数学六年级下册教案
作为一位兢兢业业的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的数学六年级下册教案,希望能够帮助到大家。
数学六年级下册教案1
【教学目标】
1.知识与技能:
(1)让学生参与系统、全面整理知识的过程,梳理本单元的所学知识,引导学生沟通知识间的联系,构建知识网络。
(2)通过本单元知识的复习,比较熟练掌握比例知识,并能解决一些实际问题。
2.过程与方法:通过回忆、讨论和交流,结合练习,加深对所学知识的理解,提高掌握水平。
3. 情感态度与价值观:在解决问题的过程中进一步体会比例知识与现实生活的密切联系。
【教学重点】
整理本单元知识,沟通知识间的联系。
【教学难点】
能灵活运用正、反比例的意义,解决实际问题。
【教学准备】
回家先整理本单元知识,作好交流的准备。
【教学过程】
一、谈话引入,揭示课题
教师:我们已学完了本单元知识,今天来进行“整理与复习”。
板书课题:整理与复习
二、梳理单元知识,形成知识网络
1.方法回顾
(1)以前我们是怎样整理单元知识的?
(2)你们昨天回家是这样整理的吗?
(3)四人小组进行交流。
2.学生汇报交流
(1)抽2位汇报整理结果。
(2)根据学生的整理,大家提出建议并进行修改。
(3)展示教师整理的结果,说出整理思路(展示)。
比例比例意义、基本性质、解比例
正比例意义[X=(一定)]
应用
反比例意义[X=(一定)]
应用
3.教师小结整理知识的情况
三、复习本单元知识
1.完成练习十四第1题
这两面国旗的长和宽的比,是否可以组成比例?
如果可以组成比例,把组成的比例写出来,并指出这个比例的内项和外项(生齐练)。
教师:通过前面两个题的复习,你能说说什么叫做比?什么叫做比例?比和比例有什么区别?
在这里使学生明白比表示两个数,有两项;比例表示两个比相等,有四项。
(2)完成练习十四第3题。
教师:什么叫做解比例?
学生在练习本上练习,指名板演,学生练习后讲评。
2.正、反比例关系的判断
(1)判断下面各题中两种量是否成比例。如果成比例,成什么比例?
①正方形的边长与周长。
②行驶一段路程,车轮的直径与车轮转过的'转数。
③=5X,和X。
④X=24,和X。
(2)说出下列各组中的三种量在什么条件下能组成什么比例关系。
①速度,时间,路程。
②汽车每次运货吨数,运货的次数和运货的总吨数。
③三角形的底、高和面积。
(3)说一说什么叫正比例关系?什么叫反比例关系?它们之间有什么联系和区别?
梳理判断两种量是否成正(反)比例的思考步骤。
①先找出两种相关联的量和一个定量。
②根据两种相关联的量之间的数量关系,列出关系。
③根据正、反比例的意义,判断比例关系。
(4)用比例知识解决下面的问题(练习十四第6题)。
①学校举行方阵团体操表演,排成5列需要90人,排成24列,需要多少人?
②学校举行方阵团体操表演,如果每列16人,要排27列,如果每列18人,要排多少列?
教师:说一说,用比例知识解答应用题的关键是什么?解题的步骤有哪些?注意什么问题?
1.设所求问题为X。
2.判断题中的两个相关联的量是否成比例关系及成什么比例关系。
3.列出比例式。
4.解比例,验算,写答语。
教师:用比例知识解答应用题的关键是正确判断题中两种相关联的量成什么比例关系,所以解题时要认真审题,做出正确判断。
四、拓展应用练习
(1)指导学生完成练习十四第9题。
学生独立完成,教师巡视,集体评议。
教师:航程和相对应的飞行时间的比值表示什么?成什么比例?为什么?
教师:用图像把它们的变化规律表示出来。
教师:观察图像有什么特点?
使学生认识到:图像是一条直线。从这个图像可以直观看到航程和相对应的飞行时间的变化情况,航程增加,所需飞行时间也随着增加,航程减少,所需飞行时间也随着减少。
教师:观察图像,估计飞行20xx千米需要多少时间?
教师:根据图像估一下,7时大约飞行多少千米?
学生回答,教师可以通过小黑板同步显示。
五、教学小结
今天我们一起进行了正、反比例这一单元的整理与复习,你有什么收获?还有哪些不明白的?
六、作业布置
完成练习十四第2、4、7、8、10、11题
数学六年级下册教案2
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了用方向和距离描述、画出相关物体位置和描述简单的行走路线方法。实际测量是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
实际测量的主要内容包括:用工具测量两点间的距离,步测和目测。
在用工具测量两点间的距离的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;步测和目测的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握用工具测量两点间的距离、步测和目测的方法。
教学难点:
掌握用工具测量两点间的距离、步测和目测的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的.方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
数学六年级下册教案3
一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:推导圆柱的体积计算公式。
五、教法要素:
1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:
(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?
(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个
部分?
(3)怎样计算圆柱的体积?
六、教学过程:
(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?
2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?
切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?
(二)探究与解决。
探究:圆柱的体积
1、 提出问题,启发思考:如何计算圆柱的体积?
