数学高二教案

时间:2023-01-08 08:06:26 数学教案 我要投稿

数学高二教案

  作为一无名无私奉献的教育工作者,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?以下是小编精心整理的数学高二教案,欢迎阅读与收藏。

数学高二教案

数学高二教案1

  学情分析:

  前面两节(曲边梯形的面积和汽车行驶的路程)课程的学习为定积分的概念的引入做好了铺垫。学生对定积分的思想方法已有了一定的了解。

  教学目标:

  (1)知识与技能:定积分的概念、几何意义及性质

  (2)过程与方法:在定积分概念形成的过程中,培养学生的抽象概括能力和探索提升能力。

  (3)情感态度与价值观:让学生了解定积分概念形成的背景,培养学生探究数学的兴趣。

  教学重点:

  理解定积分的概念及其几何意义,定积分的性质

  教学难点:

  对定积分概念形成过程的理解

  教学过程设计:

  教学环节

  教学活动

  设计意图

  一、复习引入:

  曲边梯形的面积 :

  变速运动的路程:

  归纳解决曲边梯形面积和变速直线运动的共同特征:第一,都通过“四步曲”——分割、近似代替、求和、取极限来解决问题;第二,最终结果都归结为求同 一种类型的和式的极限。

  结合已学的相关知识基础学习新概念。

  二、新课讲解

  1.定积分概念

  如果函数在区间上连续,用分点将区间等分成个小区间,在每个小区间上任取一点,作和式当时,上述和式无限接近某个常数,这个常数叫做函数在区间上的定积分,记作,即

  2.定积分概念的理解

  (1)关于区间分法。对区间的分割应该是任意的,只要保证每一小区间的长度都趋向于0就可以了。

  (2)关于的取法。在定积分的定义中,规定是第小区间上任意取定的点,这主要是考虑到定义的一般性,但在解决实际问题或计算定积分时,可以把都取为每个小区间的左端点或右端点,以便于得出结果。

  (3)定积分中符号的含义:叫做积分号,分别叫做积分下限和积分上限,区间叫做积分区间,函数叫做被积函数,叫做积分变量,叫做被积式。

  定积分的值与积分变量用什么字母表示无关,即有。

  (4)定积分的`含义(与不定积分的区别):是一个和式的极限——是一个确定的常数;是的全体原函数——是函数。

  详细剖析新概念,让学生透彻理解。

  3.定积分的几何意义。

  (1)学生在回顾前面两个实例的基础上做出回答:

  1.5。1中曲边梯形面积:

  1.5。2中汽车在这段时间经过的路程:

  (2)探究(课本52页):如何用定积分表示位于轴上方的两条曲线与直线围成的平面图形的面积。

  结合图形,回忆前两节的两个实例讲解,学生容易接受。

  例1 利用定积分的定义,计算的值。

  (使学生进一步熟悉定积分的定义,熟悉计算定积分的“四部曲”,注意引导学生选取为特殊点以便于计算。)

  4.定积分的基本性质:

  由于没有学习极限相关知识,教学中,不要求学生证明这些基本性质,可帮助学生从几何直观上感知。

  例2:计算定积分

  分析:利用定积分的性质(1)、(2),可将定积分转化为,利用定积分的定义分别求出,,就能得到定积分的值。

  此例可以说明定积分性质的应用。

  三、练习

  ①计算的值,并从几何上解释这个值表示什么。

  ②利用定积分的定义,证明,其中均为常数且。

  ③试用定积分的几何意义说明的大小。

  进一步熟悉定积分的概念。

  进一步熟悉定积分的几何意义。

  四、课堂小结

  定积分的定义,计算定积分的“四步曲”,定积分的几何意义,定积分的性质。

  归纳,小结本节的知识。

  练习与测试:

  (基础题)

  1.函数在上的定积分是积分和的极限,即_________________ 。

  答案:

  2.定积分的值只与______及_______有关,而与_________的记法无关 。

  答案:被积函数,积分区间,积分变量;

  3.定积分的几何意义是_______________________ 。

  答案:介于曲线,轴 ,直线之间各部分面积的代数和;

  4.据定积分的几何意义,则

  5.将和式极限表示成定积分

  (1)解:

  (2)其中解:

  6.利用定义计算定积分

  解:在中插入分点,典型小区间为,小区间的长度,取,取即。

数学高二教案2

  【课题】导数与函数的单调性

  【教材】北京师范大学出版社《数学》选修1-1

  【教材分析】

  “导数与函数的单调性”是北师大版普通高中课程标准实验教科书数学选修1-1第四章《导数应用》第一节的内容。本节的教学内容是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。

  函数的单调性是函数极为重要的性质。在高一学生利用函数单调性的定义、函数的图像来判断函数的单调性,通过本节课学习,利用导数来判断函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。同时,为下一节学习利用导数研究函数的极值、最值有重要的帮助。因此,学习本节内容具有承上启下的作用。

  【学生学情分析】

  由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分体现了导数解决问题的优越性。虽然函数单调性的概念在高一学过,但现在可能已忘记;因此对于单调性概念的理解不够准确,同时导数是学生刚学习的概念,如何将导数与函数的单调性联系起来是一个难点。

  【教学目标】

  1.知识与能力:

  会利用导数解决函数的单调性及单调区间。

  2.过程与方法:

  通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。

  3.情感态度与价值观:

  通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。

  【教学重点和难点】

  对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。

  教学重点:探索并应用函数的单调性与导数的关系求单调区间。

  教学难点:探索函数的单调性与导数的关系。

  【教学设计思路】

  现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。

  整个教学过程突出了三个注重:

  1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。

  2、注重师生、生生间的互相协作、共同提高。

  3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。

  根据新课程标准的要求,本节课的知识目标定位在以下三个方面:

