高一数学教案

时间:2023-02-27 11:41:12 数学教案 我要投稿

【热门】高一数学教案

  作为一位兢兢业业的人民教师,通常需要准备好一份教案,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?下面是小编收集整理的高一数学教案,欢迎阅读,希望大家能够喜欢。

【热门】高一数学教案

高一数学教案1

  目标:

  1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;

  2.让学生了解函数的零点与方程根的联系 ;

  3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;

  4。培养学生动手操作的.能力 。

  二、教学重点、难点

  重点:零点的概念及存在性的判定;

  难点:零点的确定。

  三、复习引入

  例1:判断方程 x2-x-6=0 解的存在。

  分析:考察函数f(x)= x2-x-6, 其

  图像为抛物线容易看出,f(0)=-60,

  f(4)0,f(-4)0

  由于函数f(x)的图像是连续曲线,因此,

  点B (0,-6)与点C(4,6)之间的那部分曲线

  必然穿过x轴,即在区间(0,4)内至少有点

  X1 使f(X1)=0;同样,在区间(-4,0) 内也至

  少有点X2,使得f( X2)=0,而方程至多有两

  个解,所以在(-4,0),(0,4)内各有一解

  定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点

  抽象概括

  y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。

  若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。

  f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点

  所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点

  注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;

  2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;

  3、我们所研究的大部分函数,其图像都是连续的曲线;

  4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)

  5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。

  四、知识应用

  例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?

  解:f(x)=3x-x2的图像是连续曲线, 因为

  f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,

  所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解

  练习:求函数f(x)=lnx+2x-6 有没有零点?

  例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。

  解:考虑函数f(x)=(x-2)(x-5)-1,有

  f(5)=(5-2)(5-5)-1=-1

  f(2)=(2-2)(2-5)-1=-1

  又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。

  练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。

  五、课后作业

  p133第2,3题

高一数学教案2

  教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。

  组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。

  学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。

  教学目标:

  ㈠知识和技能

  1、了解幂函数的概念,会画幂函数 ,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。

  2、了解几个常见的幂函数的性质。

  ㈡过程与方法

  1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。

  2、使学生进一步体会数形结合的思想。

  ㈢情感、态度与价值观

  1、通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。

  2、利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的单调性与幂指数的关系

  教学过程

  一、创设情景,引入新课

  问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数)

  问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。

  问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。

  问题4:如果正方形场地面积为S,那么正方形的边长xx,这里a是S的函数

  问题5:如果某人xxs内骑车行进了xxkm,那么他骑车的速度,这里v是t的函数。

  以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

  二、新课讲解

  (一)幂函数的概念如果设变量为,函数值为xx,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?xx幂函数的定义:一般地,我们把形如xx的函数称为幂函数(power function),其中xx是自变量,xx是常数。

  【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念)

  结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数

  试一试:判断下列函数那些是幂函数(1)(2)(3)(4)我们已经对幂函数的`概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质)

  (二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数x的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数x的图象吗?

  【探究二】观察函数x的图象,将你发现的结论写在下表内。定义域,值域,奇偶性,单调性,定点,图象范围

  【探究三】根据上表的内容并结合图象,试总结函数:x的共同性质。

  (1)函数x的图象都过点

  (2)函数x在x上单调递增;

  归纳:幂函数x图象的基本特征是,当x是,图象过点x,且在第一象限随x的增大而上升,函数在区间x上是单调增函数。(演示几何画板制作课件:幂函数。asp)

  请同学们模仿我们探究幂函数x图象的基本特征x的情况探讨x时幂函数x图象的基本特征。(利用drawtools软件作图研究)

  归纳:xx时幂函数x图象的基本特征:过点x,且在第一象限随x的增大而下降,函数在区间x上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。

  (三)例题剖析

  【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1) (2) (3)

  分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑?