2、 类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方
体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、 转化物体,分析推理:
怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。)现在利用这个圆柱模型小组合作把它转化为我们学过的立体图形。学生在小组合作后汇报交流。
4、全班交流,公式归纳:
交流时,要学生说明拼成的长方体与原来的圆柱有什么关系?圆柱的底面积和拼成的长方体的底面积有什么关系?拼成的长方体的高和圆柱的高有什么关系?引导学生推导出圆柱的体积计算方法。圆柱的体积=底面积×高。(在这一过程中,使学生认识到:把圆柱平均分成若干份切开,可以拼成近似的'长方体,这样“化曲为直”,圆柱的体积就转化为长方体的体积,分的份数越多,拼起来就越接近长方体,渗透“极限”思想。)教师板书计算公式,并用字母表示。
回想一下,刚才我们是怎样推导出圆柱的体积计算公式的?
5、举一反三,应用规律:
(1)你能用这个公式解决实际问题吗?20页做一做,学生独立完成,全班订正。
如果我们只知道圆柱的半径和高,你能不能求出圆柱的体积?引导学生推导出V=∏r2h
(2)教学例6
学生审题之后,引导学生思考:解决这个问题就是要计算什么?然后指出求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样,再让学生独立解决。反馈时,要引导学生交流自己的解题步骤,着重说明杯子内部的底面积没有直接给出,因此先要求底面积,再求杯子的容积。
(三)训练与强化。
1、基本练习。
练习三第1题,学生独立完成,这两个都可以直接用V=sh来计算。全班订正,注意培养学生良好的计算习惯。
2、变式练习。
第2题,这题中给的条件不同,不管是知道半径还是直径,我们都要先求出底面积,再求体积。学生独立完成,在交流时,注意计算方法的指导。
第3题。求装多少水,实际是求这个水桶的容积。学生独立完成,全班交流。水是液体,单位应用毫升或升。
3、综合练习。
第5题。这题中知道了圆柱的体积和底面积求高,引导学生推出h=V÷s,如果有困难,也可列方程解答。学生独立完成,有困难的小组交流。
4、提高性练习。22页第10题,学生先小组讨论,再全班交流。
(四)总结与提高。
这节课我们是怎样推导出圆柱体积的计算方法的?圆柱和长方体、正方体在形体上有什么相同的地方?像这样上下两个底面一样,粗细不变的立体图形叫做直柱体,直柱体的体积都可以用底面积×高计算。出示几个直柱体(例:三棱柱、钢管等),让学生计算出他们的体积。
数学六年级下册教案4
【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。
【教学目标】
1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。
2、能按一定的比,将一些简单图形进行放大或缩小。
【教学重点】图形的放大与缩小。
【教学难点】按一定的'比把图形放大或缩小。
【教学准备】多媒体
【自学内容】见预习作业
【教学预设】
一、自学反馈
1、什么叫做比例尺?
一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2、怎样求比例尺?
求图上距离和实际距离的最简整数比。
3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?
(1)学生尝试独立求比例尺。
(2)汇报交流
50c:40=50c:4000c=1:80
(3)你是怎么想的?
二、关键点拨
1、求比例尺。
(1)怎样求一幅图的比例尺?
先写出图上距离与实际距离的比,再化成最简整数比。
(2)比例尺有什么特点?
比例尺是前项或后项为1的比。
(3)比例尺可以怎样表示?
数值比例尺和线段比例尺。(1:500000)或(线段比例尺)
2、求实际距离。
(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?
(2)学生尝试独立列比例解答。
(3)汇报交流
解:设这两地之间的实际距离大约是x厘米。
=
=5000000
5000000c=50
(4)你觉得在求实际距离时要注意什么问题?
实际距离一般用千米做单位。
3、求图上距离
(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?
(2)学生尝试画操场的平面图。
(3)汇报交流
你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】
三、巩固练习
1、课本第53页练习八第1题求比例尺。
2、课本第52页做一做第1题。
3、课本第52页做一做第2题。
四、分享收获 畅谈感想
这节课,你有什么收获?听课随想
数学六年级下册教案5
教学内容:教材55页的例2和练一练,练习十二的第3--5题。
教学目标:使学生经历探究根据给出的方向和距离在平面上画出相关物体的位置的方法,并能根据给出的方向和距离在平面图上准确画出相关物体的位置。
重点难点:帮助学生进一步理解和掌握用方向和距离在平面图上表示物体位置的方法。
教学准备:教学光盘
教学过程:
一、复习
1、出示以灯塔为中心的平面图。
(1)以灯塔为中心,灯塔的上、下、左、右分别表示什么方向?
相机指出:东——E 西——W 南——S 北——N
(2)在图上指出北偏东、北偏西、南偏东、南偏西的方向。
2、如果知道灯塔北偏东40°方向20千米处是清凉岛,你能在图上表示出清凉岛的吗?这节课我们就研究根据给出的方向和距离在平面图上准确画出相关物体的位置的方法。
二、展开
1、明确清凉岛的位置。
(1)题目中告诉我们清凉岛在哪里?