  一是能探索并应用函数的单调性与导数的关系求单调区间;

  二是掌握判断函数单调性的方法;

  三是能由导数信息绘制函数大致图像。

  【教法预设】

  1.教学方法的选择:

  为在课堂上,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用启发式、讲练结合的教学方法。通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。

  2.教学手段的利用:

  本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,使抽象的知识直观化,形象化,以促进学生的理解。

  【学法预设】

  为使学生积极参与课堂学习,我主要指导了以下的学习方法:

  1.合作学习:引导学生分组讨论,合作交流,共同探讨问题;

  2.自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;

  3.探究学习:引导学生发挥主观能动性,主动探索新知。

  【课时安排】 1 课时

  【教学准备】

  多媒体(画出函数① ② ③ 在同一个坐标系下的图像);并写出以下四个函数:① ,

  ② ,③ ,

  ④

  【教学过程】

  一、新课引入:

  1.函数增减性的定义是什么?

  2.导数的定义是什么?

  学生活动:思考以前学习过的数学知识,说出两个问题的概念的要点来。

  设计意图:引导学生理解函数的单调性概念及导数的概念

  板书课题:导数与函数的单调性

  二、新课教学:

  1.探究函数的导数与函数的单调性的关系

  显示多媒体(出示3个函数的解析式及图像)引导学生观察并回答以下问题:

  ①这3个函数图像都是直线,其斜率分别是多少?其值有何特点?单调性如何?

  ②分别求出这3 个函数的导数?并观察其导数值有何特点?

  板书:

  ①函数 ,其直线斜率K=1,其导数值 0

  ②函数 ,其斜率K=2,其导数值

  ③函数 ,其斜率K=-3,其导数值

  学生思考并归纳总结

  ①每一条直线的斜率值等于该函数的导数值。

  ②函数的导数值大于零时,其函数为单调递增;函数的导数值小于零时,其函数为单调递减。

  显示多媒体(出示4个函数的解析式):引导学生完成以下问题:

  ①在不同坐标系下分别做出这4个函数的图像?

  ②分别求出这4个函数的导数?

  设计意图:让各小组学生观察导数的符号与函数图像有何联系并交流、讨论总结。

  学生活动:学生思考并举手,教师指定一个学生上台作图。再指定一个学生上台求出函数的导数。

  a 作图(略)

  b 4个函数的导数是:

  ① ② ③ ④

  引导学生思考并提出以下问题:

  ①每一个函数在某一点的切线斜率值是否等于该函数在该点处的导数值?

  ②同一个函数在每一点处的切线的斜率值有何特点?它与该函数的单调性有何联系呢?

  ③同一个函数的单调性与该函数的导数值有何联系呢?

  设计意图:从具体的函数出发,让学生体会从特殊到一般,从具体到抽象的过程,让学生在老师的引导下自主学习和探索总结出曲线的切线的.斜率与导数的关系及曲线函数的导数与曲线的单调性之间的关系。让学生经历观察、分析、归纳、发现曲线的单调性也与函数的导数符号有关。

  板书:

  抽象概括:一般地,函数y=f(x)在某个区间(a,b)内

  ⑴如果恒有 f′(x)>0,那么 y=f(x)在这个区间(a,b)内单调递增;

  ⑵如果恒有 f′(x)<0,那么 y=f(x)在这个区间(a,b)内单调递减。

  注意:

  ①正确理解 “ 某个区间 ”的含义,它必是定义域内的某个子区间。

  ②如果在某个区间内恒有f′(x)=0 ,则 f(x) 为常数函数。

  2.例题讲解:

  例1:求函数 的单调递增区间与递减区间。

  分析:

  根据上面结论,我们知道函数的单调性与函数导数的符号有关。因此,可以通过分析导数的符号求出函数的单调区间。

  解:引导学生回答问题并同时板书。

  ①函数 的定义域是什么?其导数如何求?

  函数的定义域是 ,其导数值是:

  ②若 时, 的范围是什么?若 时, 的范围又是什么?

  当 或 时, ,因此,在这两个区间上,函数是增加的;

  当 时, ,因此,在这个区间上,函数是减少的。

  所以,函数 的递增区间为 和 ;

  递减区间为 。

  ③讨论函数单调性的一般步骤是什么?

  板书:

  a 求函数 的导数。

  b 讨论单调区间,解不等式 ,解集为增区间;解不等式 ,解集为减区间。

  c 得出结论。

  设计意图:通过实例让学生掌握利用函数的导数符号来判定函数单调性的方法及过程;进一步让学生体会利用导数工具解决函数的单调性问题以及它的简便性。

  3.课堂练习:

  教材第83页练习题1、 2

  4.课堂小结:

  本节课从几个函数的图像与其在区间内的导数值之间的关系,归纳总结函数单调性与导数的关系,根据它们之间的关系通过例题讲解让学生明确了利用导数求函数单调性的方法,并掌握了求函数单调性的一般步骤。

数学高二教案3

  学习目标

  (1)了解任意角的正切函数概念;

  (2)掌握正切线的画法;

  (3)能熟练掌握正切函数的图像与性质;

  (4)掌握利用数形结合思想分析问题、解决问题的技能。

  教学过程

  一、自主学习

  1、对于正切函数

  (1)定义域:,

  (2)值域:

  观察:当从小于,时,

  当从大于,时,。

  (3)周期性:

  (4)奇偶性:

  (5)单调性:

  2、作,的图象

  二、师生互动

  例1。比较与的大小

  例2、。、讨论函数的性质

  例、3、观察正切曲线写出满足下列条件的x的值的范围:tanx0

  三、巩固练习

  1、与函数的图象不相交的一条直线是()