  方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。

  (1)若函数解析式中含有分母,分母不能为0;

  (2)若函数解析式中含有根号,要注意偶次根号下非负;

  (3)0的0次幂没有意义;

  (4)若函数解析式中含有对数式,要注意对数的真数大于0;求函数的定义域的本质是解不等式或不等式组。

  结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系)

  【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”)

  (1)________

  (2)________

  (3)__________

  (4)____________

  分析:利用考察其相对应的幂函数和指数函数来比较大小

  三、课堂小结

  1、幂函数的概念及其指数函数表达式的区别

  2、常见幂函数的图象和幂函数的性质。

  四、布置作业

  ㈠课本第73页习题2.4

  第1、2、3题

  ㈡思考题:根据下列条件对于幂函数x的有关性质的叙述,分别指出幂函数x的图象具有下列特点之一时的x的值,其中:

  (1)图象过原点,且随x的增大而上升;

  (2)图象不过原点,不与坐标轴相交,且随x的增大而下降;

  (3)图象关于x轴对称,且与坐标轴相交;

  (4)图象关于x轴对称,但不与坐标轴相交;

  (5)图象关于原点对称,且过原点;

  (6)图象关于原点对称,但不过原点;

  检测与反馈

  1、下列函数中,是幂函数的是( )

  A、 B、 C、 D、

  2、下列结论正确的是( )

  A、幂函数的图象一定过原点

  B、当xx时,幂函数x是减函数

  C、当xx时,幂函数x是增函数

  D、函数 既是二次函数,也是幂函数

  3、下列函数中,在 是增函数的是( )

  A、 B、 C、 D、

  4、函数 的图象大致是( )

  5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________

  6、写出下列函数的定义域,并指出它们的单调性:

  同伴评 (优、良、中、须努力)

  自 评 (优、良、中、须努力)

  教师评 (优、良、中、须努力)

高一数学教案3

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的`概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

高一数学教案4

  一、教学目标

  1、知识与技能

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2、过程与方法

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3、情感态度与价值观

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点、难点

  重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪 四、教学思路

  (一)创设情景,揭示课题

  1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

  2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

  (二)、研探新知

  1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

  2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

  3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

  (1)有两个面互相平行;

  (2)其余各面都是平行四边形;

  (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的'表示。

  5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

  请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

  8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

  2、棱柱的何两个平面都可以作为棱柱的底面吗?

  3、课本P8,习题1.1 A组第1题。

  4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  四、巩固深化

  练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理

  由学生整理学习了哪些内容 六、布置作业

  课本P8 练习题1.1 B组第1题

  课外练习 课本P8 习题1.1 B组第2题

高一数学教案5

  知识结构

  重难点分析

  本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

  本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

  教法建议

  1.性质的引入方法很多,以下2种比较常用:

  (1)设计问题引导启发:由设计的问题

  1)、、各等于什么?

  2)、、各等于什么?

  启发、引导学生猜想出

  (2)从算术平方根的意义引入.

  2.性质的巩固有两个方面需要注意:

  (1)注意与性质进行对比,可出几道类型不同的题进行比较;

  (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

  (第1课时)

  一、教学目标

  1.掌握二次根式的性质

  2.能够利用二次根式的性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教B具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学过程

  一、导入新课

  我们知道,式子()表示非负数的算术平方根.

  问:式子的意义是什么?被开方数中的表示的是什么数?

  答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.

  二、新课

  计算下列各题,并回答以下问题:

  (1);(2);(3);

  1.各小题中被开方数的'幂的底数都是什么数?

  2.各小题的结果和相应的被开方数的幂的底数有什么关系?