(2)你能在图上指一指清凉岛的大致位置吗?
自己在图上指出来,并和同学交流一下。
2、探究操作。
(1)怎么在图上画出清凉岛的位置呢?
在小组中讨论后全班交流。
使学生认识到要先画出表示方向的射线,再确定灯塔到清凉岛的图上距离。
(2)怎么画出北偏东40°的射线?
各自用量角器在图上画一画,边画边思考:应该怎么摆放量角器,怎么看量角器上的度数?
指名上黑板画,注意引导学生正确摆放量角器。
让学生说说画表示方向的射线时要注意什么?
(3)怎么确定灯塔到清凉岛的距离?
图中告诉我们这幅图的比例尺是多少?表示什么意思?
清凉岛在北偏东40°方向20千米处,图中清凉岛的位置在灯塔处沿北偏东40°方向的射线几厘米的地方?怎么想?
各自计算后指名汇报:20÷5=4(厘米)
追问:为什么用20÷5就是图上距离了?
引导学生在图上标出清凉岛的`位置,并与同学交流。
3、试一试
(1)出示题目要求:在灯塔南偏西30°方向15千米处是红枫岛,你能在图中表示出它们的位置吗?
(2)各自独立完成。
(3)组织全班交流,重点交流画南偏西30°方向的射线的方法和所确定的位置。
三、练习
1、讨论“练一练”
(1)看图说一说:图上熊猫馆在猴山的什么方向,距离是猴山多少米?孔雀园呢?
自己先算一算实际距离,然后与同座位的同学说一说。
汇报交流:熊猫馆在猴山的什么方向?距离猴山多少米?怎么算出来的?连起来怎么说?
孔雀园呢?
引导学生说出:熊猫馆在猴山北偏西60°方向120米处。孔雀园在猴山南偏东35°方向90米处。
(2)蛇馆在猴山南偏西45°方向150米处。怎么在图上表示出它的位置。
各自在图上画出表示南偏西45°方向的射线,再算出图上距离,最后标出蛇馆的位置。
练习后交流思考的方法和具体的画法。
2、讨论练习十二第3题。
(1)出示题目,理解题目所包含的信息。
(2)飞机A在机场的什么位置?
(3)飞机B、C、D、E分别在机场的什么位置?你能在途中表示出这四架飞机的位置吗?
各自在图上表示出来,然后汇报交流。
四、课堂作业:练习十二第4题和第5题以及补充习题相关练习。
数学六年级下册教案6
课前准备
教师准备 PPT课件
教学过程
⊙谈话导入
同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。
⊙实践与操作
1.明确提出活动要求。
“有趣的平衡”活动由三部分组成。
(1)制作实验用具。
(2)探索规律,体验“杠杆原理”。
(3)应用规律,体会反比例关系。
2.小组合作,自主活动。(教师巡视,适当点拨)
3.展示制作实验用具情况。
4.汇报探索到的规律。
观察实验二、实验三的操作过程,你有什么发现?
预设
生1:如果左右两个塑料袋放入同样多的'棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。
生2:若满足“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,则竹竿一定平衡。
生3:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。
生4:在“左边所放棋子数×左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。
5.活动小结。
“左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。
⊙典型例题解析
你能利用杠杆原理算出左边物体的质量吗?
分析 根据杠杆原理“左边物体的质量×左边物体与支点的距离=右边物体的质量×右边物体与支点的距离”进行解答。
解答 500×5÷2=1250(g)
⊙探究活动
1.课件出示探究内容。
星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?
2.小组讨论、分析、解答。
3.交流、汇报。
(答案不唯一)
⊙全课总结
通过本节课的学习,你有什么收获?
⊙布置作业
找一找生活中还有哪些地方应用了杠杆原理。
板书设计
有趣的平衡
有趣的平衡:左边所放棋子数×左边的刻度数=右边所放棋子数×右边的刻度数。
数学六年级下册教案7
复习内容:
人教版九年义务教育六年制小学数学第12册<<代数初步知识。>>的整理和复习。
复习目的:
1。通过系统的整理,帮助学生形成代数初步知识结构,提高学生对代数初步知识的掌握水平。
2。使学生加深理解用字母表示数的意义和作用,以及方程、方程的解、解方程的意义;使学生熟练掌握简易方程的解法。
3。使学生感受数学与实际生活的联系,让学生运用知识解决实际问题,从而培养学生的创新精神和实践能力。
4.进一步教会学生抓住联系整理知识的方法和针对重难点进行复习的方法,提高学生的学习能力。
复习重点:
代数初步知识的整理和复习。
教学过程:
一、谈话引入
1、师生谈话。
师:(对一个学生)你今年多大了?你们知道老师比他大多少岁吗?你们能用一个式字表示出老师比他大的岁数?