  2、函数的定义域是

  3、函数的值域是

  4、函数的奇偶性是,周期是

  5、求函数的定义域、值域,指出它的周期性、奇偶性、单调性,并说明它的.图象可以由正切曲线如何变换得到。

  四课后反思

  五课后巩固练习

  1。以下函数中,不是奇函数的是()

  A。y=sinx+tanx B。y=xtanx—1 C。y= D。y=lg

  2。下列命题中正确的是()

  A。y=cosx在第二象限是减函数B。y=tanx在定义域内是增函数

  C。y=|cos(2x+)|的周期是D。y=sin|x|是周期为2的偶函数

  3。用图象求函数的定义域。

  4。不通过求值,比较tan135与tan138的大小。

数学高二教案4

  一、教材分析

  【教材地位及作用】

  基本不等式又称为均值不等式,选自北京师范大学出版社普通高中课程标准实验教科书数学必修5第3章第3节内容。教学对象为高二学生,本节课为第一课时,重在研究基本不等式的证明及几何意义。本节课是在系统的学习了不等关系和掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续进一步了解不等式的性质及运用,研究最值问题奠定基础。因此基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

  【教学目标】

  依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

  知识与技能目标:理解掌握基本不等式,理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;

  过程与方法目标:通过探究基本不等式,使学生体会知识的形成过程,培养分析、解决问题的能力;

  情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

  【教学重难点】

  重点:理解掌握基本不等式,能借助几何图形说明基本不等式的意义。

  难点:利用基本不等式推导不等式.

  关键是对基本不等式的理解掌握.

  二、教法分析

  本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率.

  三、学法指导

  新课改的精神在于以学生的发展为本,把学习的主动权还给学生,倡导积极主动,勇于探索的学习方法,因此,本课主要采取以自主探索与合作交流的学习方式,通过让学生想一想,做一做,用一用,建构起自己的知识,使学生成为学习的主人。

  四、教学过程

  教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

  具体过程安排如下:

  (一)基本不等式的教学设计创设情景,提出问题

  设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:

  上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

  [问题1]请观察会标图形,图中有哪些特殊的几何图形?它们在面积上有哪些相等关系和不等关系?(让学生分组讨论)

  (二)探究问题,抽象归纳

  基本不等式的教学设计1.探究图形中的不等关系

  形的角度----(利用多媒体展示会标图形的变化,引导学生发现四个直角三角形的面积之和小于或等于正方形的面积.)

  数的角度

  [问题2]若设直角三角形的两直角边分别为a、b,应怎样表示这种不等关系?

  学生讨论结果:。

  [问题3]大家看,这个图形里还真有点奥妙。我们从图中找到了一个不等式。这里a、b的取值有没有什么限制条件?不等式中的等号什么时候成立呢?(师生共同探索)

  咱们再看一看图形的变化,(教师演示)

  (学生发现)当a=b四个直角三角形都变成了等腰直角三角形,他们的面积和恰好等于正方形的面积,即.探索结论:我们得到不等式,当且仅当时等号成立。

  设计意图:本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式基本不等式的教学设计。在此基础上,引导学生认识基本不等式。

  2.抽象归纳:

  一般地,对于任意实数a,b,有,当且仅当a=b时,等号成立。

  [问题4]你能给出它的证明吗?

  学生在黑板上板书。

  [问题5]特别地,当时,在不等式中,以、分别代替a、b,得到什么?

  学生归纳得出。

  设计意图:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.

  【归纳总结】

  如果a,b都是非负数,那么,当且仅当a=b时,等号成立。

  我们称此不等式为基本不等式。其中称为a,b的算术平均数,称为a,b的几何平均数。

  3.探究基本不等式证明方法:

  [问题6]如何证明基本不等式?

  设计意图:在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

  方法一:作差比较或由基本不等式的教学设计展开证明。

  方法二:分析法

  要证

  只要证2

  要证,只要证2

  要证,只要证

  显然,是成立的。当且仅当a=b时,中的等号成立。

  4.理解升华

  1)文字语言叙述:

  两个正数的算术平均数不小于它们的几何平均数。

  2)符号语言叙述:

  若,则有,当且仅当a=b时,。

  [问题7]怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)

  “当且仅当a=b时,等号成立”的含义是:

  当a=b时,取等号,即;

  仅当a=b时,取等号,即。

  3)探究基本不等式的几何意义:

  基本不等式的教学设计借助初中阶段学生熟知的几何图形,引导学生探究不等式的几何解释,通过数形结合,赋予不等式几何直观。进一步领悟不等式中等号成立的条件。

  如图:AB是圆的直径,点C是AB上一点,

  CD⊥AB,AC=a,CB=b,

  [问题8]你能利用这个图形得出基本不等式的几何解释吗?

  (教师演示,学生直观感觉)

  易证RtACDRtDCB,那么CD2=CA·CB

  即CD=.

  这个圆的半径为,显然,它大于或等于CD,即,其中当且仅当点C与圆心重合,即a=b时,等号成立.

  因此:基本不等式几何意义可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高.

  4)联想数列的知识理解基本不等式

  从形的角度来看,基本不等式具有特定的几何意义;从数的角度来看,基本不等式揭示了“和”与“积”这两种结构间的不等关系.

  [问题9]回忆一下你所学的知识中,有哪些地方出现过“和”与“积”的结构?

  归纳得出:

  均值不等式的代数解释为:两个正数的等差中项不小它们的等比中项.

  基本不等式的教学设计(四)体会新知,迁移应用

  例1:(1)设均为正数,证明不等式:基本不等式的教学设计

  (2)如图:AB是圆的直径,点C是AB上一点,设AC=a,CB=b,

  ,过作交于,你能利用这个图形得出这个不等式的一种几何解释吗?