  3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

高一数学教案6

  教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

  教学目的:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示某些函数的定义域;

  教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

  教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学过程:

  一、引入课题

  1.复习初中所学函数的概念,强调函数的模型化思想;

  2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

  备用实例:

  我国xxxx年4月份非典疫情统计:

  日期222324252627282930

  新增确诊病例数1061058910311312698152101

  3.引导学生应用集合与对应的语言描述各个实例中两个变量间的`依赖关系;

  4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  二、新课教学

  (一)函数的有关概念

  1.函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素:

  定义域、对应关系和值域

  3.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间;

  (2)无穷区间;

  (3)区间的数轴表示.

  4.一次函数、二次函数、反比例函数的定义域和值域讨论

  (由学生完成,师生共同分析讲评)

  (二)典型例题

  1.求函数定义域

  课本P20例1

  解:(略)

  说明:

  ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

  ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

  ○3函数的定义域、值域要写成集合或区间的形式.

  巩固练习:课本P22第1题

  2.判断两个函数是否为同一函数

  课本P21例2

  解:(略)

  说明:

  ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  巩固练习:

  ○1课本P22第2题

  ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

  (1)f(x)=(x-1)0;g(x)=1

  (2)f(x)=x;g(x)=

  (3)f(x)=x2;f(x)=(x+1)2

  (4)f(x)=|x|;g(x)=

  (三)课堂练习

  求下列函数的定义域

  (1)

  (2)

  (3)

  (4)

  (5)

  (6)

  三、归纳小结,强化思想

  从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

  四、作业布置

  课本P28习题1.2(A组)第1—7题(B组)第1题

高一数学教案7

  一、教材

  《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

  二、学情

  学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

  三、教学目标

  (一)知识与技能目标

  能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

  (二)过程与方法目标

  经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

  (三)情感态度价值观目标

  激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的`能力,解题时养成归纳总结的良好习惯。

  四、教学重难点

  (一)重点

  用解析法研究直线与圆的位置关系。

  (二)难点

  体会用解析法解决问题的数学思想。

  五、教学方法

  根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

  六、教学过程

  (一)导入新课

  教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

  教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

  设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

  (二)新课教学——探究新知

  教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

  判断方法:

  (1)定义法:看直线与圆公共点个数

  即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

  (2)比较法:圆心到直线的距离d与圆的半径r做比较,

  (三)合作探究——深化新知

  教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

  已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

  让学生自主探索,讨论交流,并阐述自己的解题思路。

  当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

  (四)归纳总结——巩固新知

  为了将结论由特殊推广到一般引导学生思考:

  可由方程组的解的不同情况来判断:

  当方程组有两组实数解时,直线l与圆C相交;

  当方程组有一组实数解时,直线l与圆C相切;

  当方程组没有实数解时,直线l与圆C相离。

  活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

  (五)小结作业

  在小结环节,我会以口头提问的方式:

  (1)这节课学习的主要内容是什么?

  (2)在数学问题的解决过程中运用了哪些数学思想?

  设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

  作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

  七、板书设计

  我的板书本着简介、直观、清晰的原则,这就是我的板书设计。

高一数学教案8

  学习目标

  1.能根据抛物线的定义建立抛物线的标准方程;

  2.会根据抛物线的标准方程写出其焦点坐标与准线方程;

  3.会求抛物线的标准方程。

  一、预习检查

  1.完成下表:

  标准方程

  图形

  焦点坐标

  准线方程

  开口方向

  2.求抛物线的焦点坐标和准线方程.

  3.求经过点的抛物线的标准方程.

  二、问题探究

  探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?

  探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.

  例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.

  例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.

  例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.

  三、思维训练

  1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.

  2.抛物线的焦点到其准线的距离是.

  3.设为抛物线的焦点,为该抛物线上三点,若,则=.

  4.若抛物线上两点到焦点的距离和为5,则线段的.中点到轴的距离是.

  5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。

  四、课后巩固

  1.抛物线的准线方程是.

  2.抛物线上一点到焦点的距离为,则点到轴的距离为.

  3.已知抛物线,焦点到准线的距离为,则.

  4.经过点的抛物线的标准方程为.

  5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.

  6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.