生:x表示老师的岁数,(x—12)就表示出老师比他大的岁数。
2。揭示课题。
师:像这样,用字母表示数的方法实际上是一种重要的代数方法。这节课,老师就和大家一块儿来整理复习代数初步知识。
二、整理知识
1。回忆整理。
提问:请同学们回想一下,在小学阶段我们学习过哪些代数初步知识?请大家打开课本98页边看边回忆。
教师根据学生的回忆在屏幕上逐一出示知识点:用字母表示数、数量关系、运算定律、计算公式、简易方程、方程、方程的解、解方程、比和比例。
师:这些都是过去学过的代数初步知识,它们之间有联系吗?要看出它们之间的联系,就需要对这些知识进行整理。下面,请同学们小组合作,根据这些知识要点和知识间的`联系进行整理,并记录出整理的结果。我们来比一比,看哪个小组将知识间的联系整理得简洁、清晰,又有特色!学生分组整理,教师巡视指导。
2.汇报交流。
各小组选一名代表展示、交流整理的结果和过程。结合交流过程,师生共同评价各组的整理情况。
3.归纳概括。
提问:请大家比较一下刚才这些方案,你更喜欢哪一种?
小结:其实这些方案都很出色,虽然形式不同,但它们都是根据什么来进行整理的?它们都抓住了整理的关键,也就是根据知识要点和知识间的联系进行整理。这是一种很好的整理方法,咱们还可以用这种方法去整理其它知识。
师:刚才大家都把代数初步知识分成了哪三个部分?(板书:用字母表示数、简易方程、)这节课,我们着重复习"用字母表示数"和"简易方程"。
三、复习提高
1、复习用字母表示数。
师:"用字母表示数"包括哪些?(板书:数量关系、定律、公式)
用字母表示数量关系、定律和公式,同学们有疑问吗?用字母表示数要注意些什么呢?我们一块儿来复习。
课件出示题目:用含有字母的式子表示下面的数量关系,想一想:书写含有字母的式子应该注意什么?
(1)学校去年植树a棵,今年植树的棵数比去年的2倍还多6棵,今年植树()棵。
(2)同学们做操排成a行,每行a人,一共有()人。
(3)一本书有120页,小丹每天看x页,看了y天,还剩()页。
(4)一种足球每个原价a元,打折后现价b元,原来买100个足球的钱,现在可以买()个。
学生独立完成,集体订正答案。
提问:谁能总结一下,书写含有字母的式子应该注意什么?
小结:通过刚才的复习咱们知道,象这样,用含有字母的式子可以简明的表达出数量之间的关系。
2.复习简易方程。
师:简易方程包括哪些内容?(板书:方程、方程的解、解方程)
在你们的记忆中,什么是方程?方程的解和解方程有什么区别?请同桌的同学互相说一说。
师:下面我们就用这些概念来解决几个问题。
课件出示题目:
①判断下面各式是不是方程?
②x+42=78÷3()2x-16()5x-2x=150()x<0。1()
学生用手势判断。提问:为什么第2和第4个式子不是方程?
②解下面的方程。想一想:解方程的依据是什么?解方程时要注意什么?
x+42=78÷35x-2x=150
展示学生的解答过程。
提问:解方程的依据是什么?解方程时要注意什么?
师:可见咱们解方程时不仅要考虑每步的依据,而且要注意书写格式,养成检验的好习惯。
小结:刚才我们复习"用字母表示数"和"简易方程"是针对这两部分的重点和难点进行的,这是一种重要的复习方法,我们还可以用这种方法去复习其它知识。
四、应用创新
课件出示题目:
一位朋友从济南乘火车到美丽的城市青岛,准备在那儿停留5天,最后乘火车按原路返回济南。请同学们用含有字母的式子表示出这位朋友青岛一行的全部开支。
板书:每天用餐a元,住宿b元。
在解决这个问题中应引导思考:哪些开支是固定不变的?哪些开支是可变的?请同学们根据自己的生活经验设计一下,这位朋友这次出差带多少钱比较合适。请同学们分小组讨论,看哪组设计得最合理。(根据学生回答教师板书不同的设计。)
提问:同学们设计出了这么多种方案,你们认为哪种设计最合适呢?
小结:通过这个问题可以看出,用字母表示一些不确定的量,能够帮助我们很好的解决一些实际问题。
五、全课小结
师:这节课,我们对代数初步知识进行了整理和复习,你最大的收获是什么,谁能谈一谈学习的体会?
数学六年级下册教案8
一、方向与位置
2.学生自主完成第(2)题,然后重点交流不同的方法。
师:同学们根据平面图上的比例尺和角度能够准确描述出物体的位置。如果给出比例尺和现实生活中的实际距离和角度,你能画出平面图吗?现在,请同学们看试一试的题和图,谁来说一说线段比例尺表示什么?
师:看一看书上的'第4个问题,再观察一下我们画出的平面图,你认为用文字描述旗杆、大门、图书馆、水房的位置和用平面图表示,哪种方式更好,为什么?