  设计意图:以上例题是根据基本不等式的使用条件中的难点和关键处设置的,目的是利用学生原有的平面几何知识,进一步领悟到不等式成立的条件,及当且仅当时,等号成立。这里完全放手让学生自主探究,老师指导,师生归纳总结。

  (五)演练反馈,巩固深化

  公式应用之一:

  1.试判断与与2的大小关系?

  问题:如果将条件“x>0”去掉,上述结论是否仍然成立?

  2.试判断与7的'大小关系?

  公式应用之二:

  设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中

  (1)用一个两臂长短有差异的天平称一样物品,有人说只要左右各秤一次,将两次所称重量相加后除以2就可以了.你觉得这种做法比实际重量轻了还是重了?

  (2)甲、乙两商场对单价相同的同类产品进行促销.甲商场采取的促销方式是在原价p折的基础上再打q折;乙商场的促销方式则是两次都打折.对顾客而言,哪种打折方式更合算?(0≠q)

  (五)反思总结,整合新知:

  通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?

  设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.从各种角度对均值不等式进行总结,目的是为了让学生掌握本节课的重点,突破难点

  老师根据情况完善如下:

  知识要点:

  (1)重要不等式和基本不等式的条件及结构特征

  (2)基本不等式在几何、代数及实际应用三方面的意义

  思想方法技巧:

  (1)数形结合思想、“整体与局部”

  (2)归纳与类比思想

  (3)换元法、比较法、分析法

  (七)布置作业,更上一层

  1.阅读作业:预习基本不等式的教学设计

  2.书面作业:已知a,b为正数,证明不等式基本不等式的教学设计

  3.思考题:类比基本不等式,当a,b,c均为正数,猜想会有怎样的不等式?

  设计意图:作业分为三种形式,体现作业的巩固性和发展性原则,同时考虑学生的差异性。阅读作业是后续课堂的铺垫,而思考题不做统一要求,供学有余力的学生课后研究。

  五、评价分析

  1.在建立新知的过程中,教师力求引导、启发,让学生逐步应用所学的知识来分析问题、解决问题,以形成比较系统和完整的知识结构。每个问题在设计时,充分考虑了学生的具体情况,力争提问准确到位,便于学生思考和回答。使思考和提问持续在学生的最近发展区内,学生的思考有价值,对知识的理解和掌握在不断的思考和讨论中完善和加深。

  2.本节的教学中要求学生对基本不等式在数与形两个方面都有比较充分的认识,特别强调数与形的统一,教学过程从形得到数,又从数回到形,意图使学生在比较中对基本不等式得以深刻理解。“数形结合”作为一种重要的数学思想方法,不是教师提一提学生就能够掌握并且会用的,只有学生通过实践,意识到它的好处之后,学生才会在解决问题时去尝试使用,只有通过不断的使用才能促进学生对这种思想方法的再理解,从而达到掌握它的目的。

数学高二教案5

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的'距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的

  四、数学应用

  例1在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考任意两个复数都可以比较大小吗?

  例4设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

数学高二教案6

  一、教学目标设计

  1. 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程.

  2. 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的.程序,并运行程序.

  3. 通过上机操作和调试,体验从算法设计到实施的过程.

  二、教学重点及难点

  重点: 体会算法的实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一.

  难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程.

  三、教学流程设计

  四、教学过程设计

  (一)几个基本语句和结构

  1、赋值语句(=)

  2、输入语句 输入变量名=input(提示语)

  3、输出语句 print() disp()

  4、条件语句

  5、循环语句

  (二)几个程序设计

  建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误

  可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功.

数学高二教案7

  教学内容

  教材第2页的例2,第3页的小数乘法法则和“做一做”,练习一的第5?9题。

  素质教育目标

  (一)知识教学点

  1.使学生理解一个数乘以小数的意义。

  2.掌握小数乘法的计算法则。

  (二)能力训练点

  1.能说出小数乘法算式所表示的意义。

  2.能比较正确地计算小数乘法,提高计算能力。

  3.培养学生的迁移类推能力和概括能力以及运用所学知识解决新问题的能力。

  (三)德育渗透点

  继续渗透转化思想。

  教学重点:

  理解一个数乘以小数的意义,会应用小数乘法的计算法则正确地进行计算。

  教学难点:

  理解一个数乘以小数的意义和小数乘法中积的小数点的定位。

  教具学具准备:

  口算卡片、投影片。

  教学步骤

  一、铺垫孕伏

  1.口算:

  0.3×6 0.8×4 7.2×0 4.2×8

  0.25×4 3.6×3 4.3×5 0.6×9

  2.说出下列小数表示的意义:

  0.2 0.5 0.45 0.824

  使学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  3.复习例1,花布每米6.5元,买5米要用多少元?

  (1)指名列式计算,然后说一说小数乘以整数的意义和小数乘以整数的计算方法。

  (2)引导学生知道:每米6.5元是单价,5米是数量,求的是总价。根据单价×数量=总价也可以列出乘法算式。

  二、探究新知

  1.理解一个数乘以小数的意义。

  (1)教学例2

  ①出示例2花布每米6.5元,买0.5米用多少元?

  ②读题,理解题意,从题中你知道了什么?

  引导学生知道:每米6.5元是单价,0.5米是买的数量,求的是总价。根据单价×数量=总价可以列式为6.5×0.5。

  教师板书:

  6.5×0.5

  ③用线段图表示题中的数量关系:

  ④启发学生理解:0.5米是1米的十分之五,6.5×0.5就是求6.5的十分之五是多少。

  教师板书:

  求6.5的十分之五

  引导学生类推:

  6.5×0.4就是求6.5的十分之四是多少,

  6.5×0.7就是求6.5的十分之七是多少,

  ……

  一个数乘以零点几就是求这个数的十分之几是多少。

  互相讨论得出结论:一个数乘以一位小数的意义是求这个数的十分之几。

  (2)补充例2,买0.82米用多少元?