  7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。

高一数学教案9

  教学目标

  (1)理解交集与并集的概念;

  (2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合;

  (3)能用图示法表示集合之间的关系;

  (4)掌握两个较简单集合的交集、并集的求法;

  (5)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;

  (6)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯.

  教学重点交集和并集的概念

  教学难点交集和并集的概念、符号之间的区别与联系

  教学过程设计

  一、导入新课

  【提问】

  试叙述子集、补集的概念?它们各涉及几个集合?

  补集涉及三个集合,补集是由一个集合及其一个子集而产生的第三个集合.由两个集合产生第三个集合不仅有补集,在实际中还有许多其他情形,我们今天就来学习另外两种.

  回忆.

  倾听.集中注意力.激发求知欲.

  巩固旧知.为导入新课作准备.

  渗透集合运算的意识.

  二、新课

  【引入】我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察).

  【设问】

  1.第一次看到了什么?

  2.第二次看到了什么

  3.第三次又看到了什么?

  4.阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集A 、集B元素有何关系?

  【介绍】这又是一种由两个集合产生第三个集合的情况,在今后学习中会经常出现,为方便起见,称集A与集B的公共部分为集A与集B的交集.

  【设问】请大家从元素与集合的关系试叙述文集的概念.

  【助学】“且”的含义是“同时”,“又”.

  “所有”的含义是A与B的公共元素一个不能少.

  【介绍】集合A与集合B的交集记作.读做“ A交B ”?

  【助学】符号“ ”形如帽子戴在头

  上,产生“交”的感觉,所以开口向下.切记该符号不要与表示子集的符号“ ”、“ ”混淆.

  【设问】集A与集B的交集除上面看到的用图示法表示交集外,还可以用我们学习过的哪种方法表示?如何表示?

  【设问】与A有何关系?如何表示?与B有何关系?如何表示?

  【随练】写出,的交集.

  【设问】大家是如何写出的?

  我们再看下面的图.

  【设问】

  1.第一次看到了什么?

  2.第二次除看到集B和外,还看到了什么集合?

  3.第三次看到了什么?如何用有关集合的符号表示?

  4.第四次看到了什么?这与刚才看到的集合类似,请用有关集合的符号表示.

  5.第五次同学看出上面看到的集A 、集B 、集、集、集,它们都可以用我们已经学习过的集合有关符号来表示.除此之外,大家还可以发现什么集合?

  6.第六次看到了什么?

  7.阴影部分的周界是一条封闭曲线,它的内部(阴影部分)表示一个新的集合,试问它的元素与集A集B的元素有何关系?

  【注】若同学直接观察到,第二、三、四次和第五次部分观察活动可不进行.

  【介绍】这又是由两个集合产生第三个集合的情形,在今后学习中也经常出现,它给我们由集A集B并在一起的感觉,称为集A集B的并.

  【设问】请大家从元素与集合关系仿照交集概念的叙述方法试叙述并集的概念?

  【助学】并集与交集的概念仅一字之差,即将“且”改为“或”.或的含义是集A中的所有元素要取,集B中的所有元素也要取.

  【介绍】集A与集B的并集记作(读作A并B).

  【助学】符号“ ”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“ ”混淆,更不能与“ ”等符号混淆.

  观察.产生兴趣.

  答:图示法表示的集A.

  答:图示法表示集B.集A集B的公共部分?

  答:公共部分出现阴影.

  倾听.观察

  思考.答:该集合中所有元素属于集合A且属于集合B.

  倾听.理解.

  思考.答:由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集.

  倾听.记忆.

  倾听.兴趣记忆.

  思考:“列举法还是描述法?”答:描述法.

  思考.议论.

  口答结合板书.

  想象交集的图示,或回忆交集的概念.

  口答结合板书:是A的子集.A.是

  B的子集.

  口答结合板书.

  口答:从一个集合开始,依次用其每个元素与另一个集合中的元素对照,取出相同的元素组成的集合即为所求.

