应先算什么?为什么?
⒊总结运算顺序。
⑴比较算式。提问:这两道算式有什么相同的地方?解答时,这两道算式有什么相同的地方?
⑵提问:如果题目中同时出现了乘法和加、减法,你应先算什么?
⑶揭示课题:这节课我们通过解决问题,发现了一个什么规律?
三、组织练习⒈完成练一练108页,想想做做
四、全课小结
通过这节课的学习,你知道了什么?五、布置作业
2、不含括号的混合运算(除法和加、减法的混合运算)
教学目标:
1、引导学生自主探索并理解含有除法和加、减法的混合运算顺序。
2、通过对比、估计等针对性练习,帮助学生掌握有关混合运算的顺序。
3、通过合作和交流培养学生解决问题多样性的技能,提高解决实际学问题的能力。教学重点、难点:
理解含有除法和加、减法的混合运算顺序,并能正确进行计算。
通过合作和交流培养学生解决问题多样性的技能,提高解决实际学问题的能力教学准备:课件教学过程:
一、直接引入
师:同学们,昨天我们学习了含有乘法和加、减法的混合运算,今天我们将学习含有除法和加、减法的混合运算。【板书课题】
二、自主探索,寻求解决问题的多样化
1、出示109页习题插图和问题,明题意尝试列出算式
(1)先让学生说说场景中有哪些商品,哪些商品的标价是知道的,图中营业员所说的话是什么意思,从这句话中我们能知道什么?
(2)根据大家对题意的.理解,那么要求一支钢笔和一个订书机总共多少元该我们可以怎样运算?你有几种方法进行运算?
【让学生自己先在本子上列出算式不计算结果,然后和同桌讨论有什么不同的方法,最后交流总结方法,并板书出各种方法。】
2、交流探究结果,并让学生明白每一种算式的数量关系是什么,说说自己列式时的想法。
3、自己列出的算式进行计算,最后交流计算结果。
重点引导学生交流:两步混合运算算式在计算时要先算什么?根据数量关系为什么要先算?【通过该教学点让学生理解相应的运算顺序】
4、教学“试一试”可以让学生独立完成。
(1)学生列式计算;
(2)组织交流,在交流中明确运算的顺序。
5、总结运算顺序:算式中有除法和加、减法,应先算除法。
(1)让学生先用自己的方式进行表达;
(2)加以归纳形成清晰的认识。
三、巩固提高1、完成书本练一练
让学生明确题意然后指导学生根据解决问题的需要灵活地选择信息,然后引导学生提出一个两步计算的问题,集体交流。
四、适当总结,完成作业“想想做做”第2题剩余习题和第6题(自己提出的问题也要完成)
3、含有小括号的混合运算
教学目标:
1。利用学生日常生活经验和对问题中数量关系的把握,引导学生自己列算式解决实际问题。2。在学生产生疑问时使学生体会小括号有改变原来运算顺序的作用,理解含有小括号的混合运算的运算顺序。
3。通过计算过程的教学提高学生解决问题的能力。教学重点、难点:
体会小括号有改变原来运算顺序的作用,理解含有小括号的混合运算的运算顺序。理解用小括号的必要性和作用教学准备:课件教学过程:
一、课前交流,引入课题
同学们,昨天我到百润发大卖场买了一件80元的T恤,我一共带了100元,你们帮老师算算剩下的钱我还可以买5元一双的袜子几双?学生计算,然后交流自己计算的方法。
根据学生可能列出的算式进行灵活的引入,并板书课题。
例:【如果学生情况全部是:100-80=20(元)20÷5=4(双)分步骤做那么可以这样引入:同学们都是用分步骤的方法进行计算的,那么我们能否用一个算式来解决这个问题呢?今天我们将学习新的知识—『课题』】
二、探究新知,明确算法
1、确定计算方法可能一:在学生自己探索引入题的时候,除了分步做外,可能还有“100-80÷5”这样的算式,这时要组织学生充分感受。
组织学生讨论:解决例题中问应该先算什么?列成这样的综合算式对不对?那么我们有什么办法才能解决哪一步必须先算的问题?