  ①引导学生用线段图表示:

  ②启发学生理解:每米6.5元是布的单价,0.82米是买布的数量,求的是总价,列式为6.5×0.82。

  教师板书:

  6.5×0.82

  0.82米是1米的百分之八十二,6.5×0.82就是求6.5的百分之八十二。

  教师板书:

  求6.5的百分之八十二

  仿照6.5×0.5的教学方法,引导学生类推得出:

  一个数乘以两位小数的意义就是求这个数的`百分之几。

  ③师生共同小结:一个数乘以一位小数的意义是求这个数的十分之几,乘以两位小数的意义是求这个数的百分之几。

  ④引导学生类推:一个数乘以三位小数就是求这个数的千分之几,一个数乘以四位小数就是求这个数的万分之几,……

  最后概括板书:一个数乘以小数的意义是求这个数的十分之几,百分之几,千分之几……

  2.探究一个数乘以小数的计算方法。

  (1)提出问题,学生讨论:

  计算小数乘以整数,是把小数转化成整数计算的,6.5×0.5和6.5×0.82这两个算式中,被乘数和乘数都含有小数位,应该怎样计算?

  (2)通过讨论汇报,使学生明白:把6.5×0.5变成整数乘法,6.5变成65扩大了10倍,0.5变成5也扩大了10倍,这样乘出来的积就扩大了10×10=100倍,要求原来的积,应把乘出来的积再缩小100倍。同时教师板书:

  把6.5×0.82变成整数乘法,6.5变成65扩大10倍,0.82变成82扩大100倍,这样乘出来的积就扩大了10×100=1000倍。要求原来的积,应把乘出来的积再缩小1000倍。教师板书:

  说明书写的格式,并提示学生:要先点小数点,再把小数末尾的“0”划掉。

  3.总结小数乘法的计算法则。

  (1)引导学生观察算式得出:两个因数中一共有两位小数,积中就有两位小数;两个因数中一共有三位小数,积中就有三位小数。

  (2)想一想:6.05×0.82的积中有几位小数?6.052×0.82的积中有几位小数?

  (3)引导学生概括:两个因数中一共有几位小数,积中就几位小数。

  (4)在小数乘以整数的计算方法的基础上,师生共同归纳总结出小数乘法的计算法则。

  (5)完成法则下面的“做一做”。

  出示 67×0.3 2.14×6.2 0.375×12.4 2.16×3.52先判断积里应该有几位小数,再让学生独立计算,然后集体订正。订正时学生说一说是怎样计算的。

  三、巩固发展

  1.练习一5题

  (1)题,先引导学生理解“十分之三”和“一半”分别用什么数表示,然后学生独立列式。

  (2)题,学生独立列式,订正时,说一说根据什么列式的。

  2.说出下列算式表示的意义:

  2.54×0.8 13×0.36 16.2×15 24×0.035

  3.练习一6题

  4.在下面各式的积中点上小数点。

  5.练习一8题。学生独立填书,订正时指名说一说是怎样想的。

  四、全课小结:引导学生回忆这节课学习了什么知识?

  五、布置作业:练习一7题、9题。

数学高二教案8

  (1)平面向量基本定理的内容是什么?

  (2)如何定义平面向量基底?

  (3)两向量夹角的定义是什么?如何定义向量的垂直?

  [新知初探]

  1、平面向量基本定理

  条件e1,e2是同一平面内的两个不共线向量

  结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2

  基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

  [点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。

  2、向量的夹角

  条件两个非零向量a和b

  产生过程

  作向量=a,=b,则∠AOB叫做向量a与b的夹角

  范围0°≤θ≤180°

  特殊情况θ=0°a与b同向

  θ=90°a与b垂直,记作a⊥b

  θ=180°a与b反向

  [点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。

  [小试身手]

  1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

  (1)任意两个向量都可以作为基底。()

  (2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()

  (3)零向量不可以作为基底中的向量。()

  答案:(1)×(2)√(3)√

  2、若向量a,b的夹角为30°,则向量—a,—b的夹角为()

  A、60°B、30°

  C、120°D、150°

  答案:B

  3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的.是()

  A、e1,e2B、e1+e2,3e1+3e2

  C、e1,5e2D、e1,e1+e2

  答案:B

  4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。

  答案:135°

  用基底表示向量

  [典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。

  [解]法一:由题意知,==12=12a,==12=12b。

  所以=+=—=12a—12b,

  =+=12a+12b,

  法二:设=x,=y,则==y,

  又+=,—=,则x+y=a,y—x=b,

  所以x=12a—12b,y=12a+12b,

  即=12a—12b,=12a+12b。

  用基底表示向量的方法

  将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。

  [活学活用]

  如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。

  解:∵AD∥BC,且AD=13BC,

  ∴=13=13b。

  ∵E为AD的中点,

  ∴==12=16b。

  ∵=12,∴=12b,

  ∴=++

  =—16b—a+12b=13b—a,

  =+=—16b+13b—a=16b—a,

  =+=—(+)

  =—(+)=—16b—a+12b

  =a—23b。

数学高二教案9

  一、教学内容分析

  本小节的重点是数列的概念.在由日常生活中的具体事例引出数列的定义时,要注意抓住关键词“次序”,准确理解其概念,还应让学生了解数列可以看作以正整数集(或它的有限子集)为定义的函数,使学生能在函数的观点下理解数列的概念,这里要特别注意分析数列中项的“序号”与这一项“”的对应关系(函数关系),这对数列的后续学习很重要.