  答:图示法表示的集A.

  答:集A中子集A交B的补集.

  答:上述区域出现阴影.

  口答结合板书

  答:出现阴影.

  口答结合板书

  认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合.

  答:出现阴影.

  思考:答:该集合中所有元素属于集合A或属于集合B.

  倾听,理解.

  回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集.

  倾听.比较.记忆.

  倾听,记忆.

  倾听.兴趣记忆.比较记忆,.

  直观性原则.多媒体助学.

  用直观、感性的例子为引入交集做铺垫.

  渗透集合运算意识.

  直观的感知交集.

  培养从直观、感性到理性的概括抽象能力.

  解决难点.

  兴趣激励.比较记忆

  培养用描述法表示集合的能力.

  培养想象能力.

  以新代旧.

  突出重点.

  概念迁移为能力.

  进一步培养观察能力.

  培养观察能力

  以新代旧.

  培养整体观察能力.

  培养从直观、感性到理性的概括抽象能力.

  解决难点.比较记忆.

  兴趣激励,辩易混.比较记忆.

  【设问】集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示?

  【设问】与A有何关系?如何表示?与B有何关系?如何表示?

  【随练】写出,的并集.

  【设问】大家是如何写出的?

  【例1 】设,,求(以下例题用投影仪打出,随用随启).

  【助练】本例实为解不等式组,用数轴法找出公共部分,写出即可.

  【例2 】设,

  ,求

  【例3 】设,,求

  【例4 】设,

  ,求

  【助学】数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件).

  【助练】以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4.

  【练习】教材第12页练习1~5.

  【助练】

  1.全集与其某个子集的交集是哪个集合?

  2.全集与其某个子集的并集是哪个集合?

  3.两个无公共元素的集合的交集是什么集合?

  4.两个无公共元素的集合A 、 B,它们的.并集如何表示?

  5.任意集合A与其本身的交集、并集分别是什么集合?如何表示?

  6.任意集A与空集的交集、并集分别是什么集合?如何表示?

  7.与的关系如何表示?与的关系如何表示?

  【例5 】设,,求

  【助思】

  1.集A 、集B各是什么集合?

  2.如何理解

  3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题.

  【例6 】已知A为奇数集,B为偶数集,Z为整数集,求,,,,

  ,

  【助学】

  1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示?

  2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?)

  【例7 】设,,,求,,,.

  思考:“列举法还是描述法?”

  答:描述法.

  思考.议论.

  口答结合板书.

  或

  想象并集的图示,或回忆并集的概念.

  口答结合板书:A和B都是的子集.,

  口答结合板书:

  口答:综合考虑两个集合,从最小数开始,哪个集合的元素都取,一个不能丢,相同元素由集合中元素的互异性只取一次.

  审清题意.笔练结合板书.

  解:

  倾听.理解.

  审清题意.口答结合板书.

  解:

  是直角三角形,且是直角三角形是等腰三角形.

  审清题意.口答结合板书.

  解:是锐角三角形是钝角三角形是锐角三角形,或是钝角三角形是斜三角形.

  审清题意.

  画数轴.画出不等式区域.倾听.解:

  倾听.理解.

  口答结合笔练和板演.

  思考.答:子集.

  思考.答:全集.

  思考.答:空集

  思考.议论.答:,或

  思考.答:A.,

  思考.答:分别是空集和A.

  ,

  思考.答:

  审清题意.

  思考.议论.答:分别是直线或直线上的点集.或者分别是二元一次方程和二元一次方程的解集.

  思考:答:求这两条直线的交点,或求这两个二元一次方程的公共解,即求由这两个二元一次方程组成的二元一次方程组的解.

  倾听.理解.掌握.

  解:

  审题中发现未见过的集合.

  思索.

