八年级数学教案模板(精选12篇)
作为一名默默奉献的教育工作者,通常会被要求编写教案,借助教案可以更好地组织教学活动。那么什么样的教案才是好的呢?以下是小编整理的八年级数学教案模板(精选12篇),希望对大家有所帮助。
八年级数学教案 篇1
课题:
三角形全等的判定(三)
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习习惯
教学重点:
SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:
如何根据题目条件和求证的.结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:
直尺,微机
教学方法:
自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式: (略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1) 讲解例1。学生分析完成,教师注重完成后的点评。
例1 如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1=
只要证什么?(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
八年级数学教案 篇2
一、教学目标
1.灵活应用勾股定理及逆定理解决实际问题
2.进一步加深性质定理与判定定理之间关系的认识
二、重点、难点
1.重点:灵活应用勾股定理及逆定理解决实际问题
2.难点:灵活应用勾股定理及逆定理解决实际问题
3.难点的突破方法:
三、课堂引入
创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法
四、例习题分析
例1(P83例2)
分析:
⑴了解方位角,及方位名词;
⑵依题意画出图形;
⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR—∠QPS=45°
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的'意识
例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状
分析:
⑴若判断三角形的形状,先求三角形的三边长;
⑵设未知数列方程,求出三角形的三边长5、12、13;
⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
解略
本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识
八年级数学教案 篇3
教学目标:
1. 掌握三角形内角和定理及其推论;
2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的`思维能力,培养学生联系与转化的辩证思想。
教学重点:
三角形内角和定理及其推论。
教学难点:
三角形内角和定理的证明
教学用具:
直尺、微机
教学方法:
互动式,谈话法
教学过程:
1、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2 你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
2、设问质疑,探究尝试
(1)求证:三角形三个内角的和等于
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题1 观察:三个内角拼成了一个
什么角?问题2 此实验给我们一个什么启示?
(把三角形的三个内角之和转化为一个平角)
问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值
,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?
问题2 三角形一个外角与它不相邻的两个内角有何关系?
问题3 三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
3、三角形三个内角关系的定理及推论
引导学生分析并严格书写解题过程
八年级数学教案 篇4
一、学习目标
1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的.方法——公式法。
1.请看乘法公式
左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式讲解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精讲精练
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、课堂练习
教科书练习。
六、作业
1、教科书习题。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
八年级数学教案 篇5
教学目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学重点:
分式通分的理解和掌握。
教学难点:
分式通分中最简公分母的确定。
教学工具:
投影仪
教学方法:
启发式、讨论式
教学过程:
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.
根据分式通分和最简公分母的定义,将分式通分:
最简公分母为:
然后根据分式的.基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:xxx
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。
八年级数学教案 篇6
一、学习目标:
1.经历探索平方差公式的过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点
重点:平方差公式的.推导和应用;
难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999(2)998×1002
导入新课:计算下列多项式的积
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
结论:两个数的和与这两个数的差的积,等于这两个数的平方差。
即:(a+b)(a—b)=a2—b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:计算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
随堂练习
计算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小结
(a+b)(a—b)=a2—b2
八年级数学教案 篇7
教学目标
知识技能
一、类比同分母分数的加减,熟练掌握同分母分式的加减运算。
二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法
数学思考
在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力
解决问题
一、会进行同分母和异分母分式的加减运算
二、会解决与分式的加减有关的简单实际问题
三、能进行分式的加、剪、乘、除、乘方的混合运算
情感态度
通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点。
重点
分式的加减法
难点
异分母分式的加减法及简单的分式混合运算
教学流程安排
活动流程图
活动内容和目的
活动1:问题引入
活动2:学习同分母分式的加减
活动3:探究异分母分式的加减
活动4:发现分式加减运算法则
活动5:巩固练习、总结、作业
向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情
类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算
回忆异分母分数的加减,使学生归纳异分母分式的加减的方法
通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解
通过练习、作业进一步巩固分式的运算
课前准备
教具
学具
补充材料
课件
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
1.问题一:比较电脑与手抄的录入时间
2.问题二;帮帮小明算算时间
所需时间为,
如何求出的值?
3.这里用到了分式的加减,提出本节课的主题
教师通过课件展示问题。学生积极动脑解决问题,提出困惑:
分式如何进行加减?
通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情
[活动2]
1.提出小学数学中一道简单的分数加法题目
2.用课件引导学生用类比法,归纳总结同分母分式加法法则
3.教师使用课件展示[例1]
4.教师通过课件出两个小练习
教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则
学生在教师的.引导下,探索同分母分式加减的运算方法
通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的注意事项
由两个学生板书自主完成练习,教师巡视指导学生练习
运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识
师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心
让学生进一步体会同分母分式的加减运算
[活动3]
1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题
2.教师提出思考题:
异分母的分式加减法要遵守什么法则呢?