课题:用数对确定位置
教学内容:冀教版《数学》六年级下册第5、6页。
6.师生共同总结关于数对的知识。
四、尝试练习
1.提出“试一试”的问题。先让学生说一说数对表示的含义,再说一说方格图中纵向、横向数字表示的含义。
2.学生尝试完成确定各点的位置。
五、课堂练习
1.先让学生观察图,了解座位是怎样摆放的,再找出该坐哪个座位。最后,说一说他的座位可以用哪个数对表示。
2.用数对表示位置的变式练习。先指导学生理解题意再由学生独立完成。
六、知识拓展
介绍地球仪上数对的应用。激发学生课后收集资料的兴趣。。
让学生介绍自己在教室里的具体位置,唤起学生已有的知识和经验,调动学生参与的兴趣。
数学六年级下册教案9
教学目标
1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。
2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点和难点
1.正确理解倒数的意义及互为的含义。
2.正确地求出一个数的倒数。
教学过程设计
(一)激发兴趣,引出概念
1.投影。哪个同学和老师比赛?谁说得快?
师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)
2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。
板书:乘积是1 两个数
3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?
生:两个数分子、分母颠倒位置就可以了。
师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)
4.举例说明,什么叫互为倒数?
师:3是倒数这句话对吗?为什么?
你们说得对,谁能说出几组倒数?
同桌互相说,每人说两组。(指名说)
问:怎样判断他们说得是否正确?
生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。
5.思考:1的倒数是几?为什么?0有倒数吗?为什么?
板书:1的倒数是1。0没有倒数。
(二)求一个数的倒数
同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?
1.出示前面的投影,找特点。
观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。
问:谁来说说你发现了什么?
生:互为倒数的两个数,是分子、分母交换了位置。
师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。
学生说老师板书:
3.同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。
谁来给同学们汇报一下?(2~3名)
板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。
问:老师为什么要空出一些地方?
生:0除外。
问:为什么要加上0除外?(板书:0除外。)
问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。
4.课堂练习。
写出下面各数的倒数:
35的倒数是怎么想的?
问:2的倒数是几? 10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?
5.写出1.5的倒数,怎样做?
(三)课堂总结
我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?
下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。
(四)巩固练习
1.投影。
问:怎么填得这么快,你是根据什么填的?
问:①谁能回答?
②你根据什么填的?
③为什么根据倒数的意义填?
看下一组题:
问:怎么填?根据什么?与(2)有什么不同?
师:所以做题时要认真审题,看清符号,千万不能出审题错误。
2.下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)
3.判断下面各题。对的举,错的举,并说明理由。
投影出示:
(1)乘积是1的两个数互为倒数。 ()
(2)2.5和0.4互为倒数。 ()
师:你们是怎么想的?
生:2.5和0.4乘积是1,所以是对的。
(3)因为1的倒数是1,所以0的倒数是0。 ()
问:错在哪里?
问:错在何处?
问:这道题错在哪了?
生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。
4.游戏。
每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。
评比表扬优胜,找出谁给前面的同学改了错。
(五)作业
课本24页第3,5,6题。
课堂教学设计说明
1.这节课的`设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。
2.这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。
数学六年级下册教案10
教学内容:正比例的意义。
教学目的:使学生理解正比例的意义,会正确判断成正比例的量,培养学生的判断能力。
教学重点:正比例的意义。
教学难点:正比例的判断。
教具准备:小黑板、投景影片
教学过程:
一、 复习
根据下面各题,先口答列式及得数,后说数量关系式。
1、 一列火车2 小时行驶250千米,平均每小时行驶多少千米?
2、 一种布,买3米共要27元,平均每米布多少元?
3、 某印刷厂5天生产2.5万本练习册,平均每天生产多少万本练习册?
师据学生回答板书如下:
路程/时间=速度 总价/数量=单价 工作总量/工作时间=工作效率
二、引新
我们已经学过一些常见的数量关系,如上面这些速度、时间和路程的关系,单价、数量和总价的关系,工作效率、工作时间和工作总量的关系等。现在我们进一步来研究这些数量关系中的一些特征。如速度一定,路程和时间有什么关系?或者时间一定,路程和速度之间有什么关系?这节课我们先来学习这方面的知识。正比例的意义。(板书)
三、新授
1、 教学例1。一列火车行驶的时间和所行的路程如下表。
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
(1) 引导学生观察上表内数据。
(2) 边观察边思考下面问题:
(1) 表中有哪几种量?这两促量有没有关系?
(2) 这两种量是怎样设化的?(路程是随着时间的变化页变化。时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。)
(3) 引导学生分析这两种相关联的量的'变化有什么规律?
(1)从表内找出几组相对应的两个数,求出比值,再比较比值的大小。指名口答,师板书:
90/1=90 360/4=90 540/6=90
(2)从下面的比式中,你能不能找出变化规律?这个90实际上就是这列火车的什么?(速度)
(3)师:它们之间的关系可以用式子表示
路程/时间=速度(一定)
(4) 小结。
时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。
2、 教学例2
(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。
数量(米) 1 2 34 5 6 7
总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4
(2)引导学生观察上表内的数据。
(3) 回答下面风个问题:
表中有哪两种量?这两种量有关系吗?为什么?
这两种量是怎样变化的?
它们的变化有什么规律?
相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?
(4) 小结。
花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。
3、 概括正比例的意义及关系式。
(1) 比较上面的例1和例2,它们有什么共同点?
(2) 判断成正比例量的方法:是什么?
(3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?