  答:0,,等.()

  或{偶数}

  答:,等.()

  或(奇数)

  解:{奇数} {偶数}

  {奇数} Z={奇数}=A.

  {偶数} Z={偶数}=B.

  {奇数} {偶数}=Z.

  {奇数}

  {偶数}

  审清题意.口答结合板书.

  解:

  培养用描述法表示集合的能力.

  以新代旧.

  培养想象能力.

  以新代旧.

  突出重点.

  概念迁移为能力.

  突出重点.培养能力.

  落实教学目标

  突出重点.培养能力.

  三、课堂练习

  教材第13页练习1 、 2 、 3 、 4.

  【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:

  凡有阴影部分即为所求.

  【讲解】看图,所得结果实际上还可以看作全集U中子集的补集则有第13页练习4(2)仿上,如图,凡有双向阴影部分即为所求.

  【讲解】看图,所得结果实际上还可以看作全集U中子集的补集.则有:以上两个等式称反演律.简记为“先补后并等于先交后补”和“先补后交等于先并后补”.反演律在今后类似问题中给我们带来方便,因为它将三步工作简化为两步工作.

  四、小结

  提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.

  五、作业

  习题1至8.

  笔练结合板书.

  倾听.修改练习.掌握方法.

  观察.思考.倾听.理解.记忆.

  倾听.理解.记忆.

  回忆、再现学习内容.

  落实教学目标

  介绍解题技能技巧.

  学习内容条理化.

  课堂教学设计说明

  1.本教学设计方案除继续遵循“集合”方案中的“主体教学思想”外,着力研究直观性原则在教学中的应用及多媒体(投影仪)的助学作用.

  2.反演律可根据学生实际酌情使用.

高一数学教案10

  第一节 集合的含义与表示

  学时:1学时

  [学习引导]

  一、自主学习

  1.阅读课本 .

  2.回答问题:

  ⑴本节内容有哪些概念和知识点?

  ⑵尝试说出相关概念的含义?

  3完成 练习

  4小结

  二、方法指导

  1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

  2、理解集合元素的'特性,并会判断元素与集合的关系

  3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

  4、在学习中要特别注意理解空集的意义和记法

  [思考引导]

  一、提问题

  1.集合中的元素有什么特点?

  2、集合的常用表示法有哪些?

  3、集合如何分类?

  4.元素与集合具有什么关系?如何用数学语言表述?

  5集合 和 是否相同?

  二、变题目

  1.下列各组对象不能构成集合的是( )

  A.北京大学2008级新生

  B.26个英文字母

  C.著名的艺术家

  D.2008年北京奥运会中所设定的比赛项目

  2.下列语句:①0与 表示同一个集合;

  ②由1,2,3组成的集合可表示为 或 ;

  ③方程 的解集可表示为 ;

  ④集合 可以用列举法表示。

  其中正确的是( )

  A.①和④ B.②和③

  C.② D.以上语句都不对

  [总结引导]

  1.集合中元素的三特性:

  2.集合、元素、及其相互关系的数学符号语言的表示和理解:

  3.空集的含义:

  [拓展引导]

  1.课外作业: 习题11第 题;

  2.若集合 ,求实数 的值;

  3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 .

  撰稿:程晓杰 审稿:宋庆

高一数学教案11

  教学目标

  会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

  重 点

  函数单调性的证明及判断。

  难 点

  函数单调性证明及其应用。

  一、复习引入

  1、函数的定义域、值域、图象、表示方法

  2、函数单调性

  (1)单调增函数

  (2)单调减函数

  (3)单调区间

  二、例题分析

  例1、画出下列函数图象,并写出单调区间:

  (1) (2) (2)

  例2、求证:函数 在区间 上是单调增函数。

  例3、讨论函数 的单调性,并证明你的结论。

  变(1)讨论函数 的单调性,并证明你的结论

  变(2)讨论函数 的单调性,并证明你的结论。

  例4、试判断函数 在 上的单调性。

  三、随堂练习

  1、判断下列说法正确的是 。

  (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数;