学生自学课本第34页。
可能二:在学生自己探索引入题的时候,也有可能有“(100-80)÷5”这样的算式,这时要让学生说明他的想法,一定要说明为什么要在“100-80”加一组括号,用意是什么?学生说明后,立即表扬这样的学生,并让学生开始自学课本第34页。
2、让学生充分感受需要改变这个综合算式的运算顺序,组织讨论:在自学过程中你明白了什么?你学到了什么?
3、组织学生感知明确有小括号的混合运算的运算顺序。知道先算什么后算什么,并让学生完成“试一试”,可以指名2位学生板演,其余学生完成在书上,最后校对结果并再一次明确运算顺序。
三、巩固提高,解决实际问题
1、完成“想想做做”第1题;
(1)、先让学生说说每题应该先算什么?
(2)、任意选择2题完成在自己的本子上,然后集体校对;
2、完成“想想做做”第2题
(1)、让学生分组完成每组算式,并让3位学生到黑板上完成3组题;
(2)引导学生观察每组题,说说运算顺序的不同,并校对结果;
3、完成“想想做做”第4题
(1)让学生读题,尝试自己列综合算式进行解答,指名2位学生进行计算【可以选择性地选择学生板演,一差一优有利于发现问题】;
(2)就板演结果进行校对结果,口头统计学生错误情况,并指出错误同学的错误,明确为什么要用小括号的理由;
四、简单总结,完成作业P35“想想做做”第3题和第5题
4、含有小括号的三步混合运算
教学目标:
1、通过练习,使学生进一步掌握三步混合运算(包括含有小括号的)运算顺序,提高计算的正确率。
2、进一步提高分析解决实际问题的能力,能根据一些常见的基本数量关系式进行分析、列式。
教学过程:
一、混合运算的运算顺序复习:
1、学生练习:(841-41)÷25×4讲评学生容易有的错误:=800÷100=8强调混合运算的三个等级:(1)小括号;(2)乘或除;(3)加或减。
指出:这题含有小括号,那第一步就应该算小括号里的;其他的步骤还轮不到算,只能把它们移下来。第二步算式中有除有乘,它们之间的关系是平级的,应该按顺序来计算。
2、添上括号,使下面的等式成立:
240÷40+20×2=52240÷40+20×2=890-30÷3×5=400
90-30÷3×5=100建议学生:(1)按现在的运算顺序算一算结果;(2)自己尝试添加括号;(3)交流。在交流的时候要引导学生有一定的推理过程,最好不是盲目地试。
小结:混合运算一定要先观察算式的特点,考虑它的运算顺序,然后再开始计算。
二、解决实际问题:
1、编题组练习:
(1)周六的数学兴趣小组男生有25人,女生有15人,可以提一个什么问题?(一共有多少人?)指出:这是我们一年级学习的解决实际问题,它只要一步就能解决。在解决这个问题的时候你想到了哪个基本的数量关系式?板书:男生+女生=总人数
(2)现在我们要改遍这题,“周六的数学兴趣小组男生有25人,一共有多少人?”