教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减
教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路
由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣
通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣
[活动4]
1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则
2.教师使用课件展示[例2]
3.教师通过课件出4个小练习
4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式 ;
试用含有R1的式子表示总电阻R
5.教师使用课件展示[例4]
教师提出要求,由学生说出分式加减法则的字母表示形式
通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程
教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成
教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系
分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细
由此练习学生的抽象表达能力,让学生体会数学符号语言的精练
让学生体会运用的公式解决问题的过程
锻炼学生运用法则解决问题的能力,既准确又有速度
提高学生的计算能力
通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣
提高学生综合应用知识的能力
[活动5]
1.教师通过课件出2个分式混合运算的小练习
2.总结:
a)这节课我们学习了哪些知识?你能说一说吗?
b)⑴方法思路;
c)⑵计算中的主意事项;
d)⑶结果要化简
3.作业:
a)教科书习题16.2第4、5、6题
学生练习、巩固
教师巡视指导
学生完成、交流,师生评价
教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善
教师布置作业
锻炼学生运用法则进行运算的能力,提高准确性及速度
提高学生归纳总结的能力
八年级数学教案 篇8
一、素质教育目标
(一)知识教学点
使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。
(二)能力训练点
逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。
(三)德育渗透点
培养学生独立思考、勇于创新的精神。
二、教学重点、难点
1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。
三、教学步骤
(一)明确目标
1.复习提问
(1)什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).
(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。
2.导入新课
根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题。
(二)整体感知
关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。
(三)重点、难点的学习和目标完成过程
1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。
2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神。
3.教师板书:
任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A)。
4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的`应用对学生来说是难点、在给出定理后,需加以巩固。
已知∠A和∠B都是锐角,
(1)把cos(90°-A)写成∠A的正弦。
(2)把sin(90°-A)写成∠A的余弦。
这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3。
学生独立完成练习2,就说明定理的教学较成功,学生基本会运用。
教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备。
(四)小结与扩展
1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分。
2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值。
八年级数学教案 篇9
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:
PowerPoint演示文稿
教学方法:
启发法、
学习方法:
讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的.分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的'位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
八年级数学教案 篇10
一、教学目标
1.了解二次根式的意义;
2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3. 掌握二次根式的性质 和 ,并能灵活应用;
4.通过二次根式的计算培养学生的逻辑思维能力;
5. 通过二次根式性质 和 的'介绍渗透对称性、规律性的数学美
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围
难点:确定二次根式中字母的取值范围
三、教学方法
启发式、讲练结合
四、教学过程
(一)复习提问
1.什么叫平方根、算术平方根?
2.说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义: 式子 叫做二次根式
对于 请同学们讨论论应注意的问题,引导学生总结:
(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分
(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答
例1 当a为实数时,下列各式中哪些是二次根式?
例2 x是怎样的实数时,式子 在实数范围有意义?
解:略
说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义
例3 当字母取何值时,下列各式为二次根式:
(1) (2) (3) (4)
分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式
(2)-3x≥0,x≤0,即x≤0时, 是二次根式
(3) ,且x≠0,∴x>0,当x>0时, 是二次根式
(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2。当x>2时, 是二次根式
例4 下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零
解:(1)由2a+3≥0,得
(2)由 ,得3a-1>0,解得
(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式。所以所求字母x的取值范围是全体实数。
(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
八年级数学教案 篇11
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件。
2.提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。
2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:
矩形的性质和常用判别方法的理解和掌握。
教学难点:
矩形的性质和常用判别方法的综合应用。
教学方法:
分析启发法
教具准备:
像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一、情境导入:
演示平行四边形活动框架,引入课题。
二、讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
2.探究矩形的性质:
(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答。)
结论:矩形的四个角都是直角。
(2)探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等。
(3)议一议:(展示问题,引导学生讨论解决)
①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由。
②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形。
例解:(性质的运用,渗透矩形对角线的“化归”功能)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米,求BD与AD的长。
(引导学生分析、解答)
探索矩形的判别条件:(由修理桌子引出)
(5)想一想:(学生讨论、交流、共同学习)
对角线相等的`平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形。
(理由可由师生共同分析,然后用幻灯片展示完整过程。)
(6)归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形。
对角线相等的平行四边形是矩形。
三、课堂练习:(出示P98随堂练习题,学生思考、解答。)
四、新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五、作业设计:P99习题4.6第1、2、3题。
板书设计:
1.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
2.矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级数学教案 篇12
教学目标
1.知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”
2.过程与方法
经历探索一次函数的应用问题,发展抽象思维
3.情感、态度与价值观
培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值
重、难点与关键
1.重点:一次函数的应用
2.难点:一次函数的应用
3.关键:从数形结合分析思路入手,提升应用思维
教学方法
采用“讲练结合”的'教学方法,让学生逐步地熟悉一次函数的应用
教学过程
一、范例点击,应用所学
【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象
y=
【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200-x)吨。B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)。
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。
拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习。
三、课堂总结,发展潜能
由学生自我评价本节课的表现。
四、布置作业,专题突破
课本P120习题14.2第9,10,11题。
【八年级数学教案】相关文章:
有关八年级数学教案八年级数学教案全套10-03
八年级数学教案12-04
优质八年级数学教案11-02
八年级数学教案【精】02-01
【精】八年级数学教案01-21
八年级数学教案【推荐】01-20
八年级数学教案【热】01-20
八年级数学教案【荐】02-01
八年级数学教案【热门】01-18
【热】八年级数学教案01-18