  (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数;

  (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数;

  (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。

  2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的`( )

  A.上半平面 B.下半平面 C.左半平面 D.右半平面

  3、函数 在 上是___ ___;函数 在 上是__ _____。

  3.下图分别为函数 和 的图象,求函数 和 的单调增区间。

  4、求证:函数 是定义域上的单调减函数。

  四、回顾小结

  1、函数单调性的判断及证明。

  课后作业

  一、基础题

  1、求下列函数的单调区间

  (1) (2)

  2、画函数 的图象,并写出单调区间。

  二、提高题

  3、求证:函数 在 上是单调增函数。

  4、若函数 ,求函数 的单调区间。

  5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。

  三、能力题

  6、已知函数 ,试讨论函数f(x)在区间 上的单调性。

  变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。

高一数学教案12

  1.1 集合含义及其表示

  教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。

  教学过程:

  一、阅读下列语句:

  1) 全体自然数0,1,2,3,4,5,

  2) 代数式 .

  3) 抛物线 上所有的点

  4) 今年本校高一(1)(或(2))班的全体学生

  5) 本校实验室的所有天平

  6) 本班级全体高个子同学

  7) 著名的科学家

  上述每组语句所描述的对象是否是确定的?

  二、1)集合:

  2)集合的元素:

  3)集合按元素的个数分,可分为1)__________2)_________

  三、集合中元素的三个性质:

  1)___________2)___________3)_____________

  四、元素与集合的关系:1)____________2)____________

  五、特殊数集专用记号:

  1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______

  4)有理数集______5)实数集_____ 6)空集____

  六、集合的表示方法:

  1)

  2)

  3)

  七、例题讲解:

  例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( )

  A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形

  例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集?

  1)地球上的四大洋构成的集合;

  2)函数 的全体 值的集合;

  3)函数 的全体自变量 的集合;

  4)方程组 解的集合;

  5)方程 解的集合;

  6)不等式 的解的集合;

  7)所有大于0且小于10的奇数组成的集合;

  8)所有正偶数组成的集合;

  例3、用符号 或 填空:

  1) ______Q ,0_____N, _____Z,0_____

  2) ______ , _____

  3)3_____ ,

  4)设 , , 则

  例4、用列举法表示下列集合;

  1.

  2.

  3.

  4.

  例5、用描述法表示下列集合

  1.所有被3整除的数

  2.图中阴影部分点(含边界)的坐标的集合

  课堂练习:

  例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的.值等于___________

  例7、已知: ,若 中元素至多只有一个,求 的取值范围。

  思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。

  小结:

  作业 班级 姓名 学号

  1. 下列集合中,表示同一个集合的是 ( )

  A . M= ,N= B. M= ,N=

  C. M= ,N= D. M= ,N=

  2. M= ,X= ,Y= , , .则 ( )

  A . B. C. D.

  3. 方程组 的解集是____________________.

  4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________.

  5. 设集合 A= , B= ,

  C= , D= ,E= 。

  其中有限集的个数是____________.

  6. 设 ,则集合 中所有元素的和为

  7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为

  8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,

  若A= ,试用列举法表示集合B=

  9. 把下列集合用另一种方法表示出来:

  (1) (2)

  (3) (4)

  10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。

  11. 已知集合A=

  (1) 若A中只有一个元素,求a的值,并求出这个元素;

  (2) 若A中至多只有一个元素,求a的取值集合。

  12.若-3 ,求实数a的值。

  【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助!