这两句不变,把“女生有15人”这句信息不直接告诉,可以怎么说?(比如:女生比男生少10人)这样题目就变成了两步计算的问题了。
比较两题:什么没变?(基本的数量关系式没变)在列式的时候还是要“对号入座”:男生“25”,女生“25-10”,加起来的的时候,可以把表示女生人数的“25-10”加个小括号,这样看上去就更清楚了。
(3)现在继续改编,要把这题改成三步计算的问题,信息“男生有25人”可以怎么改?(比如:男生的人数比女生的2倍少5人)
这句信息是变了,基本的数量关系变了吗?要求学生“对号入座”列式:男生“15×2-5”,女生“15”,再把两部分合起来。
比较小结:解决实际问题从一步发展到三步,其实很多题的基本的数量关系式是不变的,我们在解决问题的时候首先要想清楚这题的基本数量关系式,再做到“对号入座”。
2、书上的第8题,学生读题,说说这题所涉及的数量关系式:边长×边长=面积小面积×块数=大面积
介绍:铺砖时,这间房子的面积是不变的,大家可以想象一下,当铺的方砖面积比较小的时候,需要的块数就会比较多;反之,方砖的面积比较大,需要的块数就比较少。“小面积×块数=大面积”,这里的小面积指的是方砖的面积,大面积指的是房间的面积。这个关系式还可以反过来说“大面积÷小面积=块数”、“大面积÷块数=小面积”。学生列式解答该题。
3、书上第9题,学生读题,说说该题的基本数量关系式:工作效率×工作时间=工作总量
学生列综合算式解决书上的两个问题。
交流:你还能提出什么问题?(老师要注意学生提的问题是否都合适。
练习十一
第一课时
教学目标:
1、通过计算和比较,使学生进一步理解和掌握混合运算的运算顺序,逐步形成计算技能;
2、让学生在解决实际问题的过程中,积累解决问题的经验,发展解决问题的策略。
教学过程:
检查口算本练习情况、布置今天的口算作业。
一、完成书上的练习:
1、第1题:(1)学生看题后,把每个算式的第一步先划线,再交流。(注意第1小题可以同时先算乘法和除法。)
(2)把这四题做在作业本上。
(3)补充75×12、280÷35的简便算法:75×12=(25×4)×(3×3)=100×9=900280÷35=280÷7÷5=40÷5=8做完后交流混合运算的运算顺序:(1)没有括号的,先乘除后加减;(2)有小括号的,先算小括号里面的;(3)有中括号的,先算小括号里的再算中括号里的。
2、第2题:你能直接在每组得数大的算式后面画“√”吗?审题:要“直接”比,不是在计算之后。
先请同桌互相说一说,再指名交流判断的依据。
3、第3题:下面各题,怎样算简便就怎样算。
让学生先自己观察各算式的特点(如左边两题是连加,右边的是连乘),可以如何简便?各是运用了学过的哪些运算规律?
指出:不能随意改变运算顺序,而是要依据一定的运算规律。交流后,把这4题写在作业本上。注意小括号的运用。
4、第4题:学生看懂题意,先说说这题要用的基本关系式是:单价×数量=总价
再读第一个问题,说说在估算的时候是怎么想的?(把单价看成某个接近的整百数)说说最后估计的结果是多少?
算一算:学生在本子上完成这题的计算。
比一比:把估算的结果和列式算得的结果比较,说说估算和笔算价值分别在哪里。
二、布置回家思考p。42的思考题要求用脱式计算在自己的本子上。(能做几题算几题)
二课时
教学过程:
一、讲评昨天的回家作业(p。42的思考题,要求学生填写符号后,用脱式计算):学生作业中出现的错误:1、(3+3)÷(3-3)=6÷0=6指出:除数不能为0,“6÷0”这个算式没有意义;2、(3×3+3)÷3=9+3÷3=12÷3=4
指出:括号里有2步,先算乘,加没算,移的时候要把括号也移下来。3、(3+3)+3÷3=6+3÷3=9÷3=3
指出:看计算的过程,先算加,再算加,最后算除;但开始的算式应先算加,再算除,最后算加。所以还应加上“[]”,变成“[(3+3)+3]÷3”4、[3×3-3]÷3=[9-3]÷3=6÷3=2
指出:在小括号的基础上,才有中括号,不能直接写中括号。5、补充:3+3-3+3=6-6=0或3×3÷3×3=9÷9=1
请学生说说上面两题对吗?正确的结果应该是多少?算式怎么改得数就对了?通过上面的练习,你有什么收获?