(4) 概括关系式:
Y/X=K(一定)
4、 教学例3。
出示例3
师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)
5、 小结。
判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。
四、巩固练习
第13页做一做
五、 总结。
1、 什么叫成正比例的量?
2、 怎样判断两种量是成正比例的量?
六、 作业: 完成练习六第1-3题。
数学六年级下册教案11
教学内容:教材60~61页内容
教学目标:让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
重点难点:
1、学习用工具测量两点间的距离。
2、学会步测和目测,体验步测和目测的价值。
教学准备:卷尺、测绳、标杆
一、认识测量工具
教师播放农民在平整土地;工人在兴修水利、建造房屋时进行测量的场景。
师:同学们在平时的生活中有没有看到过这些场景?你知道测量的工具有哪些?
教师说明:测量土地时要用到标杆、卷尺、测绳等工具.
二、测量方法研究学习
1、利用工具实际测量
师:如果要测量教室的长和宽可以怎样来测量?
教师小结:测量较近的距离,可以用卷尺或测绳直接量出.
师:如果要测量学校操场跑道的长度应该如何来测量?测量时应注意些什么问题?(学生边汇报,教师边演示“实际测量”)
(1)两个人先在A点和B点各插一根标杆;
(2)第一个人在A点指挥,第三个人把另一根标杆插在C点,使它和B点的.标杆同时被A点的标杆挡住;
(3)用同样的方法再把另一根标杆插在D点……
(根据测量距离的长短来确定分段测量的段数.)
(4)把所有这些点连接起来,就定出了一条直线.
测定直线以后就可以用卷尺或测绳逐段量出所要测量的距离了
2、步测和目测
(1)步测
师:你知道1步的长度如何测量吗?
组织学生学习书本上的内容,明确测量方法。
提醒学生在实际进行步测时,要注意迈步均匀,防止步子忽大忽小,向前走时尽量保持直线进行。这样测量出来的结果相对准确些。
教师演示1步的长度:从后脚尖到前脚尖的距离.
教师演示步测的过程:先量出几十米的一段距离,用均匀的步子沿直线走上3、4次,记好每次走的步数,然后再算出平均每次走的步数,再算出走一步的平均长度是多少。
(2)目测
师:你现在能不能坐在座位上估算一下你和老师之间的距离.
师:这种只用眼睛来估量一段距离的方法叫做目测.
教师出示图片“参照图”,帮助学生练习目测.
教师说明:目测时容易受地形的影响,如在开阔地,容易把距离估测的偏短,而在狭长的地方又容易把距离估测的偏长。
三、实践活动
1、测定直线.
教师提出要求:让学生分组按照课前分别指定的两点之间测定直线,在地面上画出直线,并量出两点间的距离。
2、步测
(1) 引导学生确定自己的平均步长
A:先在操场上量出一段距离(如50米):让学生反复走3次,并要求记下自己每次所走的步数,填在表格里。
B:指导学生依次算出走50米的平均步数,以及自己的平均步长。
教师也可以参与其中,可以让学生交流每个人步测的平均步长,总结身高高的学生通常平均步长一些,身高矮的学生平均步长相对短一些。
(2) 步测学校操场的宽
可以让学生先走一走,并记下所走的步数,然后根据自己的平均步长算出操场的宽。
结合天天练P38页的实际测量,可以组织学生测量篮球场的长和宽。
(3) 比较步测和工具测量的结果。
用工具测量操场的宽,并将用工具测量的结果和步测的结果进行比较。
3、目测
教师先测定50米的距离,每隔10米插上标杆,估计10米、20米、30米……各有多长,然后拔掉标杆,根据指定的目标练习目测.
四、课堂小结
师:通过这节课的学习,你有什么收获?
你知道步测和目测与利用工具测量有什么区别?
总结:在缺乏测量工具或对测量结果要求无需很精确时,可采用步测或目测.
课堂作业:完成天天练38页内容
数学六年级下册教案12
教学目标:
1. 通过画图的方法,探索长方形长和宽的变化关系,进一步理解反比例的意义。
2. 经历探索活动,了解反比例曲线图的特征。
教学重点:
探究长方形面积不变时,长与宽的关系。
教学难点:
发现表示反比例曲线图的特征。
教学过程:
一、旧知铺垫。
1、正比例关系的意义是什么?怎么用字母表示这种关系?正比例的图像呢?
2、你还记得表示积一定,两个乘数之间的关系图吗?把积是12的.方格圈起来,可以连成什么线?
3、说一说。
(1) 两个乘数的变化情况。
(2) 两个乘数成什么关系?
(3) 你有什么猜想?
二、探索新知。
用X、Y表示面积为24平方厘米的长方形相邻的两条边长,他们的变化关系如下表。
x/cm 1 2 3 4 6 8 12 24
y/cm 24 12 8 6 4 3 2 1
1、说一说长与宽的变化情况。(小组交流)
2、这里哪个量一定?