  本小节的难点是能根据数列的前几项抽象归纳出一些简单数列的通项公式.要循序渐进的引导学生分析归纳“序号”与“”的对应关系,并从中抽象出与其对应的关系式.突破难点的关键是掌握数列的概念及理解数列与函数的关系,需注意的是,与函数的解析式一样,不是所有的数列都有通项公式;

  给出数列的有限项,其通项公式也并不唯一,如给出数列的前项,若,则都是数列的通项公式,教学上只要求能写出数列的一个通项公式即可.

  二、教学目标设计

  理解数列的概念、表示、分类、通项等,了解数列与函数的关系,掌握数列的通项公式,能用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的一个通项公式.发展和培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.

  三、教学重点及难点

  理解数列的概念;能根据一些数列的前几项抽象、归纳出数列的通项公式.

  四、教学流程设计

  五、教学过程设计

  一、复习回顾

  思考并回答问题:函数的定义

  二、讲授新课

  1、概念引入

  请同学们观察下面的例子,看看它们有什么共同特点:(课本p5)

  食品罐头从上到下排列成七层的罐头数依次为:

  3,6,9,12,15,18,21

  延龄草、野玫瑰、大波斯菊、金盏花、紫宛花、雏菊花的花瓣数从少到多依次排成一列数:3,5,8,13,21,34

  的不足近似值按精确度要求从低到高排成一列数:

  1,1.7,1.73,1.732,1.7320,1.73205,

  -2的1次幂,2次幂,3次幂,4次幂依次排成一列数:

  -2,4,-8,16,

  无穷多个1排成一列数:1,1,1,1,1,

  谢尔宾斯基三角形中白色三角形的个数,按面积大小,从大到小依次排列成的一列数:1,3,9,27,81,

  依次按计算器出现的随机数:0.098,0.264,0.085,0.956

  由学生回答上面各例子的共同特点:它们均是一列数,它们是有一定次序的,由此引出数列及有关定义:

  1、定义:按一定次序排列起来的一列数叫做数列.

  其中,数列中的每一个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,第3项,第项,

  数列的一般形式可以写成:

  简记作

  2、函数观点:数列可以看作以正整数集(或它的有限子集)为定义域的函数,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值

  3、数列的分类:

  有穷数列:项数有限的数列(如数列①、②、⑦)

  无穷数列:项数无限的数列(如数列③、④、⑤、⑥)

  4、数列的通项:

  如果数列的第项与之间可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.

  启发学生练习找上面各数列的通项公式:

  数列①:

  数列④:

  数列⑤:(常数数列)

  数列⑥:

  指出(由学生思考得到)数列的通项公式不一定都能由观察法写出(如数列②);数列并不都有通项公式(如数列③、⑦);由数列的有限项归纳出的通项公式不一定唯一(如数列①的通项还可以写为:

  5、数列的图像:请同学练习画出数列①的图像,得出其特点:数列的图像都是一群孤立的点

  2、例题精析

  例1:根据下面的通项公式,写出数列的前5项:(课本P6)

  (1);

  (2)

  解:(1)前5项分别为:

  (2)前5项分别为:

  [说明]由数列通项公式的定义可知,只要将通项公式中依次取1,2,3,4,5,即可得到数列的前5项.

  例2:写出下面数列的一个通项公式,使它前面的4项分别是下列各数:

  (1)1,5,9,13;

  (2)

  (3)

  解:(1)

  (2)

  (3)

  [说明]:认真观察各数列所给出的项,寻求各项与其项数的关系,归纳其规律,抽象出其通项公式.

  例3:观察下列数列的构成规律,写出数列的一个通项公式(补充题)

  (1)

  (2)9,99,999,9999,

  (3)

  (4)2,0,2,0,2,0,

  解:(1)

  (2)

  (3)可写成

  (4)2=1+1,0=1-1

  (或,

  或)

  [说明]本例的(2)-(4)说明了了对数列项的'一般分拆变形技巧.

  例4、根据图7-5中的图形及相应的点数,写出点数的一个通项公式: (课本P7)

  解:

  [说明]本类“图形分析”题,解题关键在于正确把握图形依次演变的规律,再依点数写出它的通项公式

  三、巩固练习

  练习7.1(1)

  四、课堂小结

  本节课学习了数列的概念,要注意数列与数集的区别,数列中的数是按一定次序排列的,而数集中的元素没有次序;

  本节课的难点是数列的通项公式,要会根据数列的通项公式求其任意一项,并会根据数列的一些项由观察法写出一些简单数列的一个通项公式.

  五、课后作业

  1.书面作业:课本习题7.1A组习题1.----5

  2.思考题:(补充题及备选题)

  1.有下面四个结论,正确的是(C)

  ①数列的通项公式是唯一的;

  ②每个数列都有通项公式;

  ③数列可以看作是一个定义在正整数集上的函数

  ④在直角坐标系中,数列的图象是一群孤立的点

  A、①②③④B、③ C、④ D、③④

  2.若一数列为:,则是这个数列的(B)

  A、第6项B、第7项 C、第8项D、第9项

  3.数列7,9,11,13,…2n-1中,项的个数为(C)

  A、B、2-1C、-3D、-4

  4.已知数列的通项公式为:

  ,它的前四项依次为____________

  解:前四项依次为:

  5.试分别给出满足下列条件的无穷数列的一个通项公式

  (1)对一切正整数n,

  (2)对一切正整数n,

  解:(1) (不唯一)

  (2) 等(不唯一)

  6.写出下列数列的一个通项公式

  (1)

  (2)3,8,15,24,35,…

  (3)

  (4)0,0.3,0.33,0.333,0.3333,…

  (5)1,0,-1,0,1,0,-1,0,…

  解:(1);

  (2)

  (3)

  (4)

  (5)

  7.根据下面的图像及相应的点数,写出点数的一个通项 公式:

  解:以中间点为参照点,把增加的点作为方向点来分析,有:

  第1个图形有一个方向,点数为1点;

  第2个图形有2个方向,点数为1+21=3点;

  第3个图形有3个方向,点数为1+32=7点;

  第4个图形有4个方向,点数为1+43=13点;

  …………

  第n个图形有n个方向,点数点

  六、教学设计说明

  本节课为概念课,按照“发现式”教学法进行设计

  结合一些具体的例子,引导学生认真观察各数列的特点,逐步发现其规律,进而抽象、归纳出其通项公式

  例题设计主要含以下二个题型:

  由数列的通项公式,写出数列的任意一项;

  给出数列的若干项,观察、归纳出数列的一个通项公式

  补充的思考题,可作为学有余力的同学的能力训练题,也可作为教师的备选题.