二、学生练习:
,请学生做在自己的本子上,再一一交流。提醒:第1题除和乘可以同时算。
三、布置作业:第6、7、8题
其中第7、8题要求学生写出基本的数量关系式。
含有中括号的混合运算
教学目标:
1、让学生联系解决实际问题的过程认识中括号,理解并掌握含有中括号的三步混合运算的顺序,并能正确地进行运算。
2、让学生经历认识和理解混合运算运算顺序的过程,进一步积累学习数学的经验,感受知识之间的联系。
3、培养学生认真、严谨的学习习惯。
教学重点:让学生掌握含有中括号的混合运算的运算顺序。
教学过程:
检查回家做的计算作业。
一、教学例题:
1、出示例题,让学生看图后说说图的意思,老师整理成:合唱组:84人
航模组:男生8人,女生6人美术组:是航模组的2倍
看信息,分别让学生说说“航模组”、“美术组”的人数应怎么列式。板书问题:合唱组的人数是美术组的几倍?问:解决这个问题用到哪个基本关系式?板书:合÷美=几倍
2、“对号入座”,对照关系式分别写上“84”、“(8+6)×2”。问:在它们中间添上“÷”行吗?为什么?(结合黑板上的算式,让学生说说它的运算顺序,发现最后算的算式没有意义,不是我们想要的。)那我们想要的运算顺序是怎么样的呢?要实现这个想法,得请中括号来帮忙。老师添上中括号,说清楚它的写法。指导读:84÷[(8+6)×2]
3、说一说:昨天我们讲到混合运算的三个等级,一是括号、二是乘除、三是加减,今天我们学的算式中含有了中括号,运算顺序又该是怎样的呢?
先指名结合每一步算式的意义说,再指出:同样是括号,先算小括号里的,再算中括号里的,其他不变。4、学生练习,完成书上的例题
二、巩固练习:
1、在自备本上完成:540÷3+6×2,540÷(3+6×2),540÷[(3+6)×2]指名板演,结合讲评发现问题,强调正确的运算顺序。
2、第3题。
看图后,请学生说清楚该题的信息,并说说列式的时候是怎么想的?
三、学生自己阅读,了解“你知道吗?”
四、学生作业:完成p。40剩下的练习。
五年级上册数学教案12
教学目标:
1.掌握小数加减法的计算方法,并能用于解决生活中的一些实际问题。
2.通过自主探究、合作交流,经历探索小数加减法计算方法的全过程,理解算理,体会小数加减法与整数加减法的联系,发展运算、分析、推理能力,积累解决问题的经验。
3.加强数学知识与日常生活的联系,激发学习兴趣,培养与他人合作的意识,逐步养成独立思考、细心计算的良好习惯。
教学重点:
掌握小数加减法的计算方法。
教学难点:
理解相同数位上的数才能直接相加减的算理。
本节课关键性问题:
1、如何引导学生发现只有相同数位上的数才能直接相加的原因。
2、如何引导学生将小数加减法与整数加减法进行联系沟通。
教学准备:
课件、学习单、实物投影
过程设计教学过程:
一.错题引入
师:同学们,知道我们今天学什么?(出示课题)
师:之前我们已经学习了简单的小数加减法,所以昨天我做了一次课前调查,这是同学们列的两道竖式:
师:你认为哪道是对的?
师追问:为什么这个2不与5相加,而要与6相加呢?
设计意图:从学生的'错例引入,激发孩子的求知欲,为自主探究作好铺垫。
二.小组合作,自主探究只有相同数位上的数才能直接相加的原因。
【关键问题1】如何引导学生发现只有相同数位上的数才能直接相加的原因。
出示学习单
小组合作要求:
(1)组长合理分工,在最短时间内让组员将讨论结果内记录在学习单上。
(2)小组汇报时按顺序依次发言。
(3)其他组员可以进行补充和评价。
(预设生):百分位与百分位加,十分位与十分位加,个位与个位加。
(预设生):用计数器来表示算法的。
(预设生):2个一加3个一,6个0.1加2个0.1,5个0.01加0个0.01。
(预设生):用格子图来解释。
师:现在你知道为什么这个2不与这个5相加,而要与6相加了吗?
(预设生):2表示2个0.1,5表示5个0.01.(同时板书)他们的计数单位不同,不能直接相加。
师追问:现在你们知道为什么这个2不与5相加,而要与6相加吗?
小结:是的,只有相同数位的数才能相加,也就是计算小数加法的时候我们要做到相同数位对齐。(板书)
练习:判断一下下面哪道竖式是正确的?
师:你怎么这么快就判断出来啊!