高一数学教案13

  一、教材分析

  1、 教材的地位和作用:

  函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

  2、 教学目标及确立的依据:

  教学目标:

  (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

  (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

  (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

  教学目标确立的依据:

  函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

  3、教学重点难点及确立的依据:

  教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

  教学难点:映射的概念,函数近代概念,及函数符号的理解。

  重点难点确立的依据:

  映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

  二、教材的处理:

  将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

  三、教学方法和学法

  教学方法:讲授为主,自主预习为辅。

  依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

  学法:四、教学程序

  一、课程导入

  通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

  例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

  二. 新课讲授:

  (1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

  (2)巩固练习课本52页第八题。

  此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

  例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的`集合{ f(x):x∈a}叫做函数的值域。

  并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

  再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

  3. f表示对应关系,在不同的函数中f的具体含义不一样。

  4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

  5. 集合a中的数的任意性,集合b中数的唯一性。

  66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

  三.讲解例题

  例1.问y=1(x∈a)是不是函数?

  解:y=1可以化为y=0*x+1

  画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

  [注]:引导从集合,映射的观点认识函数的定义。

  四.课时小结:

  1. 映射的定义。

  2. 函数的近代定义。

  3. 函数的三要素及符号的正确理解和应用。

  4. 函数近代定义的五大注意点。

  五.课后作业及板书设计

  书本p51 习题2.1的1、2写在书上3、4、5上交。

  预习函数三要素的定义域,并能求简单函数的定义域。

  函数(一)

  一、映射:

  2.函数近代定义: 例题练习

  二、函数的定义 [注]1—5

  1.函数传统定义

  三、作业:

高一数学教案14

  数学课堂教学

  三维目标的具体内容和层次划分

  请阐述数学课堂教学三维目标的具体内容和层次划分

  知识与技能掌握应用,既是课堂教学的出发点,又是课堂教学的归宿。教与学,都要通过知识与技能来体现的。那么,什么是三维目标内容呢?

  所谓三维目标是是指:“知识与技能”,“过程和方法”、“情感、态度、价值观”。

  知识与技能:既是课堂教学的出发点,又是课堂教学的归宿。我们在教学过程中,需要学生掌握什么,哪些些问题需要重点掌握,哪些只需简单理解;技能是会与不会的问题。属显性范畴,具有可测性,大都采用定量分析与评价、知识与技能是传统教学合理的内核,是我国传统教育教学的优势,应该从传统教学中继承与发扬。新课改不是不要双基,而是不要过度的强调双基,而舍弃弱化其它有价值的东西,导致非全面、不和蔼的.发展。

  过程与方法:既是课堂教学的目标之一,又是课堂教学的操作系统。“过程和方法”维度的目标立足于让学生会学,新课程倡导对学与教的过程的体验、方法的选择,是在知识与能力目标基础上对教学目标的进一步开发。过程与方法是一个体验的过程、发现的过程,不但可以让学生体验到科学发展的过程,我们更多地要让学生掌握过程,不一定要统一的结果。

  情感、态度与价值观:既是课堂教学的目标之一,又是课堂教学的动力系统。“情感、态度和价值观”,目标立足于让学生乐学,新课程倡导对学与教的情感体验、态度形成、价值观的体现,是在知识与能力、过程与方法目标基础上对教学目标深层次的开拓,只有学生充分的认识到他们肩负的责任,就能够激发起他们的学习热情,他们才会有浓厚的学习兴趣,才能学有所成,将来回报社会。

  三维目标不是三个目标,也不是三种目标,是一个问题的三个方面。三维目标是三位一体不可分割的,他们是相辅相成的,相互促进的。

高一数学教案15

  教学目标

  1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

  (2)能从数和形两个角度认识单调性和奇偶性.

  (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

  2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

  3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

  教学建议

  一、知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

  二、重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的'代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

  三、教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

  (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

  函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

【高一数学教案】相关文章:

高一数学教案01-17

高一数学教案【精】02-04

高一数学教案【热门】01-24

高一数学教案【荐】01-24

高一数学教案【推荐】01-24

【荐】高一数学教案01-31

高一数学教案【热】02-01

【推荐】高一数学教案02-25

高一数学教案精选15篇01-19