数学高二教案10

  教学目标

  (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;

  (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;

  (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;

  (4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的 数学 思想,提高学生“建模”和解决实际问题的能力;

  (5)结合教学内容,培养学生 学习 数学 的兴趣和“用 数学 ”的意识,激励学生勇于创新.

  教学建议

  一、知识结构

  教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.

  二、重点、难点分析

  本小节的重点是二元一次不等式(组)表示平面的区域.

  对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此 学习 二元一次不等式(组)表示平面的区域分为两个大的层次:

  (1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.

  (2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分.这是学生对代数问题等价转化为几何问题以及 数学 建模方法解决实际问题的基础.

  难点是把实际问题转化为线性规划问题,并给出解答.

  对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解 数学 应用题的最常见困难是不会将实际问题提炼成 数学 问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键.

  对学生而言解决应用问题的障碍主要有三类:

  ①不能正确理解题意,弄清各元素之间的关系;

  ②不能分清问题的主次关系,因而抓不住问题的本质,无法建立 数学 模型;

  ③孤立地考虑单个的问题情景,不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法.

  三、教法建议

  (1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念

  (2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的`是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.

  (3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.

  (4)建议通过本节教学着重培养学生掌握“数形结合”的 数学 思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等 数学 能力是大有益处的.

  (5)对作业、思考题、研究性题的建议:

  ①作业主要训练学生规范的解题步骤和作图能力;

  ②思考题主要供学有余力的学生课后完成;

  ③研究性题综合性较大,主要用于拓宽学生的思维.

  (6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.

  如果可行域中的整点数目很少,采用逐个试验法也可.

  (7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.

数学高二教案11

  课题:2。1曲线与方程

  课时:01

  课型:新授课

  一、教学目标

  (一)知识教学点

  使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。

  (二)能力训练点

  通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

  (三)学科渗透点

  通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

  二、教材分析

  1、重点:求动点的轨迹方程的常用技巧与方法。

  (解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)

  2、难点:作相关点法求动点的轨迹方法。

  (解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)

  教具准备:与教材内容相关的资料。

  教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  三、教学过程

  (一)复习引入

  大家知道,平面解析几何研究的主要问题是:

  (1)根据已知条件,求出表示平面曲线的方程;

  (2)通过方程,研究平面曲线的性质。

  我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。

  (二)几种常见求轨迹方程的方法

  1、直接法

  由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

  例1(1)求和定圆x2+y2=k2的圆周的距离等于k的'动点P的轨迹方程;

  (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。

  对(1)分析:

  动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。

  解:设动点P(x,y),则有|OP|=2R或|OP|=0。

  即x2+y2=4R2或x2+y2=0。

  故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。

  对(2)分析:

  题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:

  设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,

  其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点)。

  2、定义法

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

  直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。

  分析:

  ∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。

  又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

  故P点到两定点距离之和是定值,可用椭圆定义

  写出P点的轨迹方程。

  解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。

  又P在半径OQ上。∴|PO|+|PQ|=2。

  由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。

  3、相关点法

  若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。

  例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。

  分析:

  P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。

  解:设点P(x,y),且设点B(x0,y0)

  ∵BP∶PA=1∶2,且P为线段AB的内分点。

  4、待定系数法

  求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。

  例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲

  曲线方程。

  分析:

  因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方

  ax2—4b2x+a2b2=0

  ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。

  ∴△=16b4—4a4b2=0,即a2=2b。

  (以下由学生完成)

  由弦长公式得:

  即a2b2=4b2—a2。

  (三)巩固练习

  用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。

  1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的

  2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?

  3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。

  答案:

  义法)

  由中点坐标公式得:

  (四)、教学反思

  求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。

  四、布置作业

  1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。

  2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。

  3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。

  作业答案:

  1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。

  2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。

数学高二教案12

  教学要求:熟练解答关于直线与椭圆、双曲线的相交弦问题,能运用方程的思想,以及关于直线的有关知识。

  教学重点:熟练分析思路。

  教学过程:

  一、复习准备:

  1.提问:直线上两点间的距离公式?点线距离公式?

  2.知识回顾:直线与二次曲线的相交问题解法(联立方程组)

  二、讲授新课:

  1.教学典型例题:

  ①出示例:设AB是过椭圆 + =1的一个焦点F的弦,若AB的倾斜角为 ,求弦AB的.长。

  ②先由学生分析解答思路,教师适当引导。

  ③学生试练→订正→小结:相交问题解答为联立方程组,并用直线上两点距离公式及韦达定理解决。

  ④出示例:过点P(2,-2)的直线被双曲线 - =1截得的弦MN的中点恰好为点P,求:直线MN的方程;弦MN的长。

  ⑤先由学生分析解答思路,教师适当引导。

  ⑥师生共同解答,主要步骤提问学生。

  解法:设直线的点斜式→联立方程组→消得到x的一元二次方程→利用中点坐标公式求→再用直线上两点间的距离公式求MN长。

  2.练习:

  ①已知双曲线的一条渐近线方程为= x,截直线=x所得的弦长为 ,求此双曲线的标准方程。

  ② AB是椭圆 + =1 (a>b>0)中不平行于对称轴且不过原点O的一条弦,M是AB的中点,求证: 是定值。

  三、巩固练习:

  1.设直线=x+与双曲线 - =1的两支分别交于点P和点Q,同时与它的两条渐近线分别交于点R和点S,求证:|PR|=|SQ|。

  解法:分别联立方程组,证明两组交点的中点坐标相同。

  2.课堂作业:书P132 11、12、14题。

数学高二教案13

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.