(预设生):看看小数点对齐了没有。
小结:在计算小数加法时要把相同数位对齐只要把小数点对齐就可以了。
师:那么以后再算小数加法时我们要做到什么?
(预设生):计算小数加法时,小数点对齐,相同数位对齐,从低位算起。
设计意图:通过小组合作,生生交流,自主发现相同数位上的数才能直接相加,体验自主探究学习的快乐。
与整数加法进行比较
1.【关键问题2】如何引导学生将小数加减法与整数加减法进行联系沟通。
师:相同数位对齐你有没有觉得很熟悉?在哪里听过。
出示课件
小结:在做整数加减法的时候就是要把相同数位对齐才能相加减。原来小数加减法与整数的计算方法是一样的。
2.回到课前调查引出小数减法
师:看来同学们,小数加法的问题已经解决了,请再来看看课前调查中的那一道算式:
师:现在你知道哪道是正确的吗?为什么?
师:百分位上没有数怎么减?
师:计算小数减法时有什么好窍门?
小结:所以以后在计算小数加减法时相同数位对齐了,就与整数加减法的运算规则是一样的。
设计意图:通过对比整数加法的计算方法,把旧的知识经验迁移到小数加减法上,让学生独立解决小数减法的计算问题。
练习巩固
1.校对时借助课件用计数器演示退位过程。
设计意图:借助开小卡车,调节学习氛围,同时让学生巩固小数点对齐的重要性,通过演示计数器让学生形象地感知退位过程。
2.你觉得生活中有没有用到小数加减的地方?
师:这是小马虎的妈妈去超市购物的清单,可是清单的右下角被油渍弄脏了看不清了,你们能帮忙算一算吗?先估一估大约是几元?
设计意图:通过解决生活中的小数加减法问题,能让学生体会到学习计算的必要性,体会加减计算与生活的密切联系。
3.在方框上填上运算符号,然后添上小数点,使竖式成立。
设计意图:进一步让学生感知小数点对齐的本质就是让相同数位上的数相加减。
三、课堂总结
谈谈你的收获?
五年级上册数学教案13
课型:
新授
教学内容:
教材P7及练习二第3、5、6、7、10题。
教学目标:
知识与技能:
使学生进一步掌握小数乘法的计算法则,并能正确地运用这一知识进行计算。
过程与方法:
理解倍数可以是整数,也可以是小数,学会解答有关倍数是小数的实际问题。
情感、态度与价值观:
养成认真计算与及时检验的学习习惯。
教学重点:
运用小数乘法的计算法则正确计算小数乘法。
教学难点:
正确点出积的小数点;初步理解和掌握:当乘数比1小时,积都比被乘数小;当乘数比1大时,积都比被乘数大。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程:
一、复习准备
1、口算。0.9×6 7×0.08 1.87×O
0.24×2 1.4×0.3 0.12×6 1.6×5 4×0.25 60×0.5
指名学生口算,然后集体订正。
2、思考并回答。(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
3、揭示课题:这节课我们继续学习小数乘法。(板书课题)
二、情景引入
1、教学例5。师:同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的非洲野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
学生观察情境图,提取信息:
所求问题:(鸵鸟的.最高速度是多少千米/小时)
所需条件:(非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍)
思路分析:
(1)引导学生理解小数倍数的含义:谁来说一说“鸵鸟的最高速度是非洲野狗的1.3倍”是什么意思?(鸵鸟的最高速度是非洲野狗的1.3倍,表示鸵鸟的速度除了有一个非洲野狗那么快,还要快。)
(2)追问提高学习新知的兴趣:
①非洲野狗能追上他们吗?(非洲野狗追不上鸵鸟。)
②“鸵鸟的最高速度是多少?”该怎样列式计算呢?(生回答:56×1.3)
③为什么这样列式?(求56的1.3倍是多少,所以用乘法。)
(3)通过学生的回答引导学生小结:倍数关系也可以是比1大的小数。
让学生独立计算出鸵鸟的最高速度,并集体订正。
(4)指导学生用估算进行验算:请同学们看这个算式及结果,你认为对吗?你是怎么验证的?(板书验算,完善课题)
学生可能会有以下几种验算的方法:
①用原式再计算一遍。
②把这个算式的因数交换一下位置,再算一遍。就可知道对与否。
③观察法:观察小数位数或第二个因数比1大还是比1小。
④用计算器进行验算。
师小结:不管用哪一种方法来检验都可以,根据自己的情况,喜欢用那一种就用那一种来验算。
(5)师:请同学们打开书,看一看书上的小朋友算得对吗?为什么?