3、面积一定时,长方形的长与宽有什么关系?(小组讨论)
板书:长宽=长方形面积(一定)
4、根据上面的数据,在方格纸上画出8个长方形。(每格代表 1 cm)
过程要求
(1) 出示方格纸,并标明X、Y轴上的数字。
(2) 教师边讲解,边画长方形。
(3) 学生接着画。(直接在课本上完成)
5、连接图中的点A,B,C,D
(1) 猜一猜:图中的点A,B,C,D在一条直线上吗?
(2) 师生一起连线,验证自己的猜想。
三、课堂小结
说一说表示正比例关系的图像和反比例关系的关系式和图像的区别。
四、巩固练习
面包的总个数不变,每袋装的个数与袋数如下表。
每袋个数 2 3 4 6 8 12 24
袋 数 12 8 6 4 3 2 1
(1)每袋个数与袋数有什么关系?说明理由。
(2)把上面的数据制成图表。
数学六年级下册教案13
设计说明
“反比例”是在学生学过“变化的量”“正比例”“正比例图象(画一画)”的基础上进行教学的。本着“学生是学习的主体”这一理念,本节课在教学中最大限度地为学生提供了自主探究的机会。
1.借助意义、实例,渗透思想。
教学伊始,借助正比例的意义和生活实例,使学生体会函数思想,充分理解正比例比值不变的特点,为学生探究成反比例的两个量之间的关系,理解、掌握反比例的意义及特点奠定良好的基础。
2.借助教材情境,在观察、讨论中发现规律。
教学中,先根据教材提供的情境,理解长方形的面积一定时,长方形相邻两边的边长成反比例关系,再结合王叔叔游长城这一情境,引导学生在观察、讨论中发现速度和时间这两个量之间的关系:速度变化,所用的时间也随着变化,速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。学生通过自己的努力,了解反比例的意义,理解反比例的特点。
教学目标:
1、通过观察、操作和比较,让学生认识反比例的意义,理解、掌握反比例的变化规律及其特征,能依据反比例的意义判断两种相关联的量成不成反比例。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
3、培养学生的分析、推测能力,并向学生渗透初步的函数思想。
教学重难点
教学重点:理解反比例的意义。
教学难点:掌握判断两种量是否成反比例的方法。
课前准备 教师准备 多媒体课件 教学过程 :
一、复习旧知,引入新课
二、复习提问。
1、什么是正比例? 两个相关联的量,一个量变化,另一个量也随着变化,如果这两个量中相对应的两个数的比值一定,这两个量就叫作成正比例的量,它们的关系叫做正比例关系。
2、判断下面各题中的两个量是否成正比例?
①工作效率一定,工作时间和工作总量。
②每头奶牛的产奶量一定,奶牛的头数和总产奶量。
③正方形的边长和它的面积。
3、引入新课。
师:通过学习我们已经知道了两个量成正比例关系的变化规律。正和反相对,有正比例,那是否有反比例呢?如果有,什么样的'两个量成反比例关系呢?又该如何判断呢?今天这节课我们就一起来研究两个量成反比例关系的变化规律。
(设计意图:通过复习正比例的意义,判断两个量是否成正比例,检验学生掌握知识的能力,为学习新课奠定基础。) 二、合作交流,探究新知 1、探究长方形相邻两边边长的变化规律。
(1) 课件出示教材46页表1和表2。
用x,y表示长方形相邻两边的边长,表1是面积为24 平方厘米的长方形相邻两边边长的变化关系,表2是周长为24 厘米的长方形相邻两边边长的变化关系。请把表格填写完整,并说说你发现了什么。(单位:厘米)生独立填表。
(2) 汇报发现。
(长方形一条边的边长随着邻边边长的增加而减少)
(3) 讨论:表1和表2中,长方形相邻两边边长之间的变化规律相同吗? (小组内讨论、交流后汇报)
小结:面积是24 平方厘米的长方形相邻两边边长之间的关系:1×24=2×12=3×8=4×6=…相邻两边边长的积都是24。
生2:周长是24 厘米的长方形相邻两边边长之间的关系:1×11=11,2×10=20,3×9=27…相邻两边边长的积不相等。1+11=2+10=3+9=…虽然相邻两边边长的积不相等,但相邻两边边长的和相等。
2、探究速度与时间的变化规律。
(1) 课件出示教材46页下面例题。
结合“王叔叔要去游长城”的情境,初步感受成反比例的量之间的关系。
王叔叔要去游长城,不同的交通工具的速度和行驶所需时间如下,请把下表填完整。
引导学生独立计算、填表。(根据速度和时间求路程) 从上表中你发现了什么? 生1:我发现时间与速度的变化有关系。
生2:我发现速度增加,时间减少;
速度减少,时间增加。
生3:我发现速度与时间的积是一定的,10×12=60×2=80×1.5=120,积都是120,即“速度×时间=路程(一定)”。
师总结:像这样,速度和时间两个量,速度变化,所用的时间也随着变化,而且速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。
想一想:第1个问题中,表1和表2中的长方形相邻两边的边长成反比例吗? 生独立思考后汇报。
当面积一定时,长方形相邻两边边长的积一定,所以相邻两边的边长成反比例。
当周长一定时,长方形相邻两边边长的和一定,但是积不相等,所以相邻两边的边长不成反比例。
3、在知识迁移中总结用字母表示反比例的方法。
师:结合正比例关系的字母表达式想一想:反比例关系怎样用字母表示?