  教学重点:椭圆的定义和椭圆的标准方程.

  教学难点:椭圆标准方程的推导.

  教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.

  教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.

  教学过程

  (一)设置情景,引出课题:

  1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实

  物和图片,让学生从感性上认识椭圆.

  2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。

  提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的'轨迹是椭圆?

  下面请同学们在绘图板上作图,思考绘图板上提出的问题:

  1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

  2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

  3.当绳长小于两图钉之间的距离时,还能画出图形吗?

  (二)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

数学高二教案14

  教学目标

  1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

  2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

  3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

  4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

  5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

  教学建议

  教材分析

  1.知识结构

  2.重点难点分析

  重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

  椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的

  (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

  另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

  (2)根据椭圆的定义求标准方程,应注意下面几点:

  ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

  ②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

  ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

  ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

  (3)两种标准方程的椭圆异同点

  中心在原点、焦点分别在轴上,它们的相同点是:形状相同、大小相同,不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同。

  椭圆的焦点在轴上标准方程中项的分母较大;

  椭圆的焦点在轴上标准方程中项的分母较大.

  (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

  教法建议

  (1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

  为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

  例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的

  (2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

  为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

  (3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

  教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

  教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

  (4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

  在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

  (5)注意椭圆的定义与椭圆的标准方程的联系

  在讲解椭圆的定义时,就要启发学生注意椭圆的`图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

  (6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

  推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

  (7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

  (8)在学习新知识的基础上要巩固旧知识

  椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念,对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

  (9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

数学高二教案15

  简单的逻辑联结词

  (一)教学目标

  1.知识与技能目标:

  (1) 掌握逻辑联结词且的含义

  (2) 正确应用逻辑联结词且解决问题

  (3) 掌握真值表并会应用真值表解决问题

  2.过程与方法目标:

  在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  3.情感态度价值观目标:

  激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

  (二)教学重点与难点

  重点:通过数学实例,了解逻辑联结词且的含义,使学生能正确地表述相关数学内容。

  难点:

  1、正确理解命题Pq真假的规定和判定.

  2、简洁、准确地表述命题Pq.

  教具准备:与教材内容相关的资料。

  教学设想:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.

  (三)教学过程

  学生探究过程:

  1、引入

  在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.

  在数学中,有时会使用一些联结词,如且或非。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词且或非联结命题时的含义和用法。

  为叙述简便,今后常用小写字母p,q,r,s,表示命题。(注意与上节学习命题的条件p与结论q的区别)

  2、思考、分析

  问题1:下列各组命题中,三个命题间有什么关系?

  ①12能被3整除;

  ②12能被4整除;

  ③12能被3整除且能被4整除。

  学生很容易看到,在第(1)组命题中,命题③是由命题①②使用联结词且联结得到的新命题。

  问题2:以前我们有没有学习过象这样用联结词且联结的命题呢?你能否举一些例子?

  例如:命题p:菱形的对角线相等且菱形的对角线互相平分。

  3、归纳定义

  一般地,用联结词且把命题p和命题q联结起来,就得到一个新命题,记作pq,读作p且q。

  命题pq即命题p且q中的且字与下面命题中的且 字的含义相同吗?

  若 xA且xB,则xB。

  定义中的且字与命题中的且 字的含义是类似。但这里的逻辑联结词且与日常语言中的和,并且,以及,既又等相当,表明前后两者同时兼有,同时满足。说明:符号与开口都是向下。

  注意:p且q命题中的p、q是两个命题,而原命题,逆命题,否命题,逆否命题中的p,q是一个命题的条件和结论两个部分.

  4、命题pq的真假的规定

  你能确定命题pq的真假吗?命题pq和命题p,q的'真假之间有什么联系?

  引导学生分析前面所举例子中命题p,q以及命题pq的真假性,概括出这三个命题的真假之间的关系的一般规律。

  例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。

  一般地,我们规定:

  当p,q都是真命题时,pq是真命题;当p,q两个命题中有一个命题是假命题时,pq是假命题。

  5、例题

  例1:将下列命题用且联结成新命题pq的形式,并判断它们的真假。

  (1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。

  (2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;

  (3)p:35是15的倍数,q:35是7的倍数.

  解:(1)pq:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成平行四边形的对角线互相平分且相等.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (2)pq:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成菱形的对角线互相垂直且平分.

  由于p是真命题,且q也是真命题,所以pq是真命题。

  (3)pq:35是15的倍数且35是7的倍数. 也可简写成35是15的倍数且是7的倍数.

  由于p是假命题, q是真命题,所以pq是假命题。

  说明,在用且联结新命题时,如果简写,应注意保持命题的意思不变.

  例2:用逻辑联结词且改写下列命题,并判断它们的真假。

  (1)1既是奇数,又是素数;

  (2)2是素数且3是素数;

  6.巩固练习 :P20 练习第1 , 2题

  7.教学反思:

  (1)掌握逻辑联结词且的含义

  (2)正确应用逻辑联结词且解决问题

【数学高二教案】相关文章:

高二数学优秀教案09-13

高二数学教案01-05

数学高二教案15篇01-08

人教版高二数学教案02-10

高二数学教案14篇06-12

人教版高二数学教案范文09-29

高中高二数学教案02-25

高中高二数学教案(3篇)11-03

高中高二数学教案3篇11-02