生:因为两个因数中,56是整数,因数1.3中只有1个小数,所以积中小数点的位置点错了,应该点在2与8之间,即积应为72.8。
师:很好!在计算小数乘法时,每个小朋友都要养成认真做题、仔细检查的好习惯。
师:通过刚才同学们的计算、验算得出鸵鸟的最高速度是72.8千米/小时,比起非洲野狗的速度怎么样?非洲野狗能追上鸵鸟吗?说明刚才我们的想法怎样?(学生小组讨论交流,由代表发言,教师点评。)
2、看乘数,比较积和被乘数的大小。刚才有同学提到56×1.3式子中第二个因数比l大,所以积就比被乘数大,现在我们来研究一下这个问题。
三、巩固练习
1、完成教材第7页“做一做”。先让学生观察两道算式中的因数和积,进行判断,说出理由;再让学生独立计算,并用自己喜欢的验算方法进行验算。最后集体订正。
2、练习二第3题。先让学生独立判断。集体订正时,让学生说明道理,明白每一小题错在什么地方。
四、课堂小结。当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。
作业:5、6、7
课外作业:教材第9页练习二第10题。
板书设计:
求一个数的小数倍数是多少及验算
五年级上册数学教案14
教学目标
知识与技能:
明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
过程与方法:
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
情感态度与价值观:
渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重难点
教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学工具
多媒体设备
教学过程
教学过程设计
1 创设情境,引导探索
师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?
图一
图二
图三
图四
课件逐一出示图一、图二、图三,图四让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?
生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的.图形是组合图形。
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积= 三角形面积+长方形面积-正方形面积
图二:作辅助线使它分成一个大梯形和一个三角形。
方法一:分割法:将整体分成几个基本图形,求出它们的面积和。
是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。
(板书:转化)
大家想想,用辅助线的方法还有不同的作法吗?
方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。
作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形
图三:是由四个三角形组成的。
面积 = 三角形面积+三角形面积+三角形面积+三角形面积
2 新知探究
(一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
( 三角形+正方形 )
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?
( 两个完全一样的梯形)
(二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。
3 巩固提升
(一)这是学校教学楼占地的面积平面图,你能用几种方法求出它的面积?
(二)一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?
(三)下面各个图形可以分成哪些已学过的图形?
(四)学校要油漆60扇教室的门的正面。(单位:米)需要油漆的面积一共是多少?
(五)求下列图形中阴影部分的面积。
(六)求下列图形中阴影部分的面积。
(七)如图,有两个边长是200px的正方形放在桌面上,求被盖住的桌面的面积。
课后小结
(一)学生总结
这节课你学习了什么?有什么收获?还有什么不明白的地方?(小组说--组内总结--组间交流)
(二)教师总结
今天我们认识了组合图形,并能将组合图形分割成已经学习过的图形,计算出它的面积。
板书
组合图形的面积
组合图形是由几个简单的图形组合而成的
五年级上册数学教案15
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
学情分析重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:感受用正数和负数来表示一些相反意义的量
学生认知基础:生活中见到过负数。
时间分配学20讲10练10
教法学法
自主探索法,练习法,讲授法。
教学准备
第一课时
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
学生活动教师助学课后改进
第一课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的'温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
课后反思
得:
首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。
失:
《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。
由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。
【五年级上册数学教案】相关文章:
五年级上册人教版数学教案02-28
五年级上册数学教案01-02
五年级上册小学数学教案12-31
五年级上册数学教案【热门】02-18
【荐】五年级上册数学教案02-18
五年级上册数学教案【精】02-18
【热】五年级上册数学教案02-18
五年级上册数学教案【热】02-27
【精】五年级上册数学教案02-22