生:如果用x和y表示两个相关联的量,用k(一定)表示它们的积,反比例关系可以用下面的公式表示:
x×y=k(一定)(板书公式并强调积一定)
4、在对比学习中,明确正比例与反比例的异同。
(1)正比例与反比例有什么相同点和不同点?学生交流并完成手中表格 相同点是都表示两个相关联的量,且一个量变化,另一个量也随着变化。
不同点是正比例关系中两个相关联的量的比值一定,反比例关系中两个相关联的量的积一定。
(2)你还能列举出哪些日常生活中的反比例?(学生自主举例,合理即可)
设计意图:结合新知内容,循序渐进,层层深入。让学生带着问题进入新课,并结合具体情境及教材内容引导学生逐步理解成反比例的量、反比例的意义和特点及正、反比例的区别,使学生的观察能力、发现能力、知识归纳能力、表达能力以及合作意识得到提高。
三、巩固练习,拓展应用
1、完成教材48页“练一练”1题。(生独立完成,借助表中数据说明即可。师巡视指导)
设计意图:训练学生独立完成习题的能力,在判断题的基础上增加难度,注重练习题的梯度性,使学生的数学思维得到更好的发展。
2、工作效率、工作总量和工作时间这三种量中,在什么情况下,哪两种量成反比例?在什么情况下哪两种量成正比例?
3、判断下面各题中的两个量是否成反比例,并说明理由。
(1)(行驶的路程一定,车轮的周长与车轮需要转动的圈数。
(2)平行四边形的面积一定,它的底和高。
(3)笑笑从家步行到学校,已走的路程和剩下的路程。
(4)周长一定时,圆的直径和圆周率。
四、课堂总结
1、这节课你学到了哪些知识?还有哪些不懂的地方?
2、正比例与反比例有什么区别?(引导学生从意义、表达式等方面进行汇报)
五、布置作业
请同学们利用手中的表格试着画一画反比例的图象。
板书设计 :
反比例 速度×时间=路程(一定) 表达式:x×y=k(一定) 反比例的特征:
1、两种相关联的量
2、一种量变化,另一种量也随着变化
3、积一定速度变化,所用的时间也随着变化,
数学六年级下册教案14
教学目标:
1、知识技能
运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:
圆柱体体积的计算公式的推导过程及其应用。
教学难点:
理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。
教学过程:
一、复习导入
同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的'体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体
的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)
[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]
2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:
①拼成的近似长方体的体积与原来的圆柱体积有什么关系?
②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?
?.拼成的近似长方体的高与原来的圆柱的高有什么关系?
2、小组代表汇报
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
3、电脑演示操作
(1)电脑演示圆柱体转化成长方体的过程:
仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?
动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?
(分的分数越多,拼成的图形就越接近长方体)
(2)根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
V=Sh
(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
三、练习巩固,灵活应用
闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?
让学生试做,集体反馈。
闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?
学生讨论、交流、汇报。
小结:解决以上问题的关键是先求出什么?(生:底面积)
闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。
四、课堂小结
学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)
五、布置作业
教科书第21页练习三第1-4题。
板书设计:
圆柱的体积
长方体的体积=底面积×高
圆柱的体积=底面积×高
V= Sh
数学六年级下册教案15
教学内容
(1)负数的初步认识
(2)(教材第3页例2)。
教学目标
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
重点难点
体会引入负数的必要性,初步理解负数的含义。
情景导入
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)
新课讲授
1。教学例2。
(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。
(3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。
2。归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗小组讨论交流。
(2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我
们把它叫做负数。
(3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”
归纳:0既不是正数也不是负数,它是正数和负数的分界点。
(4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。
课堂作业
完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:
4 +41 51负数有:—7?
3正数有:+
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
第2课时负数的初步认识
(2)正数:+8负数:—8
+4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20
0既不是正数也不是负数。
第3课时在数轴上表示正数、0和负数
教学内容
借助数轴理解正数和负数的意义(教材第5页例3)。
教学目标
1。借助数轴初步理解正数、0、负数。
2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。
重点难点
认识数轴、0。
情景导入
教师用CAI课件演示教材第5页的`主题图。
教师:如何在一条直线上表示出他们运动后的情况呢
新课讲授教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
(5)引导学生观察数轴:
①从0起往右依次是从0起往左依次是你发现什么规律
②在数轴上分别找到
和对应的点。如果从起点分别到和处,应如何运动
师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
课堂作业
1。完成教材第5页的“做一做”。学生独立练习,指名汇报。
2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。
答案:
1。略
2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
第3课时在数轴上表示正数、0和负数
上面这样的直线叫做数轴。
【数学六年级下册教案】相关文章:
数学六年级下册教学教案01-06
六年级数学下册教案10-10
小学数学下册教案11-15
苏教版小学数学六年级下册教案12-16
六年级数学下册统计教案12-16
六年级数学下册教案推荐08-26
数学六年级下册教案15篇01-12
人教版六年级数学下册教案01-13
六年级数学下册教案最